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In cardiac cells, calcium is the mediator of excitation-contraction coupling. Dysfunctions

in calcium handling have been identified as the origin of some cardiac arrhythmias. In

the particular case of atrial myocytes, recent available experimental data has found links

between these dysfunctions and structural changes in the calcium handling machinery

(ryanodine cluster size and distribution, t-tubular network, etc). To address this issue,

we have developed a computational model of an atrial myocyte that takes into account

the detailed intracellular structure. The homogenized macroscopic behavior is described

with a two-concentration field model, using effective diffusion coefficients of calcium in

the sarcoplasmic reticulum (SR) and in the cytoplasm. The model reproduces the right

calcium transients and dependence with pacing frequency. Under basal conditions, the

calcium rise is mostly restricted to the periphery of the cell, with a large concentration

ratio between the periphery and the interior. We have then studied the dependence of

the speed of the calcium wave on cytosolic and SR diffusion coefficients, finding an

almost linear relation with the former, in agreement with a diffusive and fire mechanism of

propagation, and little dependence on the latter. Finally, we have studied the effect of a

change in RyR cluster microstructure. We find that, under resting conditions, the spark

frequency decreases slightly with RyR cluster spatial dispersion, but markedly increases

when the RyRs are distributed in clusters of larger size, stressing the importance of

RyR cluster organization to understand atrial arrhythmias, as recent experimental results

suggest (Macquaide et al., 2015).

Keywords: calcium modeling, atrial cells, local calcium signaling, calcium release unit, ryanodine receptor

1. INTRODUCTION

Calcium is one of the most important intracellular messengers, and thus the mechanisms that
control the intracellular free calcium concentration are of fundamental physiological importance
(Berridge, 1997). For instance, Ca2+ takes part in oocyte activation at fertilization (Poenie et al.,
1985), axonal growth (Bixby and Harris, 1991), cell migration (Huttenlocher et al., 1997), gene
expression (Bading et al., 1993), formation of nodules in plant root hairs (Ehrhardt et al., 1996),
development of muscle (Ford and Podolsky, 1972), release of cytokines from epithelial cells
(Kaufman and Roizman, 1989), cell death (Schanne et al., 1979; Farber, 1981), and excitation-
contraction coupling in muscle cells (Fabiato and Fabiato, 1979).
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In cardiac cells, calcium dysregulation has been related to the
appearance of arrhythmias and sudden cardiac death. A life-
threatening arrhythmia, fibrillation, results when an electrical
wavebreak induces reentry and triggers a cascade of new
wavebreaks. Ventricular fibrillation (VF) is the most common
cause of sudden death, whereas atrial fibrillation (AF), the most
prevalent clinical arrhythmia, accounts for nearly one third of
strokes in the elderly (Weiss et al., 2005). Clinically, AF duplicates
the mortality rate and increases the risk of ictus (in which poor
blood flow to the brain results in cell death) 5-fold. In spite of
this the treatment of AF remains deficient or inefficient, because
of the incomplete knowledge of the complex pathophysiology of
this disease. Often, AF has been linked to a dysregulation in the
dynamics of intracellular calcium, thus the importance of a good
knowledge of calcium handling dynamics in the cell. On the other
hand, in the last ten years, the refinement of the experimental
techniques, such as STED and dSTORM (Hell and Wichmann,
1994; Izu et al., 2006; Soeller and Baddeley, 2013) has provided,
for instance, a link between the calcium handling microstructure
and the occurrence of cardiac diseases, as AF (Macquaide et al.,
2015), prompting the quest for more detailed models of calcium
handling, able to mechanistically explain this relation.

