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Abstract

Considering that the most common reason for electronic component failure is the excessive temperature

level, an efficient thermal management design can prolong the operating life of the equipment, while also

increasing its performance. Computational Fluid Dynamics and Heat Transfer (CFD&HT) have proved

valuable in the study of these problems, since they can produce reliable fields of fluid flow, temperature and

heat fluxes. Moreover, thanks to the recent advances in high-performance computers, CFD&HT numerical

simulations are becoming viable tools to study real problems. The conventional approach, which consists

of employing body-conformal meshes to the solids and fluids regions, often results costly and ineffective in

applications with very complex geometries and large deformation. For these cases, an alternative approach,

the Immersed Boundary Method (IBM), which employs a non-body conformal mesh and discretizes the entire

domain using a special treatment in the vicinity of the solid-fluid interfaces, has proven more effective. In this

work, an IBM was extended to simulate problems with conjugate heat transfer (CHT) boundary conditions

taking into account the radiative exchange between surfaces. It was designed to work with any type of mesh

(domain discretization) and to handle any body geometry. The implementation was validated and verified by

several simulations of benchmark cases. Moreover, the IBM was applied in an industrial application which

consists of the simulation of a Smart Antenna Module (SAM). All in all, the carried out studies resulted in

a monolithic methodology for the simulation of realistic situations, where all three heat transfer mechanisms

can be considered in complex geometries.

Keywords: Conjugate Heat Transfer; Cooling electronics; Computational fluid dynamics; Im-

mersed Boundary Method; automotive antenna

1. Introduction

The trend for decreasing the size of electronic components, but increasing its power consumption, orig-

inates a challenge to develop effective thermal dissipation solutions. The most common reason for failure

of electronic components is the temperature rise. Therefore, an efficient design to remove the generated

heat maintaining a control of the temperature can prolong the useful life of the equipment and increase its
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performance. The traditional strategy used to study the complex phenomena involved in cooling electronics,

i.e. the fluid-dynamics issues, heat conduction in solids and radiative exchange between surfaces, consists of

experimentation with physical prototypes. Nowadays, thanks to the increase of computational power, as well

as the improvement of mathematical and numerical algorithms, the experimental techniques can be supported

by a wide range of effective numerical procedures. In particular, Computational Fluid Dynamics and Heat

Transfer (CFD&HT) can produce reliable fields of fluid flow, temperature and heat fluxes, useful in the design

process in order to minimize the costs of producing a large number of prototypes. Aydin et al. [1] studied

numerically a rectangular two-dimensional enclosure with localized heating from below. Panthalookaran [2]

has performed an optimization of cooling electronics based on CFD. Boukhanouf and Haddad [3] presents

results of CFD analysis of an electronic cooling enclosure used as a part of a telecommunication system.

Semen et al. [4] have simulated the problem of conjugate natural convection combined with surface thermal

radiation in a two-dimensional enclosure, and also in three-dimensional enclosures [5, 6]. Riaz et al. [7] have

optimized a naturally air-cooled electronic equipment using CFD.

The above mentioned studies use the traditional body-conformal approach, where the computational

domain is discretized conformal to the solid walls of the enclosures solving simple geometries. It is well

known that the mesh generation procedure is a very demanding task for intricate geometries. In the past few

years the Immersed Boundary method (IBM) have gained a special interest as an alternative to the body-

conformal mesh methods. They allow to highly simplify the mesh generation procedure because cartesian

meshes can be applied. Whilst on a body-conformal mesh, the boundary condition is imposed directly. In an

IBM it is imposed by the modification of the discretized Navier-Stokes (NS) equations, generally by including

a forcing term. Depending on how the forcing term is defined, the IBM is classified into two categories [8]:

continuous forcing approach and the discrete forcing approach.

The original IBM introduced by Peskin [9] in 1972, corresponds to the continuous approach. In that work,

the immersed boundary is represented by a series of Lagrangian markers linked by springs, which exert a

singular force on the fluid by a discretized approximation to the Dirac delta function. It has been applied

in a number of problems, i.e. biological flows [9–12] with elastic boundaries. It has also been used for rigid

boundaries by increasing the stiffness of the body [13]. However, this approach can lead to stability problems.

The discrete forcing approach was introduced by Mohd-Yusof [14] in a spectral method and applied by

Fadlun et al. [15] using a finite difference method. In this case, the forcing is defined in the discrete space by

imposing the boundary condition into the solution. This process can be seen as a reconstruction procedure.

In fact, in [15] the forcing is not evaluated explicitly. This methodology allows a sharp representation of the

immersed boundary and is well suited for rigid boundaries. For these reasons, this approach has been taken

in the present work. This technique has been widely used in the past years, with small differences in the

reconstruction schemes. In [15–17], the solution is reconstructed in the fluid nodes closest to the immersed

boundary. In [18–20], the boundary condition is enforced through the so-called ghost cells, nodes located in

the solid and closest to the solid-fluid boundary, where a extrapolated value of velocity is imposed.

The IBM formulation can be naturally extended to thermal problems by introducing a source term in the

energy equation. Following this idea, several works are available in the literature that simulates heat transfer

problems with the usual boundary conditions of constant temperature (Dirichlet) [21, 22] and both, Dirichlet

and constant heat flux (Neumann) [23–27]. In several applications the CHT problem has to be solved, which

means that the energy equation in the interior of the solid must be coupled with the analysis of the fluid

flow. There are relatively few works that address this problem. One of the first implementation of this

condition with the IBM was by Iaccarino and Moreau [28]. They developed a reconstruction procedure for

the temperature field at both sides of the interface. More recently, Kang et al. [29] and Nagendra et al. [30]

proposed similar approaches based on interpolation techniques, for cartesian and curvilinear grids respectively.
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Instead of using a reconstruction procedure, Sato et al. [31] developed a consistent discretization scheme for

a cartesian grid method. Similar to that, the present work aims to develop a modification procedure of

the convective and diffusive operators that consider the presence of solids, which modifies the heat transfer

calculation instead of reconstructing the temperature field in the interface. To do so, mass fluxes at the faces

in the vicinity of the solid must be carefully computed to have an accurate convective term. In the present

implementation, a boundary condition to the pressure field is imposed to ensure that no mass passes through

the bodies. Galione et al. [32] use this idea for their fixed-grid modelisation of melting and solidification by

modifying the Poisson equation. For IBM problems, a similar approach can be taken using a cut cell based

discretization [33, 34] only in the Poisson equation as in [35].

It is well-known that radiative exchange between surfaces can impact considerably on the solution of

particular problems, even in low-temperature application such as cooling electronics. Different papers have

been presented in the literature [4, 6, 36–39] considering CHT problems with radiation and using body-

conformal meshes in relatively simple geometries. However, the non-body conformal methods developed to

simulate CHT problems mentioned above [28–31] neglect radiation effects. In the present work, a source term

is added in the energy equation to introduce the radiative effect. This source term is computed after solving

the net radiation problem.

Summarizing, the aims of the current model are: (i) to extend the IBM to explicitly impose a wall

boundary condition to the pressure field to ensure the non-slip condition, (ii) to extend the IBM for CHT

problems, and (iii) to include the radiation between surfaces in the formulation. The developed methodology

is used to study the thermal behaviour of a Smart Antenna Module. A SAM is a car component that

combines antenna elements and radio receivers in one package, including a printed circuit board (PCB) with

the electronics needed for a number of applications, i.e. GPS, WiFi, emergency calls, etc. This is a problem

with many objects with intricate geometries, where the body-conformal approach requires the generation of

a large number of complex meshes. Using the IBM approach, a detailed thermal analysis of the SAM was

carried out, testing numerous configurations in a more simple way. An hexahedral mesh is employed, which

is easy to generate. The near-body regions are then automatically refined using local mesh refinement [40].

The paper is organized as follows. The mathematical and numerical details of the methodology are

presented in Section 2. The method is validated and verified in Section 3. An accuracy study is performed, a

numerical test is carried out to evaluate the Poisson modification and an example case is solved, comparing

the solution with reference data obtained by a body-conformal approach. The thermal performance study of

a SAM is included in Section 4. Finally, the conclusions are presented in section 5.

2. Mathematical and Numerical formulation

In this section we first present the basis of the method developed to simulate conjugate heat transfer

problems. Next, we focus on the special treatment which we apply because of the non-body conformal ap-

proach. This is the velocity field reconstruction in the vicinity of the bodies, the pressure-velocity decoupling

procedure and the modifications introduced in the discretization of the energy equation.

