
Alignment-Based Trace Clustering

Thomas Chatain, Josep Carmona, and Boudewijn van Dongen

LSV, ENS Paris-Saclay, CNRS, INRIA, Cachan (France)
chatain@lsv.ens-cachan.fr

Universitat Politècnica de Catalunya, Barcelona (Spain)
jcarmona@cs.upc.edu

Eindhoven University of Technology, The Netherlands
b.f.v.dongen@tue.nl

Abstract. A novel method to cluster event log traces is presented in
this paper. In contrast to the approaches in the literature, the clustering
approach of this paper assumes an additional input: a process model
that describes the current process. The core idea of the algorithm is to
use model traces as centroids of the clusters detected, computed from a
generalization of the notion of alignment. This way, model explanations of
observed behavior are the driving force to compute the clusters, instead of
current model agnostic approaches, e.g., which group log traces merely on
their vector-space similarity. We believe alignment-based trace clustering
provides results more useful for stakeholders. Moreover, in case of log
incompleteness, noisy logs or concept drift, they can be more robust for
dealing with highly deviating traces. The technique of this paper can be
combined with any clustering technique to provide model explanations
to the clusters computed. The proposed technique relies on encoding the
individual alignment problems into the (pseudo-)Boolean domain, and
has been implemented in our tool DarkSider that uses an open-source
solver.

1 Introduction

The ubiquity of digital data has made organizations to become more than ever
data-oriented. This has a clear implication on the way decisions are taken in an
organization, where nowadays an unprecedent focus is put to the evidences hid-
den in the data. Process mining is an emerging field which focuses on analyzing
event logs which contain the data corresponding to process executions. Process
mining techniques focus on discovering, analyzing and enhancing evidence-based
process models [1].

Trace clustering has been used as a method to partition event logs in a way
that more homogeneous sublogs are obtained, with the hope that process discov-
ery techniques will perform better on the sublogs than if applied to the original
log [1]. Several techniques have been proposed in the last decade for trace clus-
tering [2,3,4,5,6,7,8]. They can be partitioned into vector space approaches [2,4],
context aware approaches [5,6] and model-based approaches [3,7,8]. All the afore-
mentioned clustering algorithms consider only the event log as input, and use
different internal representations for producing the clusters.

Chatain, T.; Carmona, J.; Dongen, B. Alignment-based trace clustering. A: International Conference on Conceptual
Modeling. "Conceptual Modeling, 36th International Conference, ER 2017: Valencia, Spain, November 6-9, 2017:
proceedings". Berlín: Springer, 2017, p. 295-308.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-69904-2_24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185531420?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We present a different view on clustering event log traces, by assuming that
a process model exists. This assumption is realistic in many contexts, e.g., in
Process-Aware Information Systems (PAIS), process models are often avail-
able [9]. Notice that due to the evolving nature of processes, this assumption
by no means invalidates the motivation of this work: processes in a organization
evolve and/or change frequently, and therefore process mining (and consequently,
clustering) techniques may be very useful to be aligned with the reality, even if
a process model exists.

Most of the aforementioned algorithms for trace clustering are centroid-based,
i.e., for each cluster a representative (often a vector of features) is the reference
of the cluster when computing distances. Furthermore, in some algorithms this
representative may not be one of the log traces (e.g., if applying k-means). By
using these model agnostic approaches, the grouping of event log traces may
have no relation at all with the executions of the underlying process.

The approach we propose in this paper puts the available process model as
a first citizen in trace clustering: clusters computed have as centroid a process
model execution. This way, even in case of deviations, incomplete or noisy traces,
or even drifts in the process model (e.g., dealing with the process of winter sales,
while the traces correspond to summer sales), a process explanation of the traces
in each cluster is available, so that stakeholders can relate them more reliably
to the underlying process.