Inside cardiac cells, most intracellular calcium is stored in
a complex structure called sarcoplasmic reticulum (SR), see
Figure 1. Ca2+ is released from this internal network via the
Ryanodine Receptors (RyR, Franzini-Armstrong and Protasi,
1997) when a threshold calcium concentration in the cytoplasm
is achieved. This happens due to a small influx of calcium
through the L-type calcium channels (LCC) during the cardiac
action potential. This current triggers calcium release from the
SR by activating the RyRs. RyRs open and close collectively
in clusters forming functional units known as Calcium Release
Units (CaRU), which are often confronted to a cluster of LCCs.
In each CaRU the number of RyR and LCC is small (of the
order of 10–100 of the former and 5–10 of the latter), thus

FIGURE 1 | Basic components of the CICR process. Calcium enters

through the LCCs, stimulating release from the RyRs, that then is reuptaken

into the SR by SERCA and taken out of the cell by the sodium-calcium

exchanger.

its dynamics is intrinsically stochastic. CaRUs are distributed
inside the cell, resulting in random and discrete Ca2+ release
events, known as Ca2+ sparks (Cheng et al., 1994). A Ca2+ spark
has been considered as the unitary dynamical element which
produces the cellular Ca2+ dynamics, such as Ca2+ waves and
oscillations (Falcke, 2003). The (seemingly deterministic) global
calcium signal appears from the coordination of several tens of
thousands of these CaRUs.

After the excitation process, Ca2+ removal allows relaxation
of the cardiac muscle. This requires Ca2+ transport out of the
cytoplasm by several pathways. The concentration in the SR is
recovered by the active pumping of calcium from the cytoplasm
to the SR carried out by the Sarcoplasmic Reticulum Ca2+-
ATPase (SERCA). Moreover, the Na-Ca exchanger pumps Ca2+

out of the cell. The whole process described is called calcium-
induced calcium release (CICR, Berridge, 1993; Clapham, 1995).
CaRUs not just couple SR and cytoplasm Ca2+ concentrations
via Ca2+ release but they are also correlated due to the Ca2+

diffusion in both domains. Therefore, the behavior of a single
CaRU depends on the behaviors of the neighboring CaRUs.

Even though the same mechanism (CICR) triggers the
transient elevation of Ca2+ in both ventricular and atrial
myocytes, there are substantial differences in the intracellular
structures. The absence of transversal tubules (t-tubules) in atrial
myocytes produces inhomogeneous spatio-temporal calcium
patterns when the CICR occurs. In particular, the excitation starts
at the cell membrane and then propagates inward, resulting in a
delay in activation time between the subsarcolemma and the cell
interior. This is a key difference between atrial and ventricular
cells. In the latter, the opening of LCC channels along the t-
tubules triggers the release of calcium from the SR, resulting in
a homogenized calcium pattern. In the former, this trigger is due
to the inward wave.

Detailedmodels of calcium handling have been first developed
for ventricular cells, including the stochastic modeling of
each individual CaRU, coupled then by diffusion. In this
framework, each CaRU is typically divided into different
subcompartments, in which the calcium concentration is
assumed to be homogeneous (Restrepo et al., 2008; Rovetti
et al., 2010), although some recent models consider also calcium
diffusion within the CaRU (Nivala M. et al., 2012). These
models have been very successful in reproducing several calcium
dysfunctions, such as calcium alternans (Restrepo et al., 2008;
Rovetti et al., 2010; Alvarez-Lacalle et al., 2015) or spontaneous
calcium release induced delayed afterdepolarizations (Song
et al., 2015). Current advances in microscopy have allowed the
development of very detailed models of calcium release at the
level of the CaRU, including realistic shape of the SR, the RyR
cluster, myofibrils and the mitochondria (Kekenes-Huskey et al.,
2012; Hatano et al., 2013; Hake et al., 2014; Rajagopal et al., 2015).

Modeling is less developed for the case of atrial cells
(Heijman et al., 2016). Common pool models, in which calcium
concentration is considered to be homogeneous in each of
several compartments (SR, cytosol, dyadic space, etc) have been
developed for rabbit (Lindblad et al., 1996), dog (Ramirez et al.,
2000), mouse (Davies et al., 2014), and human (Courtemanche
et al., 1998; Nygren et al., 1998; Grandi et al., 2011; Lugo
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et al., 2014). One of the first models that took into account
inward wave propagation was by Koivumäki et al. (2011), where
the bulk cytoplasm and SR spaces were divided into several
compartments, being thus a one-dimensional model, allowing
for centripetal but not lateral diffusion. A similar model was
also used by Li et al. (2012), showing the presence of alternans.
A model allowing for both centripetal and lateral diffusion, as
well as stochastic RyR gating was developed by Voigt et al.
(2013), in order to study the mechanisms of after-depolarizations
and triggered activity in paroxysmal atrial fibrillation. Calcium
wave initiation and propagation has been considered by Thul
et al. (2012) in a three-dimensional geometry, assuming a diffuse
and fire model for calcium release. Finally, Macquaide et al.
(2015) developed a detailed three-dimensional bidomain model
of calcium propagation to study intra-CaRU cluster interactions,
supporting the idea that cluster fragmentation and redistribution
sustains atrial fibrillation through the enhancement of calcium
release.

