
GENETIC ALGORITHM BASED SCHEDULERS FOR GRID
COMPUTING SYSTEMS

Fatos Xhafa

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Campus Nord - Ed. Omega, C/Jordi Girona Salgado 1-3
08034 Barcelona, Spain

fatos@lsi.upc.edu

Ajith Abraham

IITA Professorship Program, School of Computer Science
Yonsei University

Sudaemoon-ku, Seoul 120-749, Republic of Korea
ajith.abraham@ieee.org

Abstract. In this paper we present Genetic Algorithms (GAs) based schedulers for ef-
ficiently allocating jobs to resources in a Grid system. Scheduling is a key problem in
emergent computational systems, such as Grid and P2P, in order to benefit from the large
computing capacity of such systems. We present an extensive study on the usefulness of
GAs for designing efficient Grid schedulers when makespan and flowtime are minimized.
Two encoding schemes has been considered and most of GA operators for each of them
are implemented and empirically studied. The extensive experimental study showed that
our GA-based schedulers outperform existing GA implementations in the literature for
the problem and also revealed their efficiency when makespan and flowtime are minimized
either in a hierarchical or a simultaneous optimization mode; previous approaches con-
sidered only the minimization of the makespan. Moreover, we were able to identify which
GAs versions work best under certain Grid characteristics, which is very useful for real
Grids. Our GA-based schedulers are very fast and hence they can be used to dynamically
schedule jobs arrived in the Grid system by running in batch mode for a short time.
Keywords: Computational Grids, Scheduling, Genetic Algorithms, Resource Alloca-
tion, Makespan, Flowtime, Expected Time to Compute, Benchmark Simulation Model.

1. Introduction. A computational grid is a large scale, heterogeneous collection of au-
tonomous systems, geographically distributed and interconnected by heterogeneous net-
works. Job sharing (computational burden) is one of the major difficult tasks in a compu-
tational grid environment. Grid resource manager provides the functionality for discovery
and publishing of resources as well as scheduling, submission and monitoring of jobs. How-
ever, computing resources are geographically distributed under different ownerships each
having their own access policy, cost and various constraints. Since the introduction of
computational grids by Foster et al. [11, 12], this problem is increasingly receiving the at-
tention of researchers due to the use of Grid infrastructures in solving complex problems
from many fields of interest such as optimization, scientific simulation, drug discovery,
bio-informatics etc. Unlike scheduling problems in conventional distributed systems, this

1

Javier Carretero

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185531511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 F. XHAFA ET AL. 

problem is much more complex as new features of Grid systems such as its dynamic nature
and the high degree of heterogeneity of jobs and resources must be tackled. The problem
is multi-objective in its general formulation, the two most important objectives being the
minimization of makespan and flowtime of the system.

Job scheduling is known to be NP-complete [13], therefore the use of heuristics is the de
facto approach in order to cope in practice with its difficulty. Thus, the meta-heuristics
computing research community has already started to examine this problem. Single
heuristic approaches for the problem include Local Search (Ritchie and Levine [22]), Simu-
lated Annealing (Yarkhan and Dongarra [25], Abraham et al. [1]) and Tabu Search (Abra-
ham et al. [1]). GAs for scheduling are addressed in several works (Braun et al. [5], Zomaya
and Teh [26], Martino and Mililotti [19], Abraham et al. [1], Page and Naughton [20]).
Some hybrid heuristic approaches have also been reported for the problem. Thus, Abra-
ham et al. [1] addressed the hybridization of GA, SA and TS heuristics for dynamic job
scheduling on large-scale distributed systems. In these hybridizations a population-based
heuristic, such as GAs, is combined with two other Local Search heuristics, such as TS
and SA, that deal with only one solution at a time. Ritchie and Levine [21, 23] combined
an Ant Colony Optimization algorithm with a TS algorithm for the problem. Other ap-
proaches for the problem include the use of AI techniques (Cao et al. [8]), use of predictive
models to schedule jobs at both system and application level (Gao et al. [14]), Particle
Swarm Optimization (Abraham et al. [2]), Fuzzy based scheduling (Kumar et al. [17])
and economic-based approaches (Buyya et al. [7], Abraham et al. [3] and Buyya [6]).

In this work several GAs are proposed and efficiently implemented in C++ using a
generic approach based on a skeleton for GAs [4]. Two encoding schemes has been con-
sidered and most of GA operators for each of them are implemented and empirically
studied. The implementation has been extensively tested, on the one hand, to identify a
set of appropriate values for the parameters that conduct the search and, on the other,
to compare the results with the best known results for the problem in the evolutionary
computing literature. We have used the benchmark of Braun et al. [5], which consists
of instances that try to capture different degrees of heterogeneity of Grid resources1 and
workload of jobs and resources. The experimental study aimed at revealing the efficiency
of GA-based schedulers when makespan and flowtime are both optimized either in a
hierarchical optimization (being makespan the primary objective) or in a simultaneous
optimization mode; previous GA approaches in the literature considered only the mini-
mization of the makespan. Moreover, in the proposed experimental study we addressed
the issue of identifying which GA operators work best under certain Grid characteristics,
such as consistency of computing, degree of heterogeneity of resources and jobs. This last
feature is useful for designing dynamic schedulers that would adaptively allocate jobs to
resources in real Grids.

It should be noted, however, that meta-heuristics run on static instances of the problem
and therefore in this approach static schedulers are obtained. In order to deal with the
dynamics of the Grid systems, dynamic schedulers run the static GA scheduler in batch
mode to schedule jobs arrived in the system since its last activation. Certainly, the
efficiency of the heuristic is crucial for the quality of the dynamic scheduler.

1We use indistinctly the terms resource/machine.



GA-BASED SCHEDULERS FOR GRID SYSTEMS 3

The remainder of the paper is organized as follows. The problem of job scheduling is
described and formally introduced in Section 2. The proposed GAs and their particular-
ization for the problem are given in Section 3. We give an extensive experimental study
in Section 4 and summarize in Section 5 most important aspects of this work.