2.1. Governing equations

The classic Navier-Stokes equations, expressing mass and momentum equation using the Boussinesq ap-

proximation, and the energy balance discretized can be written in matrix form as,
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Mu = 0 (1)

Ω
∂u

∂t
= −C (u)u+ νDu+ ρ−1Gp+ βg(T − T0) + fIB (2)

Ω
∂T

∂t
= −C (u)T +

λ

ρcP
DT + sIB (3)

where M , C (u), D and G are the divergence, convective, diffusive and gradient operators respectively, Ω is

a diagonal matrix with the sizes of control volumes, T is the temperature, p represents the pressure, u is the

velocity, β is the coefficient of thermal expansion, g is the gravity vector, T0 is a reference temperature, fIB
and sIB are the forcing and source terms included due to the immersed boundaries and ρ, ν, λ, cP are the

density, the kinematic viscosity, the thermal conductivity and the specific heat of the fluid.

In the present work, a Computational Fluid Dynamics (CFD) software package, TermoFluids [41], was

used as a solver of momentum and energy equations. The IBM was incorporated in this package as detailed

later. The governing equations have been discretized on a collocated unstructured grid arrangement by

means of second-order, spectro-consistent schemes. The conservative nature of these schemes ensures the

preservation of the symmetry properties of the continuous differential operators.

A non-body conformal approach is used to study the problem of the flow around a solid body presented

in Figure 1. Therefore, the entire domain (Ωf ∪ Ωs) is discretized by a volumetric mesh called the Eulerian

mesh. The boundary of the body is represented by an unstructured surface mesh, composed by a series of

triangles in stereo-lithography (STL) format [42], called the Lagrangian mesh. The governing equations are

discretized in the Eulerian mesh, and forcing and source terms are included in the vicinity of Γs in order to

impose the immersed boundary conditions.

Ωf

Ωs

Γs

Lagrangian 
mesh Γs

Eulerian  
mesh

(a) (b)

Ωf∪Ωs

Figure 1: (a) Schematic representation of the problem of a generic body immersed in a fluid flow. (b) Discretization:
Eulerian mesh to discretize the entire domain (Ωf ∪Ωs); Lagrangian mesh to represent the immersed boundary (Γs).

These forcing and source terms are included to enforce the immersed boundary conditions in momentum

and energy equation, respectively. They affect the nodes in the vicinity and in the interior of the immersed

bodies. Therefore, once the Eulerian mesh is defined, and nodes are located at the centroid of the control

volume, they are classified as: interior points, interior forcing points, exterior forcing points and exterior

points. The exterior forcing points are nodes that are outside and meet one or both of these conditions: (i)

The node has a neighbour which is inside the object. (ii) Their cell-volume is cut by the immersed boundary.

In the specific case of a node located on the solid-fluid interface, it is considered in general as a forcing
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point. Analogue to the exterior forcing points, we define the interior forcing points. For this case, the node

is in the interior and its neighbours are on the exterior of the objects. The remaining nodes are the so-called

interior or exterior points according to its location. The different type of nodes are clearly identified in Figure

2.

Fluid 
region

Body 
region

Interior or 
exterior points

Exterior 
forcing points

Interior 
forcing points

Figure 2: Example of Control Volumes intersected by an object: (•) Interior or Exterior Points; (�) Exterior Forcing
Points; (4) Interior Forcing Points. Differentiation between interior and exterior forcing points.

The methods used to reconstruct the velocity field in the vicinity of the body, modify the pressure-velocity

decoupling, and adapt the discretization of the energy equation conform the special methodology developed

in this work to simulate conjugate heat transfer. They are described as follows.

2.2. Velocity field reconstruction

A fractional-step method is employed to perform the time integration of the equations. The convective

and diffusive terms are explicitly treated with a self adaptive strategy using the κ1L2 method [43, 44]. This

time-integration scheme can be viewed as an optimization of the classical second-order Adams-Bashforth

(AB2) scheme (κ = 1/2), for further details see [43, 44].

In the framework of an IBM, first a provisional predictor velocity field is computed, not taking into account

the presence of the immersed boundaries (fIB = 0). The predictor velocity field is then reconstructed in

the interior and forcing points in order to impose the immersed boundary conditions. This procedure is

possible only in an explicit time integration. For a prescribed movement of the body, the velocities ~V of the

interior and interior forcing points are directly calculated from their coordinates. However, to compute the

exterior forcing points velocities ~Vfp some approximation has to be used because, by definition, these nodes

are outside the object. According to Fadlun et al. [15], the global accuracy of the scheme is maintained when

a second-order interpolation is used to calculate ~Vfp.

Following this approach, equation (4) is used to estimate ~Vfp:

~Vfp = ~V n+1( ~XS) + a1(~upnb1 − ~V n+1( ~XS)) + a2(~upnb2 − ~V n+1( ~XS))

+ a3(~upnb3 − ~V n+1( ~XS)) (4)

where ai are the interpolation coefficients, and four velocities are used: one refers to the velocity ~V ( ~XS)

of the closest point of the object and the other three ~upnbi are the predictor velocities of exterior nodes. A
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scheme of the points considered is presented in Figure 3, where ~Xfp is the position of the forcing point, ~XS

is the closest point on the body, and ~Xnbi are the locations of the exterior nodes nbi.

fluid 
region

solid 
region

P⃗3

P⃗2P⃗1

E⃗

X⃗ S

X⃗ nb1 X⃗ nb2

X⃗ nb 3

X⃗ fp

(a)

δE

δ f

X⃗ nb1

X⃗ nb2

X⃗ nb 3

X⃗ fp

X⃗ S

E⃗

(b)

Figure 3: (a) Interpolation scheme: (♦) Nearest point on the body to the forcing point; (•) Forcing point; (�) Selected
neighbours to the interpolation. (b) Two-dimensional view.

To perform the interpolation of equation (4), the coefficients ai must be computed and a set of three

exterior nodes of the Eulerian mesh has to be selected.

To calculate ai only geometric data is needed. To do so, the following vectors are defined:

~Pi = ~Xnbi − ~XS , i = 1, 2, 3 (5)

~Pfp = ~Xfp − ~XS (6)

A 3× 3 matrix A is then constructed using the vectors
−→
Pi . Finally, the inverse of the matrix A multiplied

by the vector ~Pfp results in the coefficients for the interpolation:

A = [ ~P1
~P2
~P3] (7)

(a1, a2, a3) = A−1 ~Pfp (8)

(9)

To select the set of three exterior nodes that will be used in the interpolation, all the exterior neighbours

of the forcing point are considered. The criteria used to select a particular combination aims to: (i) avoid

extrapolations, which could produce numerical instabilities and lower global accuracy, and (ii) minimize the

distance from the neighbors location ~Xnbi to the point ~XS .

The first condition is accomplished considering only the combinations which produce coefficients ai be-

tween 0 and 1. This is equivalent to say that the forcing point is contained inside the tetrahedron defined by

the four points used in the interpolation. To take into account the second condition, the set of neighbours

(nbj , nbk, nbl) which minimize:
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Norm(nbj , nbk, nbl) = (~Pj · ~Pj + ~Pk · ~Pk + ~Pl · ~Pl)0.5 (10)

will be the one selected.

The procedure employed to select the neighbours and to compute the interpolation coefficients ai, does

not consider any structure of the mesh. Therefore, it could be applied to both structured and unstructured

meshes.

Must be noted that in a explicit time integration methodology, there is no need to actually compute the

forcing term fIB .

2.3. Pressure-Velocity decoupling procedure

The forcing term is applied to the predictor velocity field, which also affects the pseudo mass at the faces.

After solving the Poisson equation, the predictor velocity and pseudo mass are then corrected, obtaining

the real velocity and mass fields which do not verify exactly the immersed boundary conditions. Some

non-physical mass flux is going to pass through the solids.

Despite this, the solver presents a second-order accuracy and the quality of the solution for several cases

is good (not shown here). However, there are many cases where this error could be appreciable. For example,

the flow around a baffled channel with very thin baffles generates a big pressure difference between the sides

of the baffle. If the baffle is represented as an immersed boundary, the big pressure gradient in its interior

could produce a considerable mass passing through it. In section 3.2, this case will be used to show this effect

and test possible improvements.