Still, there are several open questions regarding CICR in atrial
cells. To name some: (1) the role of buffers, RyR sensitivity and
the level of cytosolic calcium in calcium wave propagation; (2)
the effect of the RyR cluster spatial structure and size distribution;
(3) the role of t-tubules (if present). Most subcellular ventricular
and atrial models (Restrepo et al., 2008; Rovetti et al., 2010;
Voigt et al., 2013) consider the cell divided into several thousands
of functional units (CaRUs). Each CaRU is then divided into
different compartments, replicating at the subcellular scale the
structure of common pool models. Despite the success of such
models to replicate calcium transients and spark characteristics,
they are not well-suited to study the effects of changes in the
microstructure (position of the RyR clusters, inhomogeneities,
etc). Rather, to study the effect of RyR cluster distribution on
wave propagation, continuum models of calcium diffusion with
point release sites have been considered, although often with
simplified release dynamics (Izu et al., 2006; Thul et al., 2012,
2015; Øyehaug et al., 2013). On the other hand, very detailed
models at the level of the CaRU (Hake et al., 2014) are very
demanding computationally, and typically not well-suited to
study effects that require of long simulation times, as calcium
homeostasis or spark rates. With that in mind, we present a
subcellular calcium atrial model where the homogenized local
behavior is described with a two-concentration field model,
using effective diffusion coefficients of calcium in the SR and
in the cytoplasm, with stochastic gating of the RyRs and LCCs.
This model follows the spirit of earlier bidomain models (Jafri
and Keizer, 1995; Keener and Sneyd, 1998), defining at each
point in space cytosolic and SR calcium concentrations, with
given volume fractions (Keizer and De Young, 1992). The
model presents some important characteristics: (1) a very fine
discretization, making it possible to describe (even if coarsely)
the RyR cluster structure; (2) incorporation of the cell structure
with distinction between z-lines and normal cytosol in terms of
the volume ratio of SR and cytosolic volumes, diffusion constants
and presence of buffers; (3) freedom to set the center of the
RyR clusters arbitrarily, that do not need to be disposed in an
homogeneous regular grid. In this paper, we focus on the effect
of CaRU spatial structure and distribution, and find that a more

disordered distribution of the CaRUs presents a lower frequency
of sparks in resting conditions. On the contrary, when the spatial
distribution is maintained constant, but the RyRs are distributed
in a smaller number of larger CaRUs (so the total number of RyRs
remains constant), the spark frequency increases, in accordance
with experimental results in cells presenting AF (Macquaide et al.,
2015).

2. METHODS

Our computational model performs single cell simulations and
is based on homogenization (Goel et al., 2006). Although it
is well-known that the SR forms a branching network (largely
interconnected), with an interior that is distinct from the cell
cytoplasm, this fact has largely been ignored, with most models
making the a priori assumption that a Ca2+ concentration for
both the SR and the cytoplasm can be defined at each point in
space. So that, the cytoplasm and the SR are assumed to coexist at
every point in space. For this reason, a fraction of each volume is
occupied by the cytoplasm (vi) and the complementary fraction
by the SR (vsr), given that vi + vsr = 1.

We define ci, csr , and cbi as the concentration of calcium in
the cytoplasm, the SR, and the concentration of calcium bound
to buffers. This description assumes that there exist effective
diffusion coefficients Di = Di(vi) and Dsr = Dsr(vsr) that, in an
average sense, incorporate the effect of that complex geometry.
Although in principle these coefficients could be calculated
knowing the SR structure (Goel et al., 2006), we will take the
functional forms used in Goel et al. (2006). Since both fractions,
vi and vsr , vary in different parts of the cell, it implies that both
diffusion coefficients are functions of the position, Di = Di(r)
andDsr = Dsr(r). In our simulations we take the valuesDi ∼ 250
µm2/s and Dsr ∼ 90 µm2/s, that are within the upper range
considered in the literature (Louch et al., 2010; Bers and Shannon,
2013).