2. Scheduling in Grid systems. Due to the complexity of Grid systems and large scale
distributed applications, different versions and modes of scheduling can be considered.
We will consider here a version of the problem, which doesn’t take into account possible
restrictions on job interdependencies, data transmission and economic and cost policies
on resources. We are essentially concerned here with scheduling version needed to achieve
high performance applications and, from the Grid users perspective, to offer QoS of the
Grid system. This type of scheduling arises in applications that can be solved by splitting
them into many independent jobs, submitting them to the Grid and combining the partial
results to obtain the final solution. One such family of applications is that of parameter
sweep applications [10, 9]. Monte-Carlo simulations, for instance, belongs to this family.
Moreover, in Grid systems there is a need for allocating independent user applications
to Grid resources. We consider thus the scenario in which jobs submitted to the Grid
are independent and are not preemptive (they cannot change the resource they has been
assigned to once their execution is started, unless the resource is dropped from the Grid.)

2.1. Problem formulation. In order to capture most important characteristics of job
scheduling in Grid systems, we considered the use of a simulation model rather than
existing models of real Grid systems. To formulate the problem under such simulation
model, an estimation of the computational load of each job, the computing capacity
of each resource, and an estimation of the prior load of each one of the resources are
required. One such model is the Expected Time to Compute (ETC) model [18, 5]. Thus
we make the usual assumption that we know the computing capacity of each resource,
an estimation or prediction of the computational needs (workload) of each job, and the
load of prior work of each resource. Having the computing capacity of the resources
and the workload of the jobs, an Expected Time to Compute matrix ETC can be built,
where each position ETC[t][m] indicates the expected time to compute job t in resource
m. The entries ETC[t][m] could be computed by dividing the workload of job t by the
computing capacity of resource m, or in more complex ways by including the associated
migration cost of job t to resource m, etc. It is realistic to assume that this formulation is
applicable in practice, since it is easy to know the computing capacity of each resource and
the requirements about computation need of the jobs can be known from specifications
provided by the user, from historic data or from predictions. Examples of computation
of the workload of jobs are known from the Cornell Theory Center [16].

Interestingly, the ETC matrix model allows to capture important characteristics of
job scheduling. For instance, the ETC model allows to quite easily introduce possible
inconsistencies among jobs and resources in the Grid system by giving a large value to
ETC[t][m] to indicate that job t is incompatible with resource m. Moreover, bench-
marks of instances are generated from this model [5] capturing different characteristics
of distributed heterogeneous systems such as consistency of computing, heterogeneity of
resources and heterogeneity of jobs (see Section 4 for more details).



4

We can now formally define an instance of the problem, under the ETC matrix model,
as follows. It consists of:

• A number of independent jobs that must be scheduled. Any job has to be processed
entirely in unique resource.

• A number of heterogeneous machines candidates to participate in the planning.
• The workload (in millions of instructions) of each job.
• The computing capacity of each machine (in mips).
• The time readym when the machine m will have finished the previously assigned

jobs. This parameter measures the previous workload of a machine.
• The expected time to compute ETC matrix of size nb jobs× nb machines, where a

position ETC[t][m] indicates the expected execution time of job t in machine m.

2.2. Fitness. Several optimization criteria can be considered for this problem, certainly
the problem is multiobjective in its general formulation. The fundamental criterion is that
of minimizing the makespan, that is, the time when finishes the latest job. A secondary
criterion is to minimize the flowtime, that is, minimizing the sum of finalization times of
all the jobs. These two criteria are defined as follows:

makespan : min
Si∈Sched

{max
j∈Jobs

Fj} and flowtime : min
Si∈Sched

{
∑

j∈Jobs

Fj}, (1)

where Fj denotes the time when job j finalizes, Sched is the set of all possible schedules
and Jobs the set of all jobs to be scheduled. Note that makespan is not affected by any
particular execution order of the jobs in a concrete resource, while in order to minimize
flowtime of a resource, jobs should be executed in a ascending order of their expected time
to compute. Essentially, we want to maximize the productivity (throughput) of the Grid
through an intelligent load balancing and at the same time we want to obtain planning
that offer an acceptable QoS. It should also be noted that makespan and flowtime are
contradictory objectives; trying to minimize one of them could not suit to the other,
especially for planning close to optimal ones.

In order to express the Eq. (1) in an easily computable form, we express makespan in
terms of the completion time of a machine. The intuition behind this is that the time
when finishes the last job equals the completion time of the last machine in completing its
jobs. Let completion be a vector of size nb machines, in which completion[m] indicates
the time in which machine m will finalize the processing of the previous assigned jobs and
of those already planned for the machine. Thus, completion[m] is calculated as follows:

completion[m] = ready times[m] +
∑

{j∈Jobs | schedule[j]=m}
ETC[j][m]. (2)

Then, makespan from Eq. (1) can be now expressed as:

makespan = max{completion[i] | i ∈ Machines}. (3)

These criteria can be integrated in several ways to establish the desired priority among
them. In the multi-objective optimization two fundamental models are the hierarchical
and the simultaneous approach. In the former, the optimization criteria are sorted by
their importance, in a way that if a criterion ci is of smaller importance than criterion cj,

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 5

the value for the criterion cj cannot be varied while optimizing according to ci. In the
latter approach, an optimal planning is that in which any improvement with respect to a
criterion causes a deterioration with respect to the other criterion.