The clustering approach of this paper has as core operation the novel concept
of multi-alignments, which is also a contribution of the paper. Multi-alignments
are a generalization of the notion of alignments [10]. Intuitively, given a trace
representing a real process execution, an optimal alignment provides the best
trace the process model can provide to reproduce the observed behavior. Then
observed and model traces are rendered in a two-row matrix denoting the syn-
chronous/asynchronous moves between individual activities of model and log,
respectively. Multi-alignments generalize alignments in that not one but a col-
lection of observed traces is considered, while still the model produces a sin-
gle trace that globally aligns well (i.e., its at minimal global distance) with
the observed traces. Multi-alignments are shown graphically as an (n + 1)-
row matrix, where the first n rows correspond to the observed traces, and the
n+ 1 row denotes the model trace. An example of multi-alignment for four ob-
served traces and a model with behavior according to the regular expression1

A; ((B1;C1)||(B2;C2)||(B3;C3));D is shown in Figure 1.

The clustering approach of this paper is guided by the computation of multi-
alignments. More specifically, clusters in our algorithm are multi-alignments.
Informally, given a threshold distance, the approach produces a set of multi-
alignments that covers (if possible) the set of traces in the event log. Several
variations of the initial algorithm proposed in this paper can be envisioned as
future work, e. g., hierarchical or density based, or which allow rising the given
distance to guarantee a full covering of the traces in the event log.

1 Operators ; and || denote sequential and parallel composition, respectively.

A B1 C1 B2 C2 B3 C3 D trace 1
A B2 C2 B1 C1 B3 C3 D trace 2
A B3 C3 B1 C1 B2 C2 D trace 3
A B1 B2 C2 C1 B3 C3 D trace 4

A B1 B2 C2 C1 B3 C3 D model trace

Fig. 1. A model trace which is an optimal multi-alignment for four log traces.

The paper is organized as follows: Section 2 provides the necessary back-
ground for the understanding of the paper. Then in Section 3 the formal descrip-
tion and algorithmic computation of multi-alignments is provided. The overall
method for alignment-based clustering is presented in Section 4. The evaluation
of the techniques is reported in Section 5. Finally, Section 6 concludes the paper
and provides lines for future research.

2 Preliminaries

2.1 Petri Nets

Definition 1 ((Labeled) Petri Net System). A labeled Petri net system (or
simply Petri net) [11] is a tuple N = 〈P, T,F ,m⊥,m>, Σ, λ〉, where P is the set
of places, T is the set of transitions (with P ∩ T = ∅), F ⊆ (P × T) ∪ (T × P)
is the flow relation, m⊥ is the initial marking, m> is the final marking, Σ is an
alphabet of actions and λ : T → Σ labels every transition by an action.

A marking is an assignment of a non-negative integer to each place. If k is
assigned to place p by marking m (denoted m(p) = k), we say that p is marked

with k tokens. Given a node x ∈ P ∪ T , we define its pre-set •x
def
= {y ∈ P ∪ T |

(x, y) ∈ F} and its post-set x•
def
= {y ∈ P ∪ T | (y, x) ∈ F}.

A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place
in •t and putting a token to each place in t•. A marking m′ is reachable from
m if there is a sequence of firings 〈t1 . . . tn〉 that transforms m into m′, de-
noted by m[t1 . . . tn〉m′. A firing sequence u = 〈t1 . . . tn〉 is called a run if it
can fire from the initial marking: m⊥[u〉; it is called a full run if it addition-
ally reaches the final marking: m⊥[u〉m>. We write Runs(N) for the set of full
runs of Petri net N . Given u = 〈t1 . . . tn〉 ∈ Runs(N), the sequence of actions

λ(u)
def
= 〈λ(t1) . . . λ(tn)〉. is called a trace of N .

The set of reachable markings from m⊥ is denoted by [m⊥〉, and form a graph
called reachability graph. A Petri net is k-bounded if no marking in [m⊥〉 assigns
more than k tokens to any place. A Petri net is safe if it is 1-bounded. In this
paper we assume safe Petri nets.

(a) A model. (b) An optimal alignment.

Fig. 2. Example of alignment between observed and modeled behavior.