The cardiac cell is modeled as a two dimensional domain with
Lx = 100 µm and Ly = 15 µm. The spatial grid belongs to the
submicron scale and it is defined as dx = dy = 0.1µm. There are
points of the grid with and without RyRs. A typical RyR has a size
of 30 x 30 nm. The RyRs are transmembrane proteins located at
the surface of the SR, so they form a 2D grid. Thus in each of our
grid points we locate a maximum of 10 RyRs.

A collection of grid points presenting RyRs form a cluster, i.e.,
a CaRU. In atrial cells, CaRUs are arranged periodically in the
longitudinal and transversal directions, with some—seemingly
Gaussian—dispersion (Chen-Izu et al., 2006). In our model, we
place the centers of the clusters on the perimeter following an
exact periodic distribution with a period T̄x = T̄y = 0.5 µm
(see Figure 2). In front of all these exterior CaRUs there are LCC
groups. Inside the cell, CaRUs are placed following a Gaussian
distribution centered at the z-lines and with a fixed dispersion σ .
We take σ = 0.4 µm as standard value. The average distance
between CaRUs is Tx = 1.6 µm and Ty = 0.5 µm. Experimental
data shows that the SR domain coincides with these z-lines
(Soeller et al., 2007). In this sense, we identify the z-lines with
periodic narrow strips (0.3 µm width) with a predefined period
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(Tx). Let be �c the sarcomere domain, that is, the zone between
z-lines and let be �sr the zone contained in z-lines and all the
contour (∂�). Notice that�c∩�sr = ∅. Besides, we consider the
presence of Ca2+ buffers: troponin (TnC), Calmodulin (CaM),
and SR Ca-binding sites. The TnC buffer affects the cytoplasmic
concentration of calcium in the �c domain. The other buffers,
calmodulin and SR, affect also ci but in all the cell, �c ∪ �sr . We
assume that all the buffers are immobile.

Because of the homogenization coarse grain, we define ci(r, t)
(free calcium concentration), csr(r, t) (calcium concentration in
the SR), and cbi(r, t) (calcium attached to buffers: TnC, CaM, and
SR buffer) in all points. Therefore, we state the problem with the
following set of partial differential equations (PDEs).

∂ci(r, t)

∂t
= Ji(r, t)+ ∇ ·

[

Di(r)∇ci(r, t)
]

− Jbi(r, t) (1)

∂csr(r, t)

∂t
=

vi(r)

vsr(r)
Jsr(r, t)+ ∇ ·

[

Dsr(r)∇csr(r, t)
]

, (2)

∂cbi(r, t)

∂t
= Jbi(r, t), (3)

where Ji and Jsr are the fluxes into the cytosol and the SR
spaces, respectively, Jbi accounts for the binding of free calcium
to the different buffers. In order to relate the fluxes between the
cytoplasm and the SR we have multiplied by the volume fraction
vi/vsr , that depends on r, that is, on the domain �c and �sr .
In addition, each point could have different components (RyR
or not, LCC or not) and could belong to the membrane or not.
The fluxes that may contribute to the total flux into the cytosol
Ji are the SR release flux Jrel, the SERCA pump Jup, the L-type
calcium flux JCaL and the sodium-calcium exchanger flux JNaCa.
The release flux Jrel carries Ca2+ ions from the SR to the cytoplasm
through the RyRs. Thus, it exists only on those points that have
a CaRU, indicated by a red dot in Figure 2. Jup pumps calcium
from the cytoplasm to the SR and it is present in all cell domain
(�c ∪ �sr). The sum of these two fluxes (when appropriate)
constitute the total flux from the SR. Then, JCaL, the inward L-
type calcium flux, depends on the LCC clusters, so that it will act
on those points that contain this channel, indicated by a cross
in Figure 2. Indeed, LCCs appear only in some points of the cell
membrane, ∂� (those that also have a CaRU). Finally, the NaCa
exchanger, JNaCa, acts along all the perimeter ∂�.