Both approaches are considered in this work. In the hierarchical approach the criterion
with more priority is makespan and the second criterion is flowtime. In the simultaneous
approach, makespan and flowtime are minimized simultaneously. In this later case, we
have used a weighted sum function since makespan and flowtime are measured in the
same unit (arbitrary time units). However, the makespan and flowtime values are in
incomparable ranges, due to the fact that flowtime has a higher magnitude order over
makespan, and its difference increases as more jobs and machines are considered. For this
reason, the value of mean flowtime, flowtime/nb machines, is used to evaluate flowtime.
Additionally, both values are weighted in order to balance their importance. Fitness value
is thus calculated as:

fitness = λ ·makespan + (1− λ) ·mean flowtime, (4)

where λ has been a priori fixed after a preliminary tuning process (see Section 4).

3. GAs for Scheduling in Grid Systems. GAs are high level algorithms that integrate
other methods and genetic operators, therefore, in order to implement it for a concrete
problem, one just needs to start from a template for the method and design the inner
methods, operators and appropriate data structures. For the purpose of this work we
have used the template given in Algorithm 1.

begin
Initialization: Generate the initial population P (t = 0) of n individuals
Fitness: Evaluate the fitness of each individual of the population.

Evaluate(P (t))
while (not termination condition) do

Selection: Select a subset of m pairs from P (t). Let P1(t) = Select(P (t)).
Crossover: With probability pc, cross each of the m chosen pairs.

Let P2(t) = Cross(P1(t)) be the set of offsprings.
Mutation: With probability pm, mutate each offspring in P2(t).

Let P3(t) = Mutate(P2(t)).
Fitness: Evaluate the fitness of each offspring. Evaluate(P3(t)).
Replacement: Create a new generation from individuals in P (t) and P3(t).

Let P (t + 1) = Replace(P (t), P3(t)); t = t + 1.
fwhile
return Best found solution;

end

Figure 1. Genetic Algorithm template

3.1. Schedule encodings. The encoding of individuals (also known as chromosome) of
the population is a key issue in evolutionary-like algorithms. Note that for a combinatorial
optimization problem, individual refers to a solution of the problem. Encodings determine
the type of the operators that could be used to ensure the evolution of the individuals



6

and also impact on the feasibility of individuals. Reproduction operators are applied
on the chromosomes, hence appropriate representation and reproduction operators are
determinant on the behavior of the evolutionary-like algorithm.

In the literature, different types of representations are reported. We use two of them,
namely the direct representation and the permutation-based representation.

Direct representation. For job scheduling problem, a direct representation is obtained
as follows. Feasible solutions are encoded in a vector, called schedule, of size nb jobs,
where schedule[i] indicates the machine where job i is assigned by the schedule. Thus,
the values of this vector are natural numbers included in the range [1, nb machines]. Note
that in this representation a machine number can appear more than once.

Permutation-based representation. Unlike the direct representation where elements
representing number of machines can be repeated, in this representation each element
must be present only once. This kind of representation is especially useful in sequence-
based problems, thus it is also interesting for scheduling problems. For the job scheduling
problem this representation is obtained in two steps: (a) for each machine mi, construct
the sequence Si of jobs assigned to it; and (b) concatenate sequences Si. The resulting
sequence is a permutation of jobs assigned to machines.

Note that this representation requires maintaining additional information on the num-
ber of jobs assigned to each machine. This can be easily done by maintaining a vector of
size equal to nb machines whose components indicate, for any machine, the number of
jobs assigned to that machine.

One advantage of the direct representation is that it defines a feasible schedule in a
straightforward way while for the permutation-based representation, the schedule should
be “extracted” from the representation. In order to avoid keeping two different repre-
sentation, we notice that there is a simple transformation from direct representation to
permutation-based one and vice-versa. This transformation is achieved in O(nb jobs)
time. Therefore, by using the transformation, we just implemented the direct representa-
tion and move efficiently back and forth from one representation to the other.

3.2. GA’s methods and operators. Next we detail the particularization of methods
and operators of the GA template (see Fig. 1) for the scheduling problem based on the
two schedule representations presented above.

3.2.1. Generating the initial population. In GAs, the initial population is usually gener-
ated randomly. Besides the random method, we have used two ad hoc heuristics, namely
the Longest Job to Fastest Resource - Shortest Job to Fastest Resource (LJFR-SJFR)
heuristic [1] and Minimum Completion Time (MCT) heuristics [18]. These two methods
are aimed at introducing more diversity to the initial population.

The LJFR-SJFR heuristic tries to optimize alternatively both values of makespan and
flowtime. LJFR-SJFR initially assigns the nb machines longest jobs, increasingly sorted
by their workload, to the nb machines available resources, increasingly sorted by their
computing capacity (application of LJFR heuristic). Then, for the remaining jobs, in
every step, an unassigned job j is assigned to the first available machine, being j the
longest job (LJFR) or the shortest job (SJFR) alternatively. This is done until all jobs
have been allocated.

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 7

In the MCT method, each job is assigned to the machine in which the job obtains
the minimum completion time (note that this is not the same as the minimum execution
time!). Jobs are considered for allocation at random.

3.3. Fitness. See Subsection 2.2 (Problem formulation).

3.4. Crossover operators. The crossover operators are the most important ingredient
of any evolutionary-like algorithm. Indeed, by selecting individuals from the parental
generation and interchanging their genes, new individuals (descendants) are obtained.
The aim is to obtain descendants of better quality that will feed the next generation and
enable the search to explore new regions of solution space not explored yet.

There exist many types of crossover operators explored in the evolutionary computing
literature, which depends on the chromosome representation. Thus, in our case, we have
crossover operators for the direct representation and other crossover operators for the
permutation-based representation.

3.4.1. Crossover operators for direct representation. Several crossover operators have been
considered for the direct representation.

One-point crossover: Given two parent solutions, this operator, first chooses ran-
domly a position between 1 and nb jobs. The resulting position serves as a “cutting
point” splitting each parent into two segments. Then, the two first parts of the parents
are interchanged yielding two new descendants. Note that this operator shows a positional
bias, namely, genes that are close together on the chromosome are more probable to be
passed to the descendant while genes located at either end of the chromosome will not be
recombined.