To avoid this error and ensure no mass passing through the bodies, the pressure-velocity decoupling

procedure is solved with an approach based on the cut-cell method. The finite-volume integration of Poisson

equation for a cell k are then written as:

∑
fεF(k)

(∇p)n+1
f · ~nfAf =

1

∆t

∑
f

ṁp
f (11)

~un+1
k = ~upk −

∆t

ρVk

∑
f

(pn+1
f ~nf )Af (12)

ṁn+1
f = ṁp

f −∆t(∇p)n+1
f · ~nfAf (13)

where F(k) are the faces of the cell k, Vk is the volume of the cell k, Af is the surface of a face f , the subscript

k refers to the cell itself, and the subscript f refers to the faces of the cell.

The pseudo mass ṁp
f is computed with a reconstruction approach, and the coefficients of the matrix for

the interior cells and cut cells are modified based on geometric information. Moreover, a virtual cell-merging

technique [35] is used to modify the independent term of the equation (11). The details are presented as

follows:

2.3.1. Pseudo Mass reconstruction

For a better estimation of the pseudo mass in the vicinity of the immersed bodies, a reconstruction

procedure analogue to the one used for the predictor velocity is now employed. It consists of cutting the

faces to distinguish the fluid section of the face from the solid one. Each face intersected by an immersed

boundary is divided into a fluid-face with surface AFf , and a solid-face with surface ASf (see Figure 4).
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The centroid of the fluid face and it projection to the Lagrangian mesh are computed. The predictor

velocity at the centroid of the fluid face, ~upf , is then calculated by linear interpolation using the projected

point and three neighbours. The procedure to do that is the same used for the forcing points (see section

2.2). Finally, the pseudo mass is determined using the surface of the fluid face as follows:

ṁp
f = ρ~upf~n

F
f A

F
f (14)

A f
F

A f
S

u⃗ f
p

u⃗nbi
p

u⃗nbi
p

Figure 4: Example of Control Volumes intersected
by an object. Scheme of the method to compute the
pseudo mass in cut faces.

2.3.2. Poisson modification

We can distinguish two types of cut cells. The ones with the node in the fluid region, generally called

regular cut cells, and the ones with the node in the solid, called small cut cells, because the fluid fraction of it

could be arbitrarily small. Both types of cells are shown in Figure 5, marked with blue dash lines the regular

cut cells and with red dashed lines the small cut cells. To ensure a good-conditioned Poisson equation, the

small cells are treated differently.

The conventional finite-volume discretization for equations (11), (12) and (13) described in [34] is used

for a regular cut cell k (see Figure 5):

ṁp
IBAIB +

∑
fεF(k)

ṁp
f = ∆t

(pn+1
IB − p

n+1
k )

AIB
δdIB

+
∑
f

(
pn+1
nb − p

n+1
k

) aFf Af
δdf

 (15)

~un+1
k = ~upk −

∆t

ργVk

pn+1
IB ~nFIBAIB +

∑
f

pn+1
f ~nFf a

F
f Af

 (16)

ṁn+1
f = ṁp

f −∆taFf Af
(pn+1
nb − p

n+1
k )

δdf
(17)

where aFf = AFf /Af is the fluid surface fraction of the face f and γ = V Fk /Vk is the volume fraction of the cell

k. The subscript IB refers to the section of the immersed boundary intersected by the cell k called ∂IB, AIB
is its surface, δdIB , is the distance between the node of k and ∂IB and pIB is the pressure at that location.
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A f
F
=a f

F A f=A f

A f
F
=a f

F A f <A fsolid

A f
F
=a f

F A f <A f

k

nb

nb

nb

A IB

δd IB

Figure 5: Definition of regular cut-cells and small cut-cells.

The subscript nb refers to the face-neighbour of k, and δdf is the normal-projected distance between the

nodes k and nb. For the cells which are not cut by an immersed boundary, all the coefficients aFf and γ are

equal to 1. Therefore, the discretization corresponds to the classic second-order, spectro-consistence scheme

used in TermoFluids [41].

2.3.3. Virtual cell merging technique

As stated earlier, small cells are treated with a different approach. Since they can be arbitrarily small, use

the same approach than for the regular cut cells could lead to an ill-conditioned pressure Poisson equation.

Small cut cells can also cause viscous stability problems. To avoid both problems, Ye et al. [34] and Udayku-

mar et al. [33] geometrically merge the small cells with its regular neighbours. This approach eliminates

small cells, but is highly complex and computationally expensive, because what they do is recompute the

mesh. In the present work a slightly different methodology is implemented, the so called virtual cell merging

technique. It was first proposed by Meyer et al. [45] for momentum equation, and adapted by Seo and Mittal

[35] for the pressure Poisson equation.

The technique consists of modifying the independent term of the Poisson equation. First, the independent

terms b(k) =
∑
f ṁ

P
f are computed for every cell, including the small ones. After that, the term bsmall of each

small cells is transferred to its regular neighbours. This means that the term bnb of each regular neighbour is

incremented by a fraction of bsmall. This is shown in the scheme of Figure 6. Given a small cell, the fraction

of bsmall which is transferred to each regular neighbour is proportional to the fluid surface shared with that

neighbor. Once the transfer is done, the independent term of Poisson equation for the small cells becomes

zero. The pressure equation is solved and the mass at the faces can be computed using equation 17.

The above technique conserves mass regionally but not locally, as is explained in [46]. The regional

conservation ensures the global mass conservation.

2.4. Energy equation

The time integration of the energy equation is performed explicitly with a self-adaptive strategy applying

the following equations in matrix form:
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Pressure 
ghost node

small-cell

M nb
p

M nb
p

Figure 6: Schematic of virtual cell merging
technique. Independent term of pressure Pois-
son equation is transferred to non-small neigh-
bours cells

Ω
σ1T

n+1 − (σ2T
n + σ3T

n−1)

∆t
= α0HT (Tn) + α1HT (Tn−1) + sn+1

IB (18)

HT (T ) = −C (u)T +
λ

ρcP
DT + S(T ) (19)

where Ω is a diagonal matrix with the sizes of control volume and HT is a spatial operator containing the

convective and diffusive operators (C (u) and D respectively), and an energy source term S used in this work

to consider radiative exchange between surfaces. The coefficients αi and σi correspond to the κ1L2 method

used in this work.

For the conjugate problem, the numerical stencils used to discretize the equation (18) are adapted to

consider the presence of a solid. The term (ρcP )k for each cell k is computed by using the volume fractions

of fluid and solid calculated for the Poisson equation modifications:

(ρcP )k =
(ρcP )FV Fk + (ρcP )SV Sk

Vk
(20)

In the following sections, the convection, diffusion and source terms are explained.

2.4.1. Diffusion term

The discretization of the diffusion term using the finite-volume method for a particular control volume k

is:

(
λ

ρcP
DT

)
k

=
1

(ρcP )k

∑
fεF(k)

λf (∇T )f · ~nfAf (21)

The direct gradient evaluation is used to estimate the temperature gradient in the cell face (equation

(22)). In faces where the cells belong to different materials, the harmonic mean is used to compute λf as is
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δ d f
S

δd f
F nb

nb
nb

k
Solid

Fluid

f

δd f

Figure 7: Geometric parameters of the eval-
uation of the diffusion term on cells near the
interface.

expressed in equation (23). The distances δdSf and δdFf (see Fig. 7) represent the normal-projected distance

from the nodes to the immersed boundary, projected with the face normal.

(∇T )f · ~nf =
Tnb − Tk
δdf

(22)

λf = δdf

(
δdFf
λF

+
δdSf
λS

)−1

(23)

2.4.2. Convection term

The finite-volume discretization of the convection term for a particular control volume k is:

(C (u)T )k =
1

(ρcP )k

∑
fεF(k)

(cP )F ṁfTf (24)

where the mass flow ṁf was computed during the resolution of momentum and continuity equations. The

temperature at face Tf is computed using the classical second order skew-symmetric scheme in regular faces,

and a reconstruction procedure is employed to estimate the temperature Tf at the centroid of cut faces by

the body.

To explain the reconstruction procedure, lets consider the cut face of Figure 8, which is indicated with a

red rectangle. The centroid of the cut face, where the temperature must be estimated, is marked with a red

point ( ~XF
fC). For that point, during the pseudo mass reconstruction, three neighbours (two in case of 2D

geometry) in the fluid region were selected (blue points in the Figure), and their corresponding coefficients ai
were computed using the procedure described in Section 2.2 for the velocity and temperature reconstruction

at the forcing points. Normalizing these coefficients with equation (25), and employing equation (26), the

temperature TF at ~XF can be estimated. The location ~XF is defined by the intersection between the normal

line to the immersed boundary passing through ~XF
fC and the plane defined by the fluid neighbors used for

the interpolation (see Fig. 8).

bi =
ai∑
i ai

(25)

TF =
∑
i

biTi (26)
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Figure 8: Geometric parameters
of the evaluation of the convection
term on cells near the interface.