2.2 Foundations of Alignments

We survey definitions for alignments and some variations. The interested reader
can refer to [10] for the seminal work on alignments where a complete formal-
ization can be found.

An event log is a collection of traces, where a trace may appear more than
once. Formally:

Definition 2 (Event Log). An event log L (over an alphabet of actions Σ) is
a multiset of traces σ ∈ Σ∗.

Given a Petri net N (typically obtained using process mining techniques, and
supposed to model the behavior of an observed system), and an observed trace
σ in a log, the aim of alignments is to find the full run u of the model N that
mostly resembles σ, i.e. such that λ(u) is close to σ, for some notion of distance
dist(σ, λ(u)).

Example 1. An example of alignment is shown in Fig. 2: given the model in
Fig. 2(a) and the trace 〈C,D〉, the model produces the trace 〈A,C,B,D〉, as
shown in the upper row of Fig. 2(b).

A traditional choice for the distance dist(σ, γ) is Levenshtein’s edit distance
(which counts how many deletions and insertions are needed to transform σ
to γ). Another possible choice is Hamming distance, which simply counts the
number of positions in which σ and γ differ: for two traces σ = 〈σ1 . . . σn〉 and
γ = 〈γ1 . . . γn〉 of equal length n, Hamming distance is defined as

∣∣{i ∈ {1 . . . n} |
γi 6= σi

}∣∣; when one trace is shorter than the other, we pad it and count every
occurrence of the padding symbol as a mismatch with the longer trace.

Most of the definitions in this article are valid for any choice of distance
(in particular Levenshtein and Hamming). For readability, some of the most
technical developments are done only for Hamming distance, and we give insights
on how to adapt them to Levenshtein’s distance. In the example of Fig. 2, the
trace produced by the model is at distance 2, independently of the distance
considered. Our tool DarkSider mostly uses Levenshtein’s distance.

Definition 3 (δ-Alignment, (Optimal) Alignment). Given a (log) trace σ,
and a Petri net model N , a δ-alignment of σ to N is a full run u of N such that
dist(σ, λ(u)) ≤ δ.

Clearly there exist δ-alignments for all values of δ larger or equal to a mini-
mal value which we denote δmin(σ,N) (or simply δmin when σ and N are clear
from the context). An optimal alignment (or simply alignment) is a δmin(σ,N)-
alignment of σ to N .

In Example 1, the 2-alignment represented by the run 〈A,C,B,D〉 is
provided for the observed trace 〈A,C〉, which is an optimal alignment.

3 Multi-Alignments

We now present multi-alignment as a generalization of the notion of alignments.
This new notion will be used in the rest of the paper as basis for the cluster-
ing approach proposed. We refer the reader to the example in the introduction
(Figure 1) for an example of multi-alignment.

3.1 Formalization of Multi-alignments

The following definition relies on a notion of distance dist , which can be chosen
depending on the context. For instance, Hamming distance and Levenshtein’s
edit distance are valid choices (see discussion in Section 2.2).

Definition 4 (Multi-alignments, Optimal Multi-alignments). Given a fi-
nite collection C of (log) traces, a model N and some δ ∈ N, a δ-multi-alignment
of C to N is a full run u ∈ Runs(N) such that2

∑
σ∈C dist(σ, λ(u)) ≤ δ. Clearly,

there is a minimal δ for which a δ-multi-alignment exists. We denote it by
δmin(C, N) (or simply by δmin when C and N are clear from the context). A
δmin-multi-alignment is simply called an optimal multi-alignment of C to N .

Given a log L, interesting instantiations deserve a comment. First, it is clear
that if |C| = 1, then the notion of multi-alignment collapses into the traditional
notion of alignment from [10]. If C = L, then the corresponding optimal multi-
alignment represents the model trace that aligns optimally with all the traces
in the log. However, for models containning alternative executions, to consider
C = L may incur into high multi-alignment distances.

3.2 Encoding Multi-alignments Using Pseudo-Boolean Constraints

Computing multi-alignments is an NP-complete problem.3

2 We understand the
∑

as a sum over a multiset, taking multiplicities into account.
For instance, with the multiset A = {1, 1}, we get

∑
i∈A i = 2.