Two-point crossover: This operator is a generalization of one-point crossover. Now,
two cutting points are randomly chosen splitting thus each parent into three segments;
the middle parts are interchanged yielding two new descendants. It should be noted that
despite of having two cutting points, this operator still shows a positional bias. Notice
that it is also possible to define the generalized k−point crossover, for k ≥ 3; for such
values this operator tends to explore more thoroughly the solution space, however, it is
very likely that it will “destroy” the structure of the parents.

Uniform crossover: This operator generates a crossover mask and uses it to generate
one descendant. In our case, having chromosomes of length nb jobs, the crossover mask
can be defined as: crossover mask = b1, b2, . . . , bnb jobs, where bi = 0/1. Once the mask is
generated, for instance by just flipping a fair coin for any position in the chromosome, the
descendant schedule is computed from two parents schedule1 and schedule2 as follows:

∀ i = 1 . . . nb jobs, schedule[i] =

{
schedule1[i], if bi = 1;
schedule2[i], if bi = 0.

It should be noticed that this operator avoids the position bias of previous operators.
Fitness-based crossover: The crossover operators introduced so far do not take into

account the fitness of the parents, this is done in the fitness-based crossover in which the
crossover mask is computed as follows. For all i = 1 . . . nb jobs, schedule[i] = schedule1[i],
iff schedule1[i] = schedule2[i], otherwise



8

schedule[i] =

{
schedule1[i], with probability p = f2/(f1 + f2);
schedule2[i], with probability 1− p,

where f1 = fitness(schedule1) and f2 = fitness(schedule2). Note that if the two parent
schedules have similar fitness then the genes of the new descendants are calculated with
probability ∼ 1/2, that is the uniform crossover; however, and, this is the case the fitness-
based operator is intended for, when there is a large difference in the fitness of the two
parent schedules, then it is quite probable that a chromosome of new structure will be
obtained.

3.4.2. Crossover operators for permutation-based representation. Crossover operators for
permutation representation [26] can be applied to this problem by transforming the direct
representation into a permutation-based one. The crossover operators described above for
the direct representation are not valid since they often lead to illegal representations. We
considered the operators given below.

Partially Matched Crossover (PMX): A segment of genes of one of the parents,
say schedule1, is corresponded with the same segment of the other father schedule2 (bi-
univoc correspondence). Next, the segment of schedule1 is interchanged with the one of
schedule2. Following, the ith descendant (i = 1, 2) is filled up by copying the elements of
ith father. In case that a job is already present in the descendant, it is replaced according
to the correspondence previously described. In case that the correspondence leads to a
gene already copied, the other correspondence is considered.

Cycle Crossover (CX): The basic idea of this operator is that each job must occupy
the same position, so that only interchanges between alleles (positions) will be made.
The algorithm works in two steps. First, a cycle of alleles is identified. A cycle of alleles
is constructed in the following way: beginning by the first position (allele) of schedule1,
we look at the same allele, say a, in schedule2. Then, we go to the allele of schedule1

that contains the gene contained in allele a; the allele is added to the cycle. This step is
iteratively repeated until the first allele of schedule1 is reached. The second step, consists
of leaving the alleles that form the cycle intact, and the content of the rest is interchanged.

Order Crossover (OX): This operator is intended to preserve the relative order of
the jobs in the schedule. The operator receives two schedules schedule1 and schedule2

and produces two new offsprings schedule′1 and schedule′2 as follows:
Generation of the first offspring: (a) Choose a segment of genes from schedule1;

(b) copy the segment to the first offspring; (c) copy the jobs that are not in the seg-
ment, to the first offspring by starting right from cutting point of the copied segment,
according to the order of schedule2 and wrapping around at the end. The generation of
the second offspring is done similarly. This operator is known as OX−1 operator.

Note that once the permutation-based operator is applied, the offsprings are trans-
formed into the direct representation. The crossover operator is applied with a probability
pc, usually high, which is fixed through a fine tuning process.

3.4.3. Mutation operators. We defined several mutation operators based on the direct
representation of the schedule that take into account the specific need of load balancing
of resources. More precisely, we defined the following operators: Move, Swap, Move&Swap
and Rebalancing.

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 9

Move: This operator moves a job from a resource to another one, so that the new
machine is assigned to be different. Note that it is possible to reach any solution by
applying successive moves from any given solution.

Swap: Considering movements of jobs between machines is effective, but often it turns
out more useful to make interchanges of the allocations of two jobs. Clearly, this operator
should be applied to two jobs assigned to different machines.

Move & Swap: The mutation by swap hides a problem: the number of jobs assigned to
any resource remains inalterable by mutation. A combined operator avoids this problem
in the following way: with a probability pm′ , a mutation move is applied, otherwise a
mutation swap is applied. The value of pm′ will depend on the difference of behavior of
the mutation operators swap and move.

Rebalancing: The idea is to first improve the solution (by rebalancing the machine
loads) and then mutate it. Rebalancing is done in two steps: in the first, a machine m,
from most overloaded resources is chosen at random; further, we identify two jobs, t and
t′ such that job t is assigned to another machine m′ whose ETC for the machine m is less
than or equal to the ETC of job t′ assigned to m; jobs t and t′ are interchanged (swap).
In the second step, in case rebalancing was not possible, we try to rebalance by move.
After this, a mutation (move or swap each with 0.5 probability) is applied.

The mutation is applied with a probability pc, usually low, which is fixed through a
fine tuning process.

3.4.4. Selection operators. Selection operators are used to select the individuals to which
the crossover operators will be applied. The following selection operators are investigated:
Select Random, Select Best, Linear Ranking Selection, Binary Tournament Selection, and
N−Tournament Selection. Note that these operators are independent of the represen-
tation, hence we refer the reader to standard descriptions of these operators in the GA
literature.