Analogue to that, three neighbours (or two in 2D) from the solid region can be selected (black points in

Figure 8). Coefficients are computed in order to estimate the temperature TS of the auxiliary point ~XS . This

point is defined by the intersection between the normal line to the immersed boundary passing through ~XF
fC

and the plane defined by the solid neighbors used for the interpolation (see Fig. 8).

After TF and TS are obtained, the temperature Tf is calculated. First, the temperature at the wall Tw is

computed with equation (27), and finally Tf is calculated using (28):

Tw =
TS

λS

∆S
+ TF

λF

∆F

λS

∆S
+ λF

∆F

(27)

Tf = Tw +
∆f

∆F
(TF − Tw) (28)

where ∆F , ∆S and ∆f are the distance from the interface to ~XF , ~XS and ~XF
fC to the immersed boundary,

respectively.

2.4.3. Radiative transfer equation

In order to consider the radiative exchange between surfaces, the source term S(T ) of equation (19) takes

a non-zero value in the interior forcing points (see Fig. 2).

To calculate the term S(T ) used in equation 19, the net radiation problem [47] is solved at each time

iteration. Two kinds of surfaces are involved in the problem: those from boundaries of the domain, referred

to as ”boundary surfaces”, and (ii) those from the immersed bodies, referred to as ”body surfaces”. For both

cases, surfaces were defined as a group of faces selected in the pre-process. The ”boundary surfaces” are

composed by boundary faces of the Eulerian mesh, and the ”body surfaces” are composed by faces of the

Lagrangian mesh (STL file). The number of surfaces depends on the nature of the problem. Therefore, the

calculation of the radiative fluxes could range from enormously costly to nearly neglectable.

An example of the definition of surfaces is presented in Figure 9. In this example, six surfaces are defined,

each colour corresponds to a different one. Four are of the type ”boundary surfaces”, and the other two are

”body surfaces”. For example, the brown ”body surface” is composed by six elements of the Lagrangian mesh,

and the red ”boundary surface” has ten faces of the Eulerian mesh.

Once the surfaces are defined, assuming gray and diffuse surfaces, the net radiative heat flux per unit of
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Figure 9: Representative domain and definition of ”body surfaces” and ”boundary surfaces”. Each colour corresponds
to a particular surface.

area for each surface i, qR(i), can be calculated by solving the net radiation system [47]:

qR(i)

εi
−

N∑
j=1

(
1

εj
− 1

)
FijqR(j) =

N∑
j=1

Fijσ
(
T 4
i − T 4

j

)
, i = 1, 2, ..., N (29)

where Ai is the area of the surface i, N is the number of surfaces, σ = 5.67 × 10−8W/m2K4 is the Stefan-

Boltzmann constant, εi is the emissivity of surface i, and Fij is the view factor between surfaces i and j,

which is calculated using the ray-tracing method [48, 49]. The mean temperatures Ti are calculated at each

time step for both ”boundary surfaces” and ”body surfaces”. For the latter, the calculation was done via

interpolation, using the information of the interior forcing points. The radiation system is solved by the

GMRES [50] iterative solver, based on Krylov subspace projection methods.

Finally, the heat fluxes qR(i) are included in the time integration of the energy equation. At the ”boundary

surfaces” they are directly imposed as a boundary condition, while for the ”body surfaces” the energy is

included as a source term S(T )k in the interior forcing points, which is computed using equation 30.

S(T )k = −qR(i)Ap(k)fG(i) (30)

where the interior forcing point k belongs to the surface i. In the example of Figure 9, the interior forcing

points which belong to a ”body surface” are coloured with the same colour as the Lagrangian elements of that

surface. Ap(k) is the projected area of the cell in the body’s interfaces, and fG(k) is a geometric corrector

factor used to ensure the energy conservation (see below).

Ap is computed using:

Ap(k) =
∑

fεFF (k)

Af~nf · ~nIB (31)
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where FF (k) are the faces of the control volume k corresponding to a fluid neighbour (see Figure 10).

Ap (k )
k

n⃗ IB(k )

A fL

n⃗ f

n⃗ f

Fluid

Solid

f ∉F F(k )

f ∈F F(k )

Figure 10: Geometric parameters of the eval-
uation of the radiative term on cells near the
interface.

As the projected area Ap does not necessarily coincide with the real area of the Lagrangian mesh inter-

sected by the cell, the geometric correction factor fG(i) must be introduced to conserve energy. This factor

is computed for each ”body surface” using the following equation:

fG(i) =

∑
fLεi

AfL∑
kεiAp(k)

(32)

where fLεi are the faces of the Lagrangian mesh which form the surface i, and AfL are their areas. kεi are

the interior forcing points for which it closest triangle of the Lagrangian mesh belongs to surface i.

3. Validation and verification of the method

To validate and verify the solver, three cases have been simulated. The first case is an accuracy study

of the flow in concentric cylinders. The second case is selected in order to test the modification of the

pressure-velocity decoupling procedure introduced, consisting of a flow in a infinitely long channel with thin

baffles mounted periodically. Finally, Case 3 is a conjugate heat transfer problem taken from literature where

radiation between surfaces must be taken into account.

The validation tests has been performed in an personal computer Intel(R) Core(TM) i5-4670 CPU @

3.40GHz, engaging up to 4 CPU-cores.

3.1. Case 1. Concentric cylinder accuracy study

To study the accuracy of the method, the case of the flow between two concentric cylinders is considered.

Figure 11a shows a scheme of the case, where two concentric rings are considered. The small ring is static

and has an inner radius of R1 = 0.12m and an exterior radius of R2 = 0.2m. The radius of the inner wall

of the outer ring is R3 = 0.48m, and is rotating with an angular velocity of Ω = 0.5rad/s. The tangential

velocity of its inner wall is uθ(R3) = U3 = 0.24m/s. The analytic solution of the velocity for this problem is:
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uθ(r) =
R3R

2
2U3

R2
2 −R2

3

1

r
− R3U3

R2
2 −R2

3

r

ur(r) = 0 (33)

For the thermal problem, the heat conduction inside the small ring is computed in order to have a

conjugate heat transfer problem. In the interior face of the small cylinder a constant heat flux is imposed,

Q̇1 = 15.08W (depth b = 1m), and a Dirichlet condition T3 = 300K is used at R3. Moreover, the radiative

exchange between the solids surfaces has been considered.

Once the steady state regime is reached, the temperature at the enclosure of the inner ring is uniform at

some value T1, and all the heat qIN is conducted through the solid ring to the enclosure conformed by the

two solids. The temperature of the exterior surface of the small ring is defined as T2. The analytic solution

of the energy equation is:

T (r) =


T2 + T1−T2

ln
(

R1
R2

) ln( r
R2

)
R1 ≤ r ≤ R2

T3 + T2−T3

ln
(

R2
R3

) ln( r
R3

)
R2 ≤ r ≤ R3

(34)

where T1 and T2 can be computed by solving the set of equations:

Q̇1 =
2πbλS

ln
(
R2

R1

) (T1 − T2) (35)

Q̇1 =
2πbλF

ln
(
R3

R2

) (T2 − T3) + 2πR2bε2σ(T 4
2 − T 4

3 ) (36)

where σ = 5.67× 10−8W/m2K4 is the Stefan-Boltzmann constant, and ε2 is the emissivity of the the surface

R2. Here, it is assumed that R3 is black (ε3 = 1).

Two configurations are considered, with and without radiative exchange:

Case 1A The radiative exchange is forced to be zero by defining ε2 = 0. A value of λF = 0.03W/mK

was used for the conductivity of the fluid, and a value of λS = 0.3W/mK for the solid. With these

parameters, the analytical solution is T1 = 374.1K and T2 = 370K.

Case 1B To consider radiative exchange, a positive value of ε2 = 0.0145 is used for the emissivity of

the surface R2. The conductivities are the same as in case 1A. The analytical solution in this case is

T1 = 346.8K and T2 = 342.7K. With these parameters, the radiation heat accounts for 39% of the total

heat exchanged.