3 More precisely, the problem of existence of a δ-multi-alignment for given C, N and δ
(represented in unary), is NP-complete. For NP-hardness, we use a reduction from
the problem of reachability of a marking m in a 1-safe acyclic Petri net N , known
to be NP-complete [12,13], to the existence of a 0-multi-alignement with the empty
collection C = ∅.

In order to compute a multi-alignment of C to N , our tool DarkSider
constructs a pseudo-Boolean4 formula Φ(N, C) and calls a solver (currently min-
isat+ [14]) to find an optimal solution. Every optimal solution to the formula
is interpreted as a multi-alignment.

The formula Φ(N, C) characterizes a δ-multi-alignment u = 〈t1 . . . tn〉 ∈
Runs(N), with δ =

∑
σ∈C dist(σ, λ(u)). For simplicity, we present the encod-

ing for Hamming distance as dist . Later we discuss how to adapt the encoding
to Levenshtein’s edit distance.

For the encoding, we need to fix a bound on the length n = |u| of the
δ-multi-alignment. In principle n could be exponential in |T |, simply because
multi-alignments are full runs and there are models for which the final marking
is reachable only after firing sequences of exponential length in |T |. Nevertheless,
the distance dist(σ, λ(u)) between a full run u of length n is at least n − |σ|.5
Hence u cannot be a δ-multi-alignment for δ smaller than n−minσ∈C |σ|. Since
in practice we are interested with δ of the order of the length of the log traces,
we can bound n to, for instance, twice the length of the longest trace in C:
n = 2×maxσ∈C |σ|.

The formula Φ(N, C) is coded using the following Boolean variables:

– τi,t for i = 1 . . . n, t ∈ T means that transition ti = t.
– mi,p for i = 0 . . . n, p ∈ P means that place p is marked in marking mi

reached after firing 〈t1 . . . ti〉 (remind that we consider only safe nets, there-
fore the mi,p are Boolean variables).

– δi,σ for i = 1 . . . n, σ ∈ C, means that σ and λ(u) mismatch at position i, i.e.
λ(ti) 6= σi.

The total number of variables is smaller than n× (|T |+ |P |+ |C|).
Let us decompose the formula Φ(N, C).

– The fact that u = 〈t1 . . . tn〉 ∈ Runs(N) is coded by the conjunction of the
following formulas:
• Initial marking: (∧

p∈m⊥

m0,p

)
∧

(∧
p∈P\m⊥

¬m0,p

)
• Final marking: (∧

p∈m>

mn,p

)
∧

(∧
p∈P\m>

¬mn,p

)
4 Pseudo-Boolean constraints are generalizations of Boolean constraints. They allow

one to specify constant bounds on the number of variables which can/must be as-
signed to true among a set V of variables. We write them as a ≤

∑
v∈V v ≤ b. Pseudo-

Boolean constraints are not more expressive but can be up to exponentially more
concise than Boolean constraints. Some pseudo-Boolean solvers also offer to search
for a solution minimizing a pseudo-Boolean objective of the same form

∑
v∈V v:

number of variables assigned to true among V .
5 This holds as well for Hamming or edit distance.

• The transitions are enabled when they fire:

n∧
i=1

∧
t∈T

(τi,t =⇒
∧
p∈•t

mi−1,p)

• Token game (for safe Petri nets):

n∧
i=1

∧
t∈T

∧
p∈t•

(τi,t =⇒ mi,p)

n∧
i=1

∧
t∈T

∧
p∈•t\t•

(τi,t =⇒ ¬mi,p)

n∧
i=1

∧
t∈T

∧
p∈P,p6∈•t,p 6∈t•

(τi,t =⇒ (mi,p ⇐⇒ mi−1,p))

– One and only one ti for each i, can be expressed concisely as a pseudo-
Boolean constraint:

n∑
i=1

∑
t∈T

τi,t = 1

– Now, we look for a solution minimizing the quantity δ =
∑
σ∈C dist(σ, λ(u))