3.4.5. Replacement operators. The strategies used for the replacement depend on whether
a generational replacement will take place or just a portion of the population will be
replaced. In the later case, several strategies can be used depending on how is defined the
survival of the individuals. We detail next the main strategies we have explored for our
scheduling problem. We denote by P the parental generation and P ′ the new generation
of individuals and by µ and λ their sizes, respectively. Depending on the relation between
µ and λ, we have:

• µ < λ: If the parameter replace only if better is false, the worst solutions in
P are replaced by the best solutions in P ′, otherwise a population with best among
all solutions in P ∪ P ′ will form the new population. Note that in the later case the
replacement shows an elitist behavior.

• µ ≥ λ: If the parameter replace generational is false, the replacement is done
as in the case of µ < λ (except when replace only if better is false in which
case the new generation is formed by the best individuals in P ′.) Otherwise, the new
generation is formed by the best individuals in P ′.

Thus, depending on the size of P and P ′ and the values of replace only if better

and replace generational we could obtain most standard replacement strategies. We
have considered then the replacement operators given next.



10

Generational replacement: This is the simplest replacement strategy: its is assumed
that λ = µ and µ individuals of P are replaced by λ individuals of P ′.

Elitist generational replacement: The newly generated offsprings, independently
of their fitness, together with two best individuals of the parent generation form the new
generation (λ = µ− 2).

Replace only if better: The new generation is formed by µ best individuals from
the parent generation and the new descendants.

Steady State Strategy: Within this strategy there are different ways to choose the
new individuals that will form part of the new population. One such way is to choose
a small number of good individuals, recombine them and replace the worst individuals
of the parental population by the new descendants. One could also consider a pure
elitist replacement. Some research works (e.g. [15]) has shown evidence that Steady State
strategy tends to produce a premature stagnation of the population, yet it produces a fast
reduction in the fitness (fast convergence). This property will be especially interesting
to explore for job scheduling problem since we are interested not only in a good global
makespan but also in fast reductions of the makespan.

3.4.6. Implementation issues. We have implemented the GA operators presented in the
previous section by transforming the main entities and methods into C++ classes and
methods, adapting the algorithmic skeletons defined in [4] for the evolutionary algorithms.
We give in Fig. 2 the design of a skeleton for evolutionary-like algorithms that we have
used for the GAs implementation and briefly describe the meaning of the entities in the
diagram. The entities of the skeleton are grouped into Provided entities, that are indepen-
dent of the concrete problem being solved; for these entities a complete implementation
is provided. These entities are: Solver, Solver Seq and Setup. Solver is an abstract
class that implements the main flow of a GA. This class can be instantiated in a sequen-
tial mode or in a parallel mode. In this work the sequential mode has been considered
yielding, via inheritance, to the Solver Seq class. The class Setup is in charge of man-
aging setup parameters for running the GA implementation. The rest of the entities in
the diagram are classified as Required, namely, these entities must be completed while
instantiating the skeleton for a concrete problem. For these entities, such as Problem and
Solution the skeleton offers just their interfaces whose implementation is done according
the problem, in our case job scheduling. Thus, Population is a container of individuals,
i.e., solutions, which offers all the necessary methods to manage the population. On the
other hand Solution is the class in charge of managing solution representations, solution
fitness, etc.

4. Experimental study. We used a benchmark of static instances for the problem to
obtain computational results in order to study the performance of the GA scheduler. The
quality of the schedules produced by our GA implementations are compared with the
reported results of GA schedulers in the literature [5]. Static instances were also very
useful in finding an appropriate combination of operators and parameters that work well
in terms of robustness.

4.1. Tuning of parameters. We performed a straightforward tuning process, using
static instances generated according to the ETC model, to identify appropriate values for
both the proper GA parameters and those related to the job scheduling problem. The

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 11

 

 

 

Problem Solution Population 

Solver Setup 

Solver_Seq 

[ 1] 

1 n 

1 

1 

m 

* 

Classes Required 

Classes Provided 

[ 1] 

[ 1] 

Figure 2. The GA skeleton

methodology used for fine tuning tries to independently optimize the parameters according
to their priority in the scope of the GA implementation. In the graphs below (Figs. 3 to
7) an average of 20 runs is displayed. In the graphs, y-axis represent the makespan value
and x-axis represent the number of GA’s generations (number of evolution step). Thus,
in each graph we graphically represent the reduction of makespan during the execution
of the GA implementation under the corresponding configuration. The value of λ = 0.75
for the simultaneous approach has been fixed after a preliminary tuning process.

Notice that for the tuning process, we have used randomly generated instances in order
to ensure that the parameter setting will be as generic as possible and not related to a
concrete benchmark of instances.

Mutation operators. From the tuning of mutation operators, we obtained the values
of parameters given in Table 1. For these values, the resulting behavior of mutation
operators Move & Swap (three versions) and Rebalancing (five versions) are graphically
shown in Fig. 3. The comparison of the performance of the best mutation operators is
then presented in Fig. 4. The graphical representation clearly indicates that the worse
operator of mutation is Move and the best one is Rebalancing (75%). The operator Swap,
that a priori seemed to be worse than Move offers a better reduction in makespan, though
it is worse than Rebalancing.