These cases allow to evaluate the quality of the reconstruction of the boundary for momentum and energy

equations with the approach presented in this work, in non-body conformal immersed boundary, with curved

walls in cartesian meshes. The domain used is a square of side L = 1m concentric to the cylinders. Three

different meshes were used with sizes of: (a) 20× 20, (b) 50× 50 and (c) 100× 100. The mesh (b) together

with the solids are shown in Figure 11a. To simulate these cases one CPU-core was used, to reach the steady

50 minutes of real-time simulation was needed for case 1B using the finest mesh. The computed temperature
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Figure 11: (a) Scheme of the case and 50 × 50 mesh (b), exterior forcing point in gray and interior forcing points in
black. (b) Temperature distribution for cases 1A (no radiation) and 1B (with radiation).

profile using mesh (b) in cases 1A and 1B is compared to the analytic solution in Figure 11b. As can be seen,

even with a relatively coarse mesh the solution is well reproduced.

The L1 norm of the error is computed as:

L1 =
1

N

N∑
i=1

|φt(i)− φc(i)| (37)

where the φt is the analytical solution and φc is the computed solution. The N nodes considered for each mesh

are only the ones located in the fluid region. The L1 norm of the error of the velocity is plotted as a function

of the mesh resolution h, including lines representing dx and dx2 in Figure 12a. As can be observed, the

error increases proportional with dx2, which illustrates the second-order of the momentum solver. Moreover,

fitting the data with the function a(dx)n, a value of n = 2.013 is computed.

The L1 norm of the error of the temperature is plotted in Figure 12b for cases 1A and 1B. For configuration

1A, where radiative exchange is not considered, second order of accuracy is observed, more precisely n = 1.979.

Therefore, the boundaries are represented within the accuracy of the numerical scheme. For the configuration

1B, where the radiative exchange is considered, less than a first order is observed with n = 0.835. This is

probably due to the fact that the radiative heat depends on the fourth power of the temperature.

3.2. Case 2. Baffled channel

This second case corresponds to a flow in a infinitely long channel with baffles mounted periodically in

the x-direction. A computational domain that contains only one period is simulated. Periodic boundary

conditions are set at the inlet and outlet sections, and a pressure gradient is added in the x-direction. The

domain configuration is shown in Figure 13. The geometrical parameters were chosen to match the conditions
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Figure 12: L1 norm of the error vs. mesh resolution (dx): (a) Velocity (squares for case 1A and 1B); (b) temperature
(circles for case 1A and squares for case 1B). Linear and second-order variations are indicated by dotted and dash-
dotted lines, respectively.

of the experiment carried out by Roberts [51]. The distance between baffles is L = 1.4, the channel height is

H = 1, and the baffle height is B = 0.25 (non-dimensional distances). A cartesian mesh with size of 210×150

was used. The baffles were modeled as immersed boundaries as is shown in Figure 14, the location of the

baffles were defined in order to ensure a non-conformal approach.

L

H

B

Flow
L

Computational 
domain

Periodic boundary 
conditions

x

y

Figure 13: Geometry of a baffled channel. Computational domain.

The Reynolds number defined as Re = UmH/ν was set to Re = 60, were Um is the bulk velocity. Roberts

[51] has also performed a numerical simulation of this case, using an accurate body-conformal approach

obtaining excellent agreement with the experiment. The solution of this case is a two dimensional flow,

symmetric in the y-direction, laminar and stable. The stream-lines obtained in the present work with two

different approaches are compared with the reference solution computed by Roberts [51] in Figure 15. The

red streamlines correspond to the solution obtained when the Poisson equation is not modified, and the blue

streamlines to the solution computed with the modified Poisson equation. Due to the high pressure gradient

between the sides of the baffles, unrealistic results are obtained when the immersed boundary condition is not

explicitly imposed to the pressure field. In that case, the vortex located upstream the baffle is not formed,

17



Figure 14: Mesh and baffle representation.

a mass passing through the body is observed, and the vortex located downstream the baffles is displaced

forward in the direction of the mean flow. By using the new approach, these errors are avoided very well, the

mass passing through the bodies is zero, and the streamlines matches the reference solution.

Figure 15: velocity
streamlines of the flow in
a baffled channel. Black:
reference solution in [51];
Red: present simulation
without Poisson modi-
fication; Blue: present
simulation with Poisson
modification.

In order to quantify the mass flux passing through the immersed boundaries two more cases, varying the

Reynolds number, were simulated. The mass flux was computed using the following expressions:

MT =
∑

fεF(xb)

ṁf (38)

MB =
∑
fεF(b)

ṁf (39)

where F(xb) is the group of vertical faces located at the same x-coordinate than the baffles and F(b) are

the faces of F(xb) with it centroid inside a baffle. Then, MT represents the total mass flux flowing at the

channel, and MB is only the non-physical mass flux that pass through the baffles. Using the new model, the

mass passing through the baffles is strictly zero. However, when non boundary condition is imposed to the

pressure equation, the mass passing through the baffles goes from 0.7% to 0.9% of the total mass flux at the

channel. The results are summarized in Table 1.

To simulate these cases one CPU-core was used, to reach the steady state 3.2 hours of real-time simulation

was needed.
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Modified Poisson Non-modified Poisson
Re MB/MT MB/MT

45 0 0.00702
60 0 0.00788
85 0 0.00888

Table 1: Mass passing through the baffles using the modified and non-modified Poisson equation.

3.3. Case 3. 2D air-filled cavity with internal heat source

A surface thermal radiation and conjugate heat transfer case presented by Martyushev and Sheremet [4]

was employed as the last verification case of this work. It consists of a square enclosure with heat-conducting

solid walls of finite thickness. At the bottom, in contact with the fluid, a square heat source is located

which maintains its superficial temperature at Th. The exterior vertical walls lose heat by convection with

an external fluid at temperature Te and a convection coefficient h. The bottom surface is adiabatic, and the

top surface is maintained at a constant temperature Te. The configuration is schematically shown in Figure

16. The side of the internal square cavity is L, the thickness of the walls is l = 0.2L, and the side of the heat

source is d = 0.2L.

L

l

d

h,
Te

h,
Te

Te

Th

g

lx

y
d

Figure 16: Scheme of square cavity with internal heat source and conducting walls (right); Mesh near the heat source
(left).

Due to the simplicity of the geometry a structured mesh can be used. However, in this work an un-

structured mesh composed by triangles was employed, to have a non-body conformal mesh in the solid-fluid

interfaces. This can be observed in Figure 16, where details of the mesh in the vicinity of the heat source is

shown. In this manner, the methodology of the boundary reconstruction can be better tested in this case.

The size of the triangles is approximately uniform in the whole domain with h/L ∼ 0.01, which means a total

of 38436 cells.

Two solid bodies were included: one for the heat source and the other for the conducting walls, as can

be seen in Figure 17. Note that despite the case is 2D, the solid geometry is fully 3D, which allows a more

challenging test. The present methodology was implemented in TermoFluids [41] for generic 3D problems.

However, imposing null derivatives for velocities and temperature at the boundaries in the z-direction give a

2D solution.

For the radiative equation, the internal walls were divided into 39 surfaces. Only one surface is used for
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Figure 17: Picture of the STL files used to represent the immersed boundaries and discretization of the body surfaces
for the radiation problem.
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Figure 18: (a) Temperature distribution at the center line x/L = 0.5, and (b) vertical velocity distribution at the
central line y/L = 0.5. Lines: reference results in [4]. Points: present results.

the heat source because it has uniform temperature. The remaining 38 were defined for the internal walls,

as shown in Figure 17. The view factors were computed in the preprocess by the ray-tracing method.

To completely define the case, the following non-dimensional numbers were specified: Planck Pl =

λfluid(Th−Te)/(σT 4
hL), Biot Bi = hL/λsolid, Raiyleigh Ra = gβ(Tmax−Tmin)L3/ναfluid, Prandtl Pr = ν/α,

the surface emissivities ε, and the ratio K = λsolid/λfluid, where β is the coefficient of volumetric thermal

expansion, ν is the kinematic viscosity and α is the thermal diffusivity of the fluid.

Two cases were simulated to match the conditions presented in [4]:

Case 3A Ra = 104 and Pl = 0.19.

Case 3B Ra = 105 and Pl = 0.0877.

For both cases Bi = 2, K = 7, Pr = 0.7 and the emissivity of all the internal surfaces was set at ε = 0.6.
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(a) (b)

(c) (d)

Figure 19: Streamlines for (a) case 3A (Ra = 104, Pl = 0.19), and (b) case 4B (Ra = 105, Pl = 0.0877). Temperature
contour plots for (c) case 3A and (d) case 4B.