(total number of mismatches), which is coded as:

∑
σ∈C

n∑
i=1

δi,σ

with the δi,σ correctly affected w.r.t. λ(ti) and σi:∧
σ∈C

n∧
i=1

(
δi,σ ⇐⇒

∨
t∈T, λ(t)=σi

τi,t

)
Notice that, as such, the formula Φ(N, C) characterizes multi-alignments u of a
fixed length n. But in fact, what we need is to accept any u of length less or
equal to n. There is a simple trick for this: we simply add to the Petri net N a
new transition with the final marking m> as pre- and post-set, and labeled with
a special padding symbol. This transition allows N to ’wait’ once in the final
marking.

Size of the Formula. In the end, the first part of the formula (u = 〈t1 . . . tn〉 ∈
Runs(N)) is coded by a pseudo-Boolean formula of size O(n× |T | × |P |).

The second part of the formula (minimization of the mismatches) is coded
by a pseudo-Boolean minimization objective of size O(n× |C| × |T |).

The total size for the coding of the formula Φ(N, C) is

O
(
n× |T | ×

(
|P |+ |C|

))
.

Encoding of Levenshtein’s Edit Distance. The encoding that we have pre-
sented above is for multi-alignments w.r.t. Hamming distance (see discussion in
Section 2.2). For Levenshtein’s edit distance, the basic idea is to let the multi-
alignment model trace “wait” for the log traces. This corresponds to the blanks
in the matrix shown in Figure 1. For this it suffices to add to the Petri net N a
new transition with empty pre- and post-set, and labeled with a special padding
symbol. When counting the mismatches between the multi-alignment trace λ(u)
and a model trace σ, a blank compared to another action costs 1 (it corresponds
to a deletion if one transforms σ to λ(u)). Symmetrically, the log trace is also
allowed to “wait” for the multi-alignment.

There is now a subtlety: since the multi-alignment is compared with several
log traces together, at some point it may have to wait for only some of the traces.
This should count for the computation of the distance between λ(u) and these
traces, but not between λ(u) and the other traces which do not need to wait.
The solution is to let the latter wait without counting any mismatch at this
point between them and λ(u). This situation happens at the end of the multi-
alignment shown in Figure 1 when the multi-alignment has to wait for trace 3,
while trace 1, 2 and 4, which “are ready”, wait like the multi-alignment.

In the end, this may lengthen the representation of the multi-alignment: in
the worst case, for log traces of length l, one may have to insert l − 1 blanks
before each symbol of the multi-alignment.

3.3 Partial Covering of the Log Traces

We have defined a multi-alignment as a full run u of the model N which mini-
mizes its distance to a collection C of (log) traces. Now, if the collection C contains
very different traces, it makes sense to focus on a subset of C containing suffi-
ciently similar traces. For this we adapt a little bit the notion of multi-alignment
in order to leave the choice of a subset of C to be considered: instead of mini-
mizing the sum of distances to the log traces σ ∈ C, we fix a distance threshold
d and look for a u ∈ Runs(N) which maximizes the number of log traces which
are at distance ≤ d to u.

Definition 5 (Optimal Partial Covering). Given a collection C of (log)
traces, a model N and a distance threshold d ∈ N, we say that a full run
u ∈ Runs(N) of N covers a log trace σ ∈ C if dist(σ, λ(u)) < d. We say that u
is an optimal partial covering of C for the distance threshold d if no full run of
N covers strictly more log traces of C than u.

As an example, consider the following collection of log traces, the model
shown in Figure 3, and set the distance threshold to d = 4.

t1: A C E B D G H F

t2: A C E G H F D B

t3: A C AC AA AF AI AJ AD AH X2 AG AB D B

t4: A E C G H F D B

t5: A C AA AC AF AJ AI AD AH X2 AG AB D B

A C E G

X3

L

H

I

N

O

M

JK

X1

F D B

P

R

W

Y

U

T

V

S

X

Z

G

AA
AF

AK

AH

AL

AG
AB

AC AD

X2

AE

Fig. 3. M1 example (taken from [15]).