Table 1. Values of parameters used for comparing the performance of
mutation operators

Number of evolution steps 2500
Crossover operator Two-point CX
Cross probability 0.7
Population size 80
Intermediate population size 78
Selection operator Select Best
Mutate probability 0.2
Replace generational False
Replace only if better False
Initializing method LJFR-SJFR



12

10500000

11500000

12500000

13500000

14500000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

Move&Swap (75% moves) [1]

Move&Swap (50% moves) [2]

Move&Swap (25% moves) [3]

3

1

2

9500000

10000000

10500000

11000000

11500000

12000000

12500000

13000000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

Rebalancing (25%) [1]

Rebalancing  (0%) [2]

Rebalancing  (50%) [3]

Rebalancing (100%) [4]

Rebalancing  (75%) [5]

5

2

1

2

3

4

2

Figure 3. Performance of the mutation operator Move&Swap (left) and
Rebalancing (right)

9500000

10500000

11500000

12500000

13500000

14500000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

Move [1]

Swap [2]

Move&Swap (25% moves) [3]

Rebalancing (75%) [4]

1

3

4

2

Figure 4. Comparison of the performance of mutation operators

Crossover operators. A number of crossover operators were also considered and tuned
to find the one of the best behavior; the values for the parameters given in Table 2 were
used and their performance is graphically shown in Fig. 5. Observe from Fig. 5 that
the operator CX (Cycle Crossover) achieves the best makespan reduction, and with a
large difference, among all the considered crossover operators. This is reinforced by the
fact that actually the most effective crossover operators in the evolutionary computing
literature are permutation-based ones and use precisely this operator [20, 26].

Selection operators. For selection operators we obtained the values for the parameters
given in Table 3; their resulting comparison is shown in Fig. 6. It its clear that a suitably
adjusted form of tournament selection works best.

Replacement operators. We used the following configuration for tuning replacement
operators. Initializing method: LJFR-SJFR, MCT and Random; Selection operator: Lin-
ear Ranking; Crossover operator: CX; Mutation operator: Rebalancing 75% and mutate
probability=0.3. The rest of parameters are given in Table 4. We notice that replacement
operators are known to be computationally expensive. To measure how this would affect

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 13

Table 2. Parameter values for used for comparing the performance of
crossover operators

Number of evolution steps 2500
Cross probability 0.80
Population size 80
Intermediate population size 78
Selection operator Select Best
Mutation operator Rebalancing (p′m = 0.75)
Mutate probability 0.2
Replace generational False
Replace only if better False
Initializing method LJFR-SJFR

8000000

9000000

10000000

11000000

12000000

13000000

14000000

15000000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

OX1 [1]
PMX [2]
Uniform [3]
Fitness Based [4]
Two Points [5]
One Point [6]
CX [7]

1 
2 

3 

4 

5 

6 

7 

Figure 5. Comparison of the performance of crossover operators

Table 3. Values of parameters for comparing selection operators

nb evolution steps 2500
Crossover operator CX
Cross probability 0.80
Mutation operator Rebalancing (p′m = 0.75)
Mutate probability 0.2
Population size 80
Intermediate population size 78
Replace generational False
Replace only if better False
Initializing method LJFR-SJFR



14

7500000

8000000

8500000

9000000

9500000

10000000

10500000

11000000

11500000

12000000

12500000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

Random [1]

Best [2]

Linear Ranking [3]

BinaryTournament (90%) [4]

N Tournament (7) [5]

1

24 

3 

5 

Figure 6. Comparison of the performance of different selection operators

the overall execution time of different GAs, we give in the last row of Table 4 values of
total amount of work done by the GA algorithm for any replacement operators. Total
work W is computed as W = (pc + pm) ∗ pop size ∗ nb evolution steps. As can be seen
from Table 4 the amount of work is pretty much similar for all considered replacement
operators.

Table 4. Values of parameters for comparing replacement operators

Method Simple Elitist Replace Steady
Parameter Generational Generational If Better State
Number of evolution steps 2500 2500 2500 16500
Cross probability 0.80 0.80 0.80 1.0
Population size 80 80 80 30
Intermediate population size 80 78 80 10
Replace generational true false false False
Replace only if better false false true False
Total work 220000 214500 220000 214500

Tuning of other parameters. There are some other parameters whose values were
to be fixed. These are: (a) independent runs –indicates the number of independent
runs to perform; This parameter is useful for obtaining computational results of statisti-
cal relevance. Its meaning is that the GA implementation is run that many times over
the same instance using the same configuration; (b) nb iterations –indicates the num-
ber of iterations within an independent run. In the GA implementation it is equal to
the number of evolution steps; and (c) max time to spend (in seconds) –indicates the
maximum execution time within an independent run. Note that the GA skeleton of-
fers the possibility to implement the stopping condition using the last two parameters
so that GA terminates when either the number of iterations or the maximum time is
reached. The independent runs is fixed to 10 (reported results are then averaged) and
max time to spend is fixed to 90 secs (the execution time in [5] is in average 60 secs).

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 15

7700000

7900000

8100000

8300000

8500000

8700000

8900000

9100000

9300000

9500000

0 500 1000 1500 2000 2500

nb_generations

m
ak

es
pa

n

Simple Generational [1]

Elitist Generational [2]

Replace Only If Better [3]

Steady State [4]

1 

2 

3 

4 

Figure 7. Comparison of different replacement operators

4.2. Computational results for static instances. We summarize here some of the
computational results obtained with GA implementation for instances from [5].

The simulation model in [5] is based in ETC (Expected Time To Compute) matrix.
The instances of the benchmark in [5] are classified into 12 different types of ETC matrices
according to three metrics: job heterogeneity, machine heterogeneity and consistency. An
ETC matrix is considered consistent when, if a machine mi executes job t faster than
machine mj, then mi executes all the jobs faster than mj. Inconsistency means that a
machine is faster for some jobs and slower for some others. An ETC matrix is considered
semi-consistent if it contains a consistent sub-matrix. All instances consist of 512 jobs
and 16 machines and are labelled u x yyzz.0 whose meaning is the following:

• u means uniform distribution (used in generating the matrix).
• x means the type of inconsistency (c–consistent, i–inconsistent and s means semi-

consistent).
• yy indicates the heterogeneity of the jobs (hi–high, and lo–low).
• zz indicates the heterogeneity of the resources (hi–high, and lo–low).

A total of 12 instances, which are used in the reference work are used for purposes
of the computational results. These instances consist in fact of three groups of four
instances each: the first group represents consistent ETC matrices, the second one rep-
resents inconsistent matrices and the third one represents semi-consistent matrices. For
each group, instances hihi, hilo, lohi and lolo are considered. In this way, the set of con-
sidered instances covers the main characteristics of distributed heterogeneous computing
environments.