For these conditions the flow reaches a stationary laminar regime. To simulate these cases four CPU-core

were used, to reach the steady state 6 hours and 7 hours of real-time simulation was needed for cases 3A and

3B respectively.

Temperature and vertical velocity distributions along the lines x/L = 0.5 and y/L = 0.5 respectively, are

presented together with the solution obtained in [4] in Figure 18. Streamlines and isotherms for each case

are shown in Figure 19. Two symmetric convective cells are formed into the cavity and a thermal plume in

the central part. For the case with the bigger Ra (3B), the cores of the convective cells are located in an

upper position and the thermal plume is more intense. These results are in very good agreement with those

presented in [4].

To solve this problem, Martyushev and Sheremet [4] employed a body-conformal approach discretizing
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the governing equations in two separate computational domains, one for the fluid region and the other one

for the solid walls. They previously verified their solver by simulating benchmark cases. In those cases the

convection was combined with conduction or radiation. In the present work, we have been able to reproduce

the results obtained in [4] accurately using a non-body conformal approach, which allows to approach cases

with very complex geometries in a relatively simple way.

4. Application to a car component

In the framework of a collaboration project with FICOSA, the methods presented in this work were used

to study the thermal behaviour of a Smart Antenna Module (SAM, Figure 20). A SAM is a car component

which combines antenna elements and radio receivers in one package, including a printed circuit board (PCB)

with the electronics needed for a number of applications, i.e. GPS, WiFi, emergency calls, etc.

A correct design which allows to dissipate the generated heat at the SAM, maintaining the temperature

of the components under the critical values, prolongs its useful life and increases its reliability. The aim of the

collaboration was to study the thermal behaviour of the original design for a specific working configuration,

and improve it with the minimum structural changes possible.

Figure 20: Exterior of a Smart Antenna Module.

By using CFD to simulate this problem, it is possible to obtain detailed and reliable data, avoiding huge

geometric simplifications and assumptions. One strategy to perform the simulation is to have one mesh for

each solid component and one mesh for each air enclosure. These are treated as separate problems, but

connected by boundary conditions if they are in touch. For this particular problem, with a big number of

components with complex geometries, the meshing process could make the project unfeasible. These meshes

must have a minimum of good quality, and the generation of each one is an extremely demanding task. This

is even more critical if the possibility of comparing different geometries is considered.

However, by using the IBM, the meshing process is highly simplified. Only one volumetric mesh is needed,

and the components can be represented by superficial meshes (STL) with no quality restrictions, obtained

directly from the geometry provided by the company. In this project the volumetric mesh is conformed by

hexahedrals and is locally refined depending on the components geometry, as it will be explained later.
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In the following sections the problem is analysed. In section 4.1, the boundary conditions and the geom-

etry and properties of the component of the SAM are described. Some numerical aspects are also explained.

Finally, in Section 4.2 the results are presented for the original configuration and for the proposed improve-

ments, comparing the different alternatives.

4.1. Problem description and numerical considerations

4.1.1. Geometry description

(a)

(i)

(h)

(f)

(c)

(e)

(b)

(g)

(g)

Figure 21: Solid parts included in the simulation. Picture taken using the STL files used to represent the interfaces
in its locations. The letters detail the parts described in Table 2.

The pieces that form the SAM are shown assembled in Figure 21. The same pieces are shown apart in

Figure 22. In both cases the pictures are taken from the surface meshes used in the simulation (STL files).

These meshes are generated directly from the geometry provided by the company, except for the PCB in

which some chips are not taken into account. The object (a) in Figure 22 is called Shark Cover because of

its resemblance to a shark fin. It is designed to embellish the exterior of the SAM and to minimize the drag

contribution. Object (b) is a section of the roof of the car. The PCB with the most important chips is the

object (c), and the objects (d) and (e) are some metallic pieces which are in contact with the PCB. The object

(f) is a plastic shell which contains all the electronics inside. Objects (g), (h) and (i) are structural parts

needed to join all the other mentioned parts in a compact form. The material, properties and the number of

triangles used in its corresponding STL files are given for each object in Table 2.
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Figure 22: Single solid parts included in the simulation. Picture taken from the STL files used to represent the
interfaces. The letters detail the parts described in Table 2. @2017 Advanced Automotive Antennas S.L All rights
reserved patent EP 3174157 et alt. [52]

4.1.2. Boundary conditions

The boundaries of the SAM are shown in Figure 23: at the top, the shark cover is in contact with the

external air and exposed to the sun radiation, and at the bottom, the structural box is in contact with the

internal air of the car cabin.

Boundary conditions imposed are the heat losses calculated as a function of the wall temperature. For

the case of the shark cover, the heat losses per unit area q̇Shark are directly the convective and radiative ones:

q̇Shark = hext(TS − Text) + εSσ(T 4
S − T 4

SKY )− αSGScosϕ (40)
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Object Material λ ρcP ε No triangles
(W/mK) (kJ/m3K) in STL

(a) Shark Cover Plastic 0.20 1513 0.8 34026
(b) Roof Steel 53.0 3611 0.8 1568
(c) PCB - 34.0 2660 0.8 192
(d) Metallic Ring Steel 53.0 3611 0.8 10968
(e) Contact Piece Steel 53.0 3611 0.8 4658
(f) Shell Plastic 0.25 1300 0.8 34699
(g) Structural part 1 Plastic 0.20 1300 0.8 2597
(h) Structural part 2 Plastic 0.20 1300 0.8 1224
(i) Structural part 3 Plastic 0.20 1300 0.8 1570

Table 2: Physical properties of the solid parts and number of triangles used in the STL files.
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Figure 23: Scheme of the problem and boundary conditions.

where TS is the local temperature of the shark cover, Text is the temperature of the external air, hext is

the external heat transfer convection coefficient, εS is the emissivity of the shark cover, TSKY is the sky

temperature, GS is the solar radiance, αS is the absorptivity of the external surfaces for short wave length

and ϕ is the angle of the normal vector to the surface and the solar radiation direction (see Figure 23). The

aim of the design is for the SAM to be able to function under extreme conditions, i. e. in a tropical climate

at noon on a clear day. To represent these conditions, the air outside has a temperature of Text = 50oC, and

a relative humidity of HR = 30%, which means a dew point temperature of Tdp = 28oC. The solar radiance

was set to GS = 1200W/m2, and the absorptivity αS = 1.

Using the correlation of Berdahl et. al. [53, 54] presented in equation (41), the sky temperature TSKY
is computed. In this correlation, the Tdp must be expressed in Celsius degrees, Text must be expressed in
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Kelvin and t is the sun time in hours (t = 0 in this case). In this way a value of TSKY = 320K is obtained.

TSKY = Text

[(
0.711 + 0.56(Tdp/100) + 0.73(Tdp/100)2

)1/4
+ 0.013cos

(
2πt

24

)]
(41)

To calculate the convection coefficient, the correlation for a vertical plate of Churchill et al. [55] was used,

see equation 42. To take into account the inclination of the surface, the Rayleigh number was calculated

replacing g by gcosθ, where θ is the angle between the surface and the vertical vector, using a representative

value of θ = 28o:

hext =

(
λair
L

)
0.68 + 0.67Ra

1/4
L

[
1 +

(
0.492

Pr

)9/16
]−4/9

(42)

At the bottom, the box containing the electronic is isolated by a carpet. To calculate the heat losses per

square meter through the carpet q̇C , the following equation is solved:

q̇intCond =
λC
eC

(T1 − T2) = εCσ(T 4
2 − T 4

int) + hint(T2 − Tint) (43)

where λC , ec and εC are the conductivity, width and emissivity of the carpet, respectively, T1 is the value

of the temperature at the boundary of the computational domain, T2 is the temperature of the carpet in

contact with the internal air and Tint is the temperature of the internal air, and also of the internal surfaces.

The coefficient hint was computed using the correlation for a horizontal plate facing down from Fishenden et

al. [56] of equation (44):

hint =

(
λair
L

)
0.25Ra

1/4
L (44)

4.1.3. Internal heat sources

With the chips of the PCB working together in maximum power, a total heat of Q̇I = 22.5W is generated.