A detailed description of all the fluxes can be found in the
Supplementary Material. Below we present some details of the
release and L-type calcium fluxes.

2.1. Release Flux
As shown in Figure 2, we consider each CaRU formed by several
grid points containing RyRs. As standard for a CaRU, we consider
one containing 36 RyRs, divided equally among 4 grid points,
each one containing 9 RyRs. We will change this configuration in
section 3.4 to consider larger CaRUs, maintaining fixed the total
number of RyRs in the cell. This resembles the situation found in
cells presenting AF (Macquaide et al., 2015).

Following Stern et al. (1999) each RyR can be in one of four
different states: close C, open O, and two inactivated states I1,
I2 (Figure 3). Calcium release from the SR to the cytoplasm is

FIGURE 2 | Bottom left corner of the whole cell. Circles (red) represent points

with RyRs, black crosses are LCC groups, green stripes indicate the z-line

region (domain �sr ), and small dots the sarcomere (�c).

taken to be proportional to the concentration difference and the
number of RyR in the open state, ORyR,

Jrel = grelORyR(csr − ci). (4)

This flux is only present in those points that present RyRs
(highlighted in red in Figure 2).

2.2. L-Type Calcium Flux
The inward current of calcium from the extracellular medium
toward each CaRU is dependent on the number of LCC channels
in the open state OLCC, the voltage, and the local calcium
concentration in these points, which are close to the membrane,
according to

ICaL = gCaLOLCC4zm
e2zci − [Ca]0

e2z − 1
, (5)

where z = VF/(RT) and zm = 0.341zF. The current ICaL is
converted to the flux JCaL , with units of µ M/ms, through:

JCaL =
ICaL

2Fvmyo
, (6)

where vmyo is the volume of the cytosol.
We have used the LCC model described in Mahajan et al.

(2008) with some changes in the parameters as in Alvarez-Lacalle
et al. (2015). We consider the presence of 5 LCC channels in each
CaRU (located all in the same grid point) with five possible states
(Figure 3): two closed states (C1 and C2), two inactivated states
(I1 and I2) and one open state (O). The stochastic dynamics of
the transitions is implemented using a time-adaptive Gillespie’s
method (Nivala J. et al., 2012). The transition rates aij are
described in the Supplementary Material.

2.3. Other Fluxes
There are extra fluxes that appear on the model. The Na-Ca
exchanger and the SERCA pump are both explained in the
Supplementary Material.
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FIGURE 3 | Markov models of the RyR (Left) and LCC channels (Right).

FIGURE 4 | (Top) Temporal profiles of [Ca2+] for both domains, cytoplasm and SR. (Bottom left) Inward and outward cell currents of JNaCa (dashed line) and JCaL
(solid line). (Bottom right) SERCA pump flux (solid line) and release flux (dashed line) in the cytoplasm at a pacing period of 800 ms.

3. RESULTS

3.1. Calcium Handling Characteristics
The calcium trace results from the sum of calcium at different
sites. Since in our model the volume fraction changes from site to
site, we have to define the average calcium concentrations as:

〈ci〉 =

∑

r vi(r)ci(r, t)
∑

r vi(r)
, 〈csr〉 =

∑

r vsr(r)csr(r, t)
∑

r vsr(r)
(7)

Figure 4 shows typical traces during one beat of the average
calcium over all the cell in both domains: cytoplasm and SR. The
calcium peak, of ∼700–800 nM, agrees well with experimental
observations (Mackenzie et al., 2004). The calcium concentration
in the SR, though, is larger than observed in experiments due to
the lack of the SR buffer calsequestrin (CSQN) in our model. We
also show in Figure 4 the four cytoplasmic fluxes, corresponding
to the sodium-calcium exchanger (JNaCa), the L-type calcium
flux (JCaL), SR release (Jrel), and SERCA (Jup). Due to the small
number of LCC channels, the L-type calcium flux is particularly
stochastic.