We recall that GA implementations described in this paper optimize makespan and
flowtime (in both hierarchic and simultaneous approach) while GA implementation of
Braun et al. [5] minimizes only the makespan, therefore we will first compare the results
just for the makespan. Note however that optimizing also the flowtime had an additional
computational cost, which nonetheless doesn’t seem to affect the quality of solutions found
by our GA implementations.



16 F. XHAFA ET AL.

Table 5. Comparison of the makespan values for static instances

Instance Min-Min MCT GA Braun GA GA
LJFR-SJFR Best hierarchic simultaneous

makespan Best Best
makespan makespan

u c hihi.0 8460675.000 14665600.200 8050844.500 7730973.882 7610176.437
u c hilo.0 164022.440 213423.330 156249.200 157255.844 155251.196
u c lohi.0 275837.340 485591.120 258756.770 252907.580 248466.775
u c lolo.0 5546.260 7112.790 5272.250 5310.615 5226.972
u i hihi.0 3513919.250 4193476.360 3104762.500 3141395.822 3077705.818
u i hilo.0 80755.680 92003.300 75816.130 77455.085 75924.023
u i lohi.0 120517.710 145157.280 107500.720 108047.402 106069.101
u i lolo.0 2779.090 3296.480 2614.390 2676.207 2613.110
u s hihi.0 5160343.000 6510165.670 4566206.000 4745284.938 4359312.628
u s hilo.0 104540.730 121170.490 98519.400 101817.924 98334.640
u s lohi.0 140284.480 190442.120 130616.530 137785.504 127641.889
u s lolo.0 3867.490 4438.420 3583.440 3650.316 3515.526

Braun et al.’s GA configuration. It is worth noting the configuration parameters of
the GA implementation of [5]. Crossover operator: CrossOnePoint (pc = 0.6); Mutation
operator: MutateMove (pm = 0.4); Selection operator: Linear Ranking and Replacement
operator: Elitist Generational. One important aspect of GA implementation of [5] is the
use of Min-Min heuristic for generating initial solutions, which is shown to achieve a very
good reduction in the makespan. A population of size 200 is used. Finally, their GA
finalizes when either 1000 iterations (number of evolution steps) have been executed or
when the chromosome elite has not varied during 150 iterations.

In order to compare the results of their and our GA implementations, we computed
the work2 W made by both implementations using their respective configurations. Thus,
in Braun et al. GA, W = (0.6 + 0.4) ∗ 200 ∗ 1000 = 200000 and in our implementation
W = (0.8 + 0.4) ∗ 68 ∗ 2500 = 204000, from which we see that a comparable amount of
work is done, assuring a fair comparison.

Finally, Braun et al. used a Pentium III 400Mhz, 1Gb RAM and we used an AMD
K6(tm) 3D 450 MHz and 256 Mb of RAM under Linux/Debian OS.

Results for makespan parameter. We give in Table 5 the computational results for
makespan3. In the table, the first column indicates the instance name, the second column
indicates the makespan of the initial solution obtained with Min-Min, the third column
indicates the best makespan of the initial solutions found by MCT and LJFR-SJFR,
the fourth, fifth and sixth columns indicate the best makespan found by the Braun’s
GA, our GA (hierarchic version) and our GA (simultaneous version), respectively. Both
GAs (hierarchic and simultaneous version) were initialized using MCT, LJFR-SJFR and
Random.

2Recall that W = (pc + pm) ∗ pop size ∗ nb evolution steps.
3Results are obtained by running GAs on the same instance and under the same configuration 10

timres.



GA-BASED SCHEDULERS FOR GRID SYSTEMS 17

From Table 5 we observe that our implementation outperforms the results of [5] for all
but one instance, the u i hilo.0 (inconsistent matrix with low heterogeneity of resources
and high heterogeneity of jobs). It is worth mentioning here that our initial populations
could be worse than the ones used in [5] due to the initializing heuristics used (Min-Min
performs much better than LJFR/SJFR and MCT). In fact, by monitoring some of the
runs, we observed that our GA spends roughly 55-70% of the total number of iterations
to reach a solution of the quality of Min-Min. We would thus expect an even better
performance of our GA if initialization was conducted using Min-Min. On the other hand
our version of hierarchic optimization obtains results similar to those of [5] but does not
outperform it (except two instances).

Notice that the GA with hierarchic optimization criteria, obtains better results only for
instances with consistent ETC matrices having a high level of heterogeneity of resources.
For the rest of instances the deviation with respect to the Braun et al. GA is 2.9% in
average (5.91% in the worst case). The standard deviation of the average makespan of
our GA implementations from the best found makespan are less than 1% implying that
our implementations are robust, in that they produce very good solutions for all reported
executions.

Results for flowtime parameter. Computational results for flowtime value are given
in Table 6 using the simultaneous approach, which performed better than the hierarchic
one. Two versions of the implemented GAs that yielded better results are compared. As
can be seen from the table, the Steady Sate GA performs better for consistent and semi-
consistent matrices and Replace If Better GA performs better for inconsistent matrices.

Table 6. Flowtime values obtained with two GA versions

Instance GA GA
(Replace If Better) (Steady State)

u c hihi.0 1073774996 1048333229
u c hilo.0 28314677.9 27687019.4
u c lohi.0 35677170.8 34767197.1
u c lolo.0 942076.61 920475.17
u i hihi.0 376800875 378010732
u i hilo.0 12902561.3 12775104.7
u i lohi.0 13108727.9 13444708.3
u i lolo.0 453399.32 446695.83
u s hihi.0 541570911 526866515
u s hilo.0 17007775.2 16598635.5
u s lohi.0 15992229.8 15644101.3
u s lolo.0 616542.78 605375.38

5. Conclusions and future work. We presented an extensive study on the usefulness
of Genetic Algorithms (GAs) for designing efficient Grid schedulers when makespan and
flowtime parameters are minimized under hierarchic and simultaneous approaches. Rather
than a single implementation, a family of GAs are illustrated with two encodings and
different types of operators for each of them. Most important conclusions of this work
are:



18

• The experimental study reveals the quality of the proposed GA-based schedulers as
compared well to the existing GA-schedulers in the literature.