However, under the extreme conditions described above, the requirement for the SAM is to carry out only

some specific operations. According to the information provided by the company, the generated heat by the

electronics is set to Q̇I = 10W in the simulation. The operative chips are indicated in Figure 24: (a) is

the Telematic Module (TM), (b) is a microprocessor (µP) and (c) is a power management integrated circuit

(PMIC) and they produce Q̇TM = 3W , Q̇µP = 2W and Q̇PMIC = 3W , respectively. The remaining 2W of

heat are distributed uniformly in the rest of the PCB.

4.1.4. Computational domain

The computational domain is shown schematically in Figure 25. It consists of two prismatic blocks

which contain the SAM geometry. The mesh is composed by hexahedrals cells, and local mesh refinement is

employed to minimize the number of elements. First, one mesh with uniform cell size of dx = dy = dz = 2mm

is generated, which has 0.3M control volumes. Based on this mesh, local refinement is applied in the cells with

a distance to the objects shorter than 12.5mm, splitting each in eight children cells [40]. This is done twice.

Therefore, the cells in the interior and in the vicinity of the objects have a size of dx = dy = dz = 0.5mm. The
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(a)

(b)

(c)

Figure 24: Real picture of the PCB and its simplification. The electronic chips operating in the simulations are
indicated in the image: (a) Telematic Module (TM); (b) Microprocessor (µP); (c) Power management integrated
circuit (PMIC).

Domain

Immersed 
Bodies

Figure 25: Computational domain and mesh near the front of the shark cover.

resulting mesh, including the objects mentioned previously, is conformed by 6.3M control volumes. However,

different meshes are going to be used for different cases, in which dissipators will be included.

4.1.5. Net radiation problem

To calculate the radiative exchange between the internal surfaces, two enclosures shown in Figure 26 are

considered: (a) the interior of the shell (Fig. 26a) and b) the space between the exterior surfaces of the shell

and the interior surfaces of the shark cover (Fig. 26b. The view factors are calculated in the preprocess using

the ray-tracing method.

4.1.6. Chip model

An electronic device reaches its maximum temperature at the silicon die within the package. This is known

as Junction Temperature (TJ), and must be under a certain values to avoid damages. The thermal resistances
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Figure 26: Surfaces definition for the net radiation problem: (a) exchange between PCB and internal surfaces of the
shell and (b) exchange between external surfaces of the shell and internal surfaces of the shark cover and roof.

between the silicon die, and the adjacent parts of the electronic device are provided by manufacturers and

must be included in the model to obtain an accurate estimation of the junction temperature of each device.

A scheme of the thermal model of a generic electronic device is shown in Figure 27. RB and RD are

the thermal resistances from the silicon die to the PCB and to the ambient, respectively. In the case that

a dissipator is installed, the patch thermal resistance RP must be included. In the simulation, the cells

inside a chip are set with high conductivity, and with an energy source term to imitate the silicon die. The

temperature achieved in these cells will be considered as the TJ .

To include the chip model, the thermal conductivity at the faces, λf , is computed differently in the chip

region. To do so, these faces are classified into three types (see Figure 27):

Type 1 The face has one cell at the chip and the other at the PCB. Then, interfacial thermal resistance

between both cells is RB .

Type 2 The face has one cell at the chip and the other in the ambient air. Then, interfacial thermal

resistance between both cells is RD.

Type 3 The face has one cell at the chip and the other at the aluminum dissipator. Then, interfacial

thermal resistance between both cells is RD +RP .

The conductivity at these faces is calculated using the following equations:

Type 1 : λf =

(
dJ
λJd

+
dPCB
λPCBd

+
RBA

2
f

AB

)−1

(45)

Type 2 : λf =

(
dJ
λJd

+
dair
λaird

+
RDA

2
f

AD

)−1

(46)

Type 3 : λf =

(
dJ
λJd

+
dd
λdd

+
(RD +RP )A2

f

AD

)−1

(47)

where λair, λd and λPCB are the thermal conductivity of the air, the dissipator and the PCB, respectively.

d, dair, dPCB and dd are distances indicated in Figure 27, Af is the area of the face, AB is the area of
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Figure 27: Thermal resistance model used for the electronic chips and implementation in the mesh faces.

the exterior of the chip in contact with the PCB or the air, and AD is the area of the chip in contact with

the aluminum dissipator. It must be noted that the contribution of the internal thermal resistances are

computed as RBA
2
f/AB or RDA

2
f/AD, as RAf/AB and RAf/AD are the fraction of thermal resistance for

that particular face.

The values of RD, RB and RP used for the chips were provided by the company and are the same for all

the electronic devices. The areas of each device were computed directly from the geometry. This information

is summarized in Table 3.

RD RB RP AD AB
(oC/W ) (oC/W ) (oC/W ) (mm2) (mm2)

PMIC 2.90 0.60 2.60 76.8 64.0
µP 2.90 0.60 0.36 554 441
TM 2.90 0.60 1.23 162 126

Table 3: Values of thermal resistance and surface used for each electronic chip.

4.2. Results

The geometry described above corresponds to the original design, and is referred to in this work as Case

1. From the thermal point of view, it is easy to note that it is a low performance arrangement. The PCB

is mostly in contact with air, and is thermally connected by metallic components only with the roof, which

is the hottest element because of the solar radiation. The results for this case are summarized in the next

section. As expected, the chips reach very high temperatures. Improved designs are tested. They consist

of the installation of an aluminum dissipator in contact with the electronic chips, trying to dissipate the

generated heat to the interior of the car. These configurations are referred to as Cases 2 to 4, and the details

are presented in following sections.

Finally, the results obtained for the different cases are compared to one another. Moreover, the limits for

the junction temperature are considered to analyze the designs and discuss possible improvements.
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4.2.1. Case 1. Original Design

A temperature map of a vertical slide is shown in Figure 28. It is clear that for this configuration the hot

body (PCB) is almost isolated from the cold parts (bottom surface and inclined sides of the shark cover). A

convective cell is formed in the top enclosure, and at the bottom the air is stratified.

Figure 28: Temperature contour
plots of a side view in the middle
of the domain for Case 1.

360 375 3903.500e+02 4.100e+02

T

Figure 29: Temperature distribu-
tion in the surface of the solids
parts for Case 1.
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The global heat losses from the PCB can be divided into: radiative losses to the top Q̇TopRad, radiative

losses through the bottom Q̇BottomRad , convective losses to the top Q̇TopConv, convective losses through the bottom

Q̇BottomConv and losses by conduction Q̇Cond. For this case, the computed values were Q̇TopRad = 1.5W , Q̇BottomRad =

4.5W , Q̇TopConv = 0.5W , Q̇BottomConv = 2W and Q̇Cond = 1.2W . Note that the principal losses are through the

bottom (65%), and comparing convective with radiative losses, the latter are the most important ones (63%).

The conduction heat losses are small (12%), because of the small surface contact of solid parts with the PCB.

It could be surprising that the convective losses to the top enclosure are so small. However, it must be

noted that the region where the air movement due to natural convection has an increase in the local Nusselt

number; it is small compared to the total area of the PCB. Moreover, the remainder of the top surface of

the PCB is close to a hot surface due to the solar radiation. A 3D view of the solid parts coloured with

temperature is presented in Figure 29.

The junction temperatures of the TM, µP and PMIC for this configuration are TTJ = 136oC, TUJ = 144oC

and TPJ = 150oC, respectively. All of them are over the damage threshold, which is 130oC.

4.2.2. Case 2. Built-in dissipator

Figure 30: Temperature contour
plots of a side view in the middle
of the domain for Case 2.

An aluminum dissipator is included for this case. It has a thickens of dAl = 1mm, and it is in contact with

the high-power chips and the bottom of the box. This can be observed in Figures 30 and 31. The junction

temperatures are highly reduced with respect to the original design, with values of TTJ = 127oC, TUJ = 130oC

and TPJ = 131oC. However, they are still over the maximum possible value.

Thanks to the dissipator, the conduction losses are now predominant, with a value of Q̇Cond = 7.6W .

Since the temperature of the PCB and the aluminum are quite similar, the losses by convection and radiation

to the bottom are very small: Q̇BottomRad = 0.3W and Q̇BottomConv = 0.6W . The reduction of the temperature of

the PCB also decreases the heat losses to the top: Q̇TopRad = 1.4W and Q̇TopConv = 0.1W .

4.2.3. Case 3. Built-in dissipator extended with aluminum sheet

In order to enhance the heat losses to the interior of the car, an extension to the base is included, as shown

in Figure 32a. For this case, the extension consists of an aluminum sheet with a thickness of dextAl = 50µm
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Figure 31: Temperature distribu-
tion in the surface of the solid parts
for Case 2.

and dimensions of LX = 497mm and LY = 496mm. An insulator is placed between the base extension and

the roof (see Figure 32b), to minimize the heat contribution from the top.