Depending on the pacing period, the model shows different
behaviors. We have quantified this effect by calculating the
calcium peak and the calcium diastolic level in the cytoplasm
and in the SR domain (Figure 5). To assure that the system
is close to the steady state, we have paced the cell for 50 s at
each pacing period, and then taken the average over the next
20 stimulations. As the pacing period decreases, the cytosolic
calcium peak increases moderately, up to a pacing period period
of ∼200-300 ms, beyond which it decreases, due to the decrease
in SR calcium content and fractional release. This behavior agrees
qualitatively with the observed change in the contractile force as
a function of pacing period observed in atrial cells (Maier et al.,
2000; Schotten et al., 2002), that shows a peak at a period of∼500
ms, beyond which it decreases.

3.2. Inward Calcium Wave Propagation
In order to compare the spatial heterogeneities within the cell,
we have considered longitudinal sections at the central and
peripheral regions, averaged over a 1 µm width. The complete
CaRU distribution is shown in Figure 6, where the longitudinal
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FIGURE 5 | Ca2+ peak and Ca2+ basal level as function of the pacing period (Ts) in both domains: cytoplasm and SR. Each point has been averaged over 10 beats

in steady state.

FIGURE 6 | (Top) Spatial distribution of the CaRU. Black dots show the position of the CaRUs. The green and blue lines indicate longitudinal lines at the cell center

and periphery. (Down) Local Ca2+ measured in the subsarcolemmal space (blue dashed lines) and the center of the cell (solid lines) for both cytoplasm and SR

domains at a pacing period of 800 ms. All traces have been averaged over a longitudinal section of 1 µm width.

sections are plotted in green and blue. Simulations suggest strong
differences between calcium levels in the subsarcolemmal space
and the center of the cell (see Figure 6), as well as a delay between
release at the peripheral and central regions.

The spatio-temporal and local correlation between ci and csr
calcium is shown in the line scan profiles on Figure 7. The four
profiles correspond to the same beat. In the subsarcolemmal
region the presence of LCCs and CaRUs results in an important
release activity causing a relevant SR depletion. On the other
hand, in the central region, calcium does not penetrate, and the
local activity is scarce. Still, there is a depletion of the SR content
(visible also in Figure 6) due, not so much to release, almost
negligible at the central region, but to diffusion of SR calcium to
the periphery.

The spatio-temporal Ca2+ dynamics in the cytoplasm allows
us to clearly understand how the standard inward wave

propagation occurs. Figure 8 shows spatial profiles at different
times during a single beat. Under normal conditions, the calcium
wave starts on the cell membrane and propagates to the center but
this propagation does not reach the central region. This situation
is observed more clearly averaging the calcium concentration
over the longitudinal direction, so we can observe the average
inward propagation of the calcium wave (Figure 9) Typically,
the inward wave propagates 4 or 5 µm in the transversal
direction. From the figure, we can estimate an inward wave
velocity of roughly 150 µm/s, that agrees well with typical
observed calcium wave velocities of ∼100 µm/s (Izu et al.,
2013).

Intracellular waves are Ca2+ release events that propagate
across the cell at a constant velocity. To have a better control of
the calcium wave and be able to study its speed and dependence
on different parameters, we have created a new geometry with 10
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FIGURE 7 | Longitudinal line scan during a single beat on the subsarcolemmal and the central region at a pacing period of 800 ms for cytosolic (Top) and SR

(Bottom) calcium. The colorbar corresponds to calcium concentration in µM.

equidistant z-lines (see Figure S2, in Supplementary Material).
The distance between two z-lines is 1.5 µm. Initially, cytosolic
calcium at the first z-line is increased and then the system let
to evolve without being forced. The wave front is monitored
and the wave front velocity calculated. This way we determine
the wave velocity as a function of different parameters. The
typical wave velocity is of the order of 200 − 300 µm/s,
that agrees well with a diffusive process within z-lines, that
would give a speed of v ∼ 2D/d ∼ 2 · 200 µm2s−1/1.5
µm ∼ 260 µm/s. This velocity increases slightly with the
calcium SR load (Figure 10). The dependence on intracellular
calcium diffusion Di is roughly linear, as one would expect
in saltatory dynamics (Dawson et al., 1999). The dependence
on SR calcium diffusion Dsr , on the other hand, is not so
pronounced.