• Our experimental study shows the performance of different GA operators.
• Our GA-based schedulers can be used to design dynamic schedulers. A dynamic

scheduler would run our GA in batch mode to schedule jobs arrived in the system
since last activation of the scheduler.

• Our GA-based schedulers can be run adaptively if we new in advance grid charac-
teristics such as consistency of computing, heterogeneity of resources and jobs.

Our future work is targeted on dynamic scheduling.

Acknowledgement. Research is partially supported by Projects ASCE TIN2005-09198-
C02-02, FP6-2004-IST-FETPI (AEOLUS) and MEC TIN2005-25859-E. The authors also
gratefully acknowledge the helpful comments of the reviewers.

REFERENCES

[1] A. Abraham, R. Buyya, and B. Nath. Nature’s heuristics for scheduling jobs on computational grids.
In The 8th IEEE International Conference on Advanced Computing and Communications (ADCOM
2000), India, 2000.

[2] A. Abraham, H. Liu, W. Zhang and T.G. Chang, Job Scheduling on Computational Grids Using
Fuzzy Particle Swarm Algorithm, 10th International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, B. Gabrys et al. (Eds.): Part II, Lecture Notes on Artificial
Intelligence 4252, 500507, Springer, 2006.

[3] D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid computing and its
implementation in the Nimrod-G resource broker. Future Generation Computer Systems Journal,
18(8):1061–1074, 2002.

[4] E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Daz, I. Dorta, J. Gabarr, C. Len, G. Luque, J. Petit,
C. Rodrguez, A. Rojas, and F. Xhafa. Efficient parallel LAN/WAN algorithms for optimization. the
mallba project. Parallel Computing, 32(5-6):415–440, 2006.

[5] H.J. Braun, T. D.and Siegel, N. Beck, L.L. Blni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, and B. Yao. A comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

[6] R. Buyya. Economic-based Distributed Resource Management and Scheduling for Grid Computing.
PhD thesis, Monash University, Melbourne, Australia, 2002.

[7] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a resource management
and scheduling system in a global computational grid. In The 4th International Conference on High
Performance Computing, Asia-Pacific Region, China, 2000.

[8] J. Cao, D.P. Spooner, S.A. Jarvis and G.R. Nudd, Grid load balancing using intelligent agents,
Future Generation Computer Systems, 21(1), 135-149, 2005.

[9] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for scheduling parameter sweep
applications in grid environments. In Heterogeneous Computing Workshop, 349–363, 2000.

[10] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The apples parameter sweep template: user-
level middleware for the grid. In Proceedings of the 2000 ACM/IEEE Conference on Supercomputing
(CDROM), page 60. IEEE Computer Society, 2000.

[11] I. Foster and C. Kesselman. The Grid - Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, 1998.

[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid. International Journal of Super-
computer Applications, 15(3), 2001.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability – A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., 1979.

F. XHAFA ET AL. 



GA-BASED SCHEDULERS FOR GRID SYSTEMS 19

[14] Y. Gao, H. Rong and J.Z. Huang, Adaptive grid job scheduling with genetic algorithms, Future
Generation Computer Systems, 21(1), 151-161, 2005,

[15] T. Gruninger. Multimodal optimization using genetic algorithms. Master’s thesis, Stuttgart Univer-
sity, 1996.

[16] S. Hotovy. Workload evolution on the Cornell theory center IBM SP2. In Job Scheduling Strategies
for Parallel Processing Workshop, IPPS’96, 27–40, 1996.

[17] K.P. Kumar, A. Agarwal, and R. Krishnan. Fuzzy based resource management framework for high
throughput computing. In Proceedings of the 2004 IEEE International Symposium on Cluster Com-
puting and the Grid, 555–562, 2004. IEEE Computer Society.

[18] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund. Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. Journal of Parallel and Distributed
Computing, 59(2):107–131, 1999.

[19] V. Di Martino and M. Mililotti. Sub optimal scheduling in a grid using genetic algorithms. Parallel
Computing, 30:553–565, 2004.

[20] J. Page and J. Naughton. Framework for task scheduling in heterogeneous distributed computing
using genetic algorithms. Artificial Intelligence Review, 24:415–429, 2005.

[21] G. Ritchie. Static multi-processor scheduling with ant colony optimisation & local search. Master’s
thesis, School of Informatics, University of Edinburgh, 2003.

[22] G. Ritchie and J. Levine. A fast, effective local search for scheduling independent jobs in heteroge-
neous computing environments. Technical report, Centre for Intelligent Systems and their Applica-
tions, School of Informatics, University of Edinburgh, 2003.

[23] G. Ritchie and J. Levine. A hybrid ant algorithm for scheduling independent jobs in heterogeneous
computing environments. In 23rd Workshop of the UK Planning and Scheduling Special Interest
Group (PLANSIG 2004), 2004.

[24] D. Whitley. The genitor algorithm and selective pressure: Why rank-based allocation of reproduc-
tive trials is best. In D. Schaffer, ed., Proceedings of the 3rd International Conference on Genetic
Algorithms, 116–121. Morgan Kaufmann, 1989.

[25] A. Yarkhan and J. Dongarra. Experiments with scheduling using simulated annealing in a grid
environment. In 3rd International Workshop on Grid Computing (GRID2002), 232–242, 2002.

[26] A.Y. Zomaya and Y.H. Teh. Observations on using genetic algorithms for dynamic load-balancing.
IEEE Transactions On Parallel and Distributed Systems, 12(9):899–911, 2001.