The full run u1 = 〈A,C,E,G,H, F,D,B〉 covers traces t1, t2 and t4. The
full run u2 = 〈A,C,AA,AC,AF,AI,AJ,AD,AH,X2, AG,AB,D,B〉 covers the
others. No other full run covers more traces, so u1 is an optimal partial covering.

The problem of finding an optimal partial covering u of the log traces can
be encoded as a pseudo-Boolean optimization problem following the same lines
as the encoding presented for multi-alignments in Section 3.2. We use additional
variables bσ for σ ∈ C with the constraint that bσ can be assigned to true only
if σ is covered by the full run u:

bσ =⇒
n∑
i=1

δi,σ ≤ d .

Now we express our objective of covering as many log traces as possible, as the
pseudo-Boolean maximization objective

∑
σ∈C bσ.

4 Alignment-Based Clustering of Log Traces

Based on partial multi-alignments, we propose a novel algorithm for trace cluster-
ing. The idea of our algorithm is to group log traces according to their closeness
to representative full runs of a given model. Those representative full runs act
as centroids for the clusters.

The following algorithm partitions a collection C of log traces into a set P of
clusters relying on a model N . Each cluster contains traces sufficiently close (i.e.
at distance ≤ d) to a full run u ∈ Runs(N) which is the centroid of the cluster.

Clustering algorithm Clustering(C,N , d)

– P := ∅
– repeat
• find a full run u of N which is an optimal partial covering of C for the

distance threshold d;
• let C = {σ ∈ C | dist(σ, u) ≤ d} be a new cluster with u as centroid.
• P := P ∪ {C}
• C := C \ C

until all the traces are clustered or no remaining log trace σ ∈ C is at
distance smaller than d to any full trace of N .

– return P

At the end of the algorithm, the log traces which are too far (i.e. at distance
> d) from any run of the model are left unclustered. It is possible then either
to increase d in order to cluster those traces, or, if one considers that they
are anyway too little related with the model, treat them with another (model
agnostic) clustering approach.

5 Implementation and Experiments

We have implemented the theory of this paper in our tool DarkSider, which
was initially focused on computing anti-alignments [16]. DarkSider is avail-
able at http://www.lsv.ens-cachan.fr/~chatain/darksider. DarkSider is
written in OCaml. For each cluster computed, it constructs the pseudo-Boolean
formulas described in Sections 3.2 and calls the pseudo-Boolean solver min-
isat+ [14]. When an (optimal) solution is found, DarkSider analyses it and
displays the corresponding multi-alignment according to the truth values of the
variables τi,t.

To show the capabilities of the tool, we have focused on a synthetic medium-
size example (model M1, 40 places and 39 transitions). Figure 3 shows the ex-
ample. The model contains the typical constructs for a process: sequence, choice,
concurrency and loops. It was originally presented in [15], together with a log
containing 500 cases of varying sizes. We want to illustrate four different as-
pects of the contributions of this paper: tool usability, comparison with another
clustering approach, combination with other approaches, and resilience to noise.

Tool usability. By assigning values to the few parameters the tool has (that
control the length and the distance of the multi-alignments computed), one can
obtain a clustering in few minutes. We have run the clustering algorithm with
distance6 4 and setting 15 as maximal length for a run. As a result, we have
obtained 8 clusters, covering 499 traces. The 8 centroids are:

c1: A C E G H F D B

c2: A C P W R Y X U Z V T S Q D B

c3: A C AA AF AC AD AE AC AH AJ AI AD AG AE AC

c4: A C AA AC AF AH AJ AI AD AG X2 AB D B

c5: A C E X3 I J K I J K I J K I J

c6: A C AA AF AI AH AJ AC AD AG X2 AB D B

c7: A C P R W Y U Z V T S X Q D B

c8: A C AA AF AJ AI AC AH AD AG AE AC AD AE AC

corresponding to the following partitioning of the log in number of traces: (206,
135, 115, 31, 8, 2, 2, 1), respectively. Notice that most of the centroids are full
runs of the model (c1, c2, c4, c6, c7), the others are only prefixes of full runs,
truncated to the maximal size (15) that we imposed to centroids. One can see
that the aforementioned centroids cover most of the case variants of the model
in Figure 3. For instance, centroid c5 corresponds to the following cluster:

t1: J J E I C K I A K I B J F D

t2: A C J I J K I J K F I E D B

t3: A J C K E I J K I J I F D B

t4: C J A E F I J K I D J K I B

t5: A C E J J K I J K I I F D B

t6: A C E I J K I J K B I K I J F D J

t7: A C I K J K E J I I J K I J F D B

t8: A C E I J K I K D I F J K I K I J J J B

Overall, the approach can be tuned to provide a coarse-view of the traces
(like the one examplified here), or by decreasing the distance, to get a more fine-
grained view with more clusters of smaller size. For instance, if we set maximal
distance 3 instead of 4, we get 18 clusters.

Comparison with other clustering approach. We compare the results pro-
duced by our tool with the technique from [8]. This technique maps every case to
a profile vector, and builds a similarity matrix. This matrix is used as input for a
Markov cluster algorithm, which returns the clustering. In essence, this cluster-
ing approach is meant to group together traces with similar labels and behavior.
For the same example, this technique provides 18 clusters of sizes ranging from
1 up to 137 traces. A key difference with our approach is the restriction on the
traces to be included in a cluster: this approach only obtains clusters with traces
having the same length. For instance, the following is an example of one of the
clusters obtained by the aforementioned technique:

6 For efficiency reasons, DarkSideruses currently an ad-hoc distance intermediate
between Hamming and Levenshtein

t1: A C E J J K I J K I I F D B

t2: C J A E F I J K I D J K I B

t3: A J C K E I J K I J I F D B

t4: A C J I J K I J K F I E D B

t5: J J E I C K I A K I B J F D

To force having the same length within a cluster may be the reason why more
clusters are obtained in [8]. In case of loops, this can be misleading, as it can be
seen in the cluster computed by our tool corresponding to centroid c5, where
different iterations of the loop (I,J,K) are combined into the same cluster. We
believe this is a good feature of our approach, since the core information is the
same even if two traces have different number of loop iterations.

Combination with other clustering approach. The theory of this paper
can be applied to enrich the information provided by other (model agnostic)
trace clustering approaches. Once clusters are produced by any trace cluster-
ing technique, obtaining multi-alignments for each one would then provide the
model-based centroids as our approach provides. For instance, for the cluster pro-
vided above from the approach in [8], our tool produced a multi-alignment having
the following model sequence 〈A,C,E,X3, I, J,K, I, J,X1, F,D,B〉. Also, traces
that are left uncovered by our approach (since they are beyond the distance con-
sidered) can then be clustered with other approaches that do not consider the
model.

Resilience to noise. We have inserted noise into the initial log using the avail-
able plugins in the open source tool ProM. The noise insertion was removing and
swapping activities in every trace, with a 10% of probability for each one of the
noise operations. Accordingly, the clustering approach was computed (with the
same parameters) on the same model and the noisy log. Due to the significant
insertion of noise, 19 clusters were detected now, and 63 traces out of the 500
became unclustered (compared to the one trace unclustered for the initial log)7.
In spite of this, some of the centroids were preserved, which give rise to detecting
some of the clusters similar to the initial log. For instance the centroid c1 was
again detected, and centroids equivalent (variations of the available concurrency
in the model) to c2, c4, c6, c7 were computed. We performed the same exper-
iment but now with a 20% of probability for each one of the noise operations.
The results obtained in terms of centroids and clusters were very similar. Hence,
by focusing at the model-based centroid and not at the cluster level, a certain
invariance in the results, even in the presence of significant noise, can be ob-
tained. Also, notice that unclustered traces represent model-based outliers that
can be then analyzed apart, to drill down the analysis in those cases.