Lx Lz

New 
computational 
domain

Base 
extension

(a)

Isolation
Base 
extension

(b)

Figure 32: (a) New computational domain when the dissipator is extended and (b) side view of the extension and
isolation geometries.

With this configuration, the junction temperatures are reduced considerably, obtaining the following

values: TTJ = 117oC, TUJ = 118oC and TPJ = 123oC. The losses to the bottom were increased with respect to

the previous case, and distributed differently: Q̇Cond = 6.86W , Q̇BottomRad = 0.94W and Q̇BottomConv = 1.5W . The

losses by conduction are still the most important ones, but the convective and radiative losses are notoriously

increased. This is due to the temperature distribution at the base, while in the previous case it was very

uniform (almost adiabatic condition at the borders). In this case, the temperature decays from the chips
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L

Figure 33: Temperature distribution along the base of the dissipator for cases 2 and 3.

region to the extension borders. Therefore, an important temperature difference between the PCB and base

exists, which allows for part of the PCB heat to be dissipated by radiation and convection to the base. This

can be observed in Figure 33, where the local temperature along the line indicated in the Figure minus the

mean PCB temperature is plotted. In both cases the temperature close to the chip is very similar to the

mean PCB temperature, but as L increases, the difference remains almost constant for Case 2 and strongly

increases for Case 3.

Temperature maps are presented in Figures 34 and 35. As can be seen, the PCB temperature is slightly

higher than the shell temperature, which reduces the heat losses to the top with respect to the previous cases:

Q̇TopRad = 0.9W and Q̇TopConv = −0.2W .

4.2.4. Case 4. Built-in dissipator extended with coarse aluminum

The last case simulated in this work is a variation from the previous case, modifying only the extension

thickness to dextAl = 1mm. This is not a viable design due to the quantity of aluminum that it requires, but

its study gives an idea of the limits of using passive methods to dissipate the generated power. The huge

increase of the extension thickness increments the fin efficiency reducing even more the temperature of the

PCB, computing: TTJ = 108oC, TUJ = 108oC and TPJ = 113oC.

The relatively low values of the temperature at the PCB makes it receive heat from the top of the domain:

Q̇TopRad = −0.3W and Q̇TopConv = −2.7W . This incoming extra heat from the top is dissipated to the bottom:

Q̇Cond = 10.82W , Q̇BottomRad = 1.18W and Q̇BottomConv = 1.0W .
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Figure 34: Temperature contour plots of
a side view in the middle of the domain
for Case 3.
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Figure 35: Temperature distribu-
tion in the surface of the solids
parts for Case 3.

4.2.5. Comparison between cases and discussion

To summarize the obtained results, the temperatures of the electronic chips for each case are presented

in Table 4 and in Figure 38. The horizontal lines in the Figure separates the different working modes for a

common electronic chip: if the junction temperature is below 105oC, the component works normally. If it is

over that value but under 130oC, the component works in the so-called downgraded mode, which consists of
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Figure 36: Temperature contour
plots of a side view in the middle
of the domain for Case 4.
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Figure 37: Temperature distribu-
tion in the surface of the solids
parts for Case 4.

reducing the power by reducing the frequency. Finally, if the threshold of 130oC is exceeded, the electronic

component is damaged. As can be observed in Figure 38, each design is better compared to the previous one,

but the aim of ensuring working temperatures in the normal mode is not achieved.

The heat losses of the PCB are summarized in Table 5. In each new design the PCB temperature is

reduced thanks to the decrease of the global thermal resistance from the PCB to the interior of the car. This
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Figure 38: Comparison between cases of the Junction temperature at the different chips.

TM UP PMIC
TTJ (oC) TUJ (oC) TPJ (oC)

Case 1 136 144 150
Case 2 127 130 131
Case 3 117 118 123
Case 4 108 108 113

Table 4: Junction temperature at the different chips.

strategy allows the heat losses to the bottom to be enhanced in each new case, and the heat losses to the

top to be reduced, to such an extent that in Case 4 the top region of the PCB is receiving heat from its

surroundings.

Although the thermal requirements were not achieved in the new designs, the information provided by

the simulations can be very useful for future steps in the development of the SAM. The idea of dissipating the

heat to the interior of the car is in its limits, and a complementary strategy must be analyzed. For example,

the lateral walls of the shell have a lower temperature than the PCB, even in Case 4, which could be used to

reduce temperatures with new dissipators. The net radiation heat that the PCB receives from the shell and

roof could be reduced by low-radiative painting in specific regions, according to the hot surfaces observed

in the temperature maps obtained from the simulations. The impact of these ideas can be studied by new
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simulations, and the new designs can be tested in normal conditions with the PCB working full-power.

Q̇TopRad Q̇BottomRad Q̇TopConv Q̇BottomConv Q̇Cond
(W ) (W ) (W ) (W ) (W )

Case 1 1.8 4.5 0.5 2.0 1.2
Case 2 1.4 0.3 0.1 0.6 7.6
Case 3 0.9 0.94 -0.2 1.5 6.86
Case 4 -0.3 1.18 -2.7 1.0 10.82

Table 5: Heat losses of the PCB.

5. Conclusions

An immersed boundary method (IBM) to simulate conjugate heat transfer problems, including radiative

surface exchange, was presented. The non-slip condition for the velocity field was imposed by the reconstruc-

tion of the solution using the discrete forcing approach [15] and modifying the Poisson equation to ensure no

mass pass through the boundaries. The main purpose of that was to have a precise description of the mass

flux in the vicinity of the immersed boundaries in order to compute an accurate advective term in the energy

equation. The conjugate immersed boundary condition was introduced by an adaptation of the convective

and diffusive operators in the cells intersected by the immersed boundary. The radiative exchange between

surfaces was taken into account by incorporating a source term computed by solving the net radiation prob-

lem. The models were developed for generic meshes. The reconstruction procedures by linear interpolations

used in momentum equation was formulated to work with any type of meshes. The modifications in the

discretization of the Poisson and energy equations were also formulated for generic cells.

The validation and verification of the code was carried out through the simulation of three different

test cases. First, an accuracy study was performed through the solution of the flow between two cylinders,

considering the conduction inside the inner cylinder. A second-order of accuracy was obtained for velocity

and temperature when the CHT problem was solved. When the radiative exchange between cylinders was

considered, the order of accuracy for the temperature field was less than first order, which may be due to the

dependency of the radiative heat transfer with the fourth power of the surface temperature. The second case

were selected to test the approach proposed for the analysis of the Poisson equation. With this approach, the

solution is improved in cases with big pressure gradients generated because of the presence of thin bodies.

Finally, a two-dimensional case from the literature which considers conduction, convection and radiation was

used. Even not necessary, an unstructured mesh was generated in order to have a more exigent non-body

conformal discretization. Very good agreement with the results of the reference, which uses an accurate

body-conformal methodology, was obtained.

A monolithic approach methodology has been proven to be successful in the solution of multi physics

problems, resulting especially appropriate for engineering applications, where the combination of various

heat-transfer mechanisms is frequent. By representing the solid-fluid interfaces using unstructured surface

meshes, the method can be applied for all kinds of geometries. Moreover, the domain mesh generation

process is simplified, allowing to simulate several configurations with the same domain discretization. The

techniques were applied to study the thermal performance of Smart Antenna Module in the framework

of a collaboration between CTTC and FICOSA INTERNACIONAL, S.A. First, an original configuration

proposed by the company was simulated, where the hot body (PCB) is almost isolated from the cold parts

(bottom surface and inclined sides of the shark cover). As was expected, the junction temperature of the
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working chips were over the damage threshold. Three more configurations were then simulated. In each

new case, an aluminum dissipator was included, in order to reduce the global thermal resistance between

the PCB and the bottom. Despite the fact that the proposed configurations were not able to reduce the

working temperature of the electronic component as much as was needed, the study was useful to determine

the limits of the passive heat dissipation under the design limitations and to define new steps in the project.

For example, the lateral walls of the shell have a lower temperature than the PCB, which could be used to

reduce temperatures with new dissipators. The net radiation heat that the PCB receives from the shell and

roof, could be reduced by low-radiative painting in specific regions, according to the hot surfaces observed in

the temperature maps obtained from the simulations.
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