7 If more flexible distance parameters are applied, a clustering with only 10 traces
unclustered can be computed.

6 Conclusion and Perspectives

An important dimension in process mining is to extract from a large log with
many traces, high-level information about families of similar traces which may
correspond to different executions of the same parts of the model. The techniques
in the literature do not consider the process model for solving this task. For the
first time, this paper puts the process model as a main actor in trace clustering.

The notion of multi-alignments defined in this paper is a crucial one to facili-
tate alignment-based clustering. Multi-alignments incorporate the idea of group-
ing similar traces within the problem of aligning observed behavior with the
model. They provide a typical trace which represents as well as possible the
behavior of a cluster of similar log traces. These high-level alignments can be
viewed as a way to enrich, and at the same time compress, the alignment infor-
mation. We envision future applications of multi-alignments that will go beyond
trace clustering.

Although currently the tool can provide clustering results in few minutes
for medium-sized instances, future work will be devoted to improve the effi-
ciency of computing multi-alignments, which is the core part of the clustering
algorithm. Our tool computes exact solutions to the optimal multi-alignment
problem, which has a cost in terms of efficiency. Finding efficient heuristics for
computing reasonable approximations is an interesting perspective, as has been
done recently [17]. By considering several traces at the same time, this work
opens the door to significant reduction in the overall complexity of aligning an
event log and a model, since the number of alignment problems to solve may be
considerably lower.

We plan to do an extensive comparison of our technique with respect to other
clustering techniques in the literature, over a comprehensive set of benchmarks.
We will also show possible combinations of these approaches with ours, with the
aim of improving the interpretation of the clustering information obtained.

Acknowledgements

We thank Bart Hompes for facilitating the clustering results of his tool for the
example used in the experiments. This work has been partially supported by
funds from the Spanish Ministry for Economy and Competitiveness (MINECO),
the European Union (FEDER funds) under grant COMMAS (ref. TIN2013-
46181-C2-1-R).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8) (2006) 1010–1027

3. Ferreira, D.R., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process
mining with sequence clustering: Experiments and findings. In: Business Pro-
cess Management, 5th International Conference, BPM 2007, Brisbane, Australia,
September 24-28, 2007, Proceedings. (2007) 360–374

4. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process
mining. In: Business Process Management Workshops, BPM 2008 International
Workshops, Milano, Italy, September 1-4, 2008. Revised Papers. (2008) 109–120

5. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada, USA.
(2009) 401–412

6. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: Towards achieving better process models. In: Business Process Management
Workshops, BPM 2009 International Workshops, Ulm, Germany, September 7,
2009. Revised Papers. (2009) 170–181

7. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12)
(2013) 2708–2720

8. Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, H.: Discovering devi-
ating cases and process variants using trace clustering. In: Proceedings of the 27th
Benelux Conference on Artificial Intelligence (BNAIC 2015), Hasselt (Belgium)
November 5-6, 2015.

9. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley
(2005)

10. Adriansyah, A.: Aligning observed and modeled behavior. PhD thesis, Technische
Universiteit Eindhoven (2014)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–574

12. Stewart, I.A.: Reachability in some classes of acyclic Petri nets. Fundam. Inform.
23(1) (1995) 91–100

13. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147(1&2) (1995) 117–136

14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1-4) (2006) 1–26

15. Taymouri, F., Carmona, J.: Model and event log reductions to boost the com-
putation of alignments. In: Proceedings of the 6th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2016), Graz, Austria, De-
cember 15-16, 2016. (2016) 50–62

16. Chatain, T., Carmona, J.: Anti-alignments in conformance checking - the dark
side of process models. In Kordon, F., Moldt, D., eds.: Application and Theory of
Petri Nets and Concurrency - 37th International Conference, PETRI NETS 2016,
Toruń, Poland, June 19-24, 2016. Proceedings. Volume 9698 of Lecture Notes in
Computer Science., Springer (2016) 240–258

17. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: Business Process Management - 14th In-
ternational Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016.
Proceedings. (2016) 197–214