3.3. Effect of the Cell Structure
It is interesting to compare also the calcium dynamics at the
z-lines and in the space within z-lines, where no CaRUs are
present. To this end we have performed transversal section
measurements, as shown in Figure 11, in a situation when
the cell is at rest, without external stimulation. The sarcomere
measurement corresponds to the space between the z-lines. It is
important to notice that, because of the proximity between the
measurements, there exists a correlation between the resulting
profiles. For instance, at t = 0.6 s there is a spark that starts in
the first z-line, it propagates to the sarcomere region and, then,
to the second z-line. The second thing to notice is that, due to
the presence of random Ca2+ releases associated to the position
of the RyRs, at the z-lines the calcium trace is more stochastic
(Figure 11).
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FIGURE 8 | Inward wave propagation at a pacing period of 800 ms. The colorbar corresponds to calcium concentration in µM.

FIGURE 9 | Line scans averaged over the longitudinal direction at pacing periods of 500 and 800ms. The colorbar corresponds to calcium concentration in µM.

3.4. RyR Cluster Structure and Distribution
Calcium sparks are the basic calcium release events. A good
understanding of their characteristics (size, amplitude, and
frequency) is thus very important to properly characterize the

process of CICR. Due to the fine discretization of our model,
we can observe their detailed spatio-temporal profiles. Figure 12
shows, for instance, the standard time evolution of a spark. We
have also studied the effect of the microstructure in the frequency
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FIGURE 10 | Propagation velocity as function of the diffusion constants Di and Dsr for different values of the SR calcium load. As standard values we take Di = 0.25

µm2/ms and Dsr = 0.09 µm2/ms in the zone between z-lines.

FIGURE 11 | (Top) Spatial distribution of the CaRUs. Black dots show the position of the CaRUs. The blue and red lines indicate two transversal lines within

neighboring z-lines. The green line a transversal line within those two z-lines. (Down) Local Ca2+ measured in the three transversal lines in post-rest potential

conditions. All traces have been averaged over a transversal section of 0.3 µm width.

of sparks. We have modified the microstructure, changing the
size and distribution of the CaRUs. This is particularly important
since it has been observed that the RyR distribution changes
in a particular way under conditions of AF (Macquaide et al.,
2015). We have then calculated the spark frequency under resting
conditions for different configurations defined by the Gaussian

distribution of position sites and size of the CaRUs. For the
standard size of the CaRU (36 RyRs divided equally among 4 grid
points, each one containing 9 RyRs), we have considered three
values of the dispersion in the Gaussian distribution, the standard
value of σ = 0.4 µm, and two cases with larger dispersion of
σ = 2 and 3.6 µm, see Figure 13. Besides, we also consider the
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FIGURE 12 | Spatial profiles of a Ca2+ spark.

FIGURE 13 | Different RyR distributions considered in the text. The bottom left corner of the whole cell is displayed. The red dots represent grid points with RyRs.

First: control configuration, with standard dispersion in the position of the RyRs σ = 0.4 µm. Second: increased the dispersion of σ to 2 µm. Third: σ = 3.6 µm.

Fourth: New structure configuration, where each grid point contains 9 RyRs and a CaRU is formed by 6 grid points, so that, each CaRU represents 54 RyRs. The total

number of RyRs remains constant but now, in the new structure, they are more grouped, that is, the CaRUs are bigger. The dispersion is the same as in the standard

case: σ = 0.4 µm.

effect of a change in the CaRU size, considering CaRUs with 54
RyRs, divided equally among 6 grid points, each one containing
9 RyRs (Figure 13 down right), but maintaining fixed the total
number of RyRs in the cell. Since the total number of RyRs is the
same, this means that there are larger, but less CaRUs in the cell.

In Figure 14A the average mean CaRU size is shown. To
define the size of a CaRU, we follow the results by Macquaide

et al. (2015), that showed using a computational model that
clusters closer than 150 nm triggered together functionally
as a single cluster. We thus assume that a group of clusters
belong to the same CaRU if they are separated, at most, by
0.15 µm edge to edge from each other. By definition, there
is a random component in the structure, so that, there is a
non-zero dispersion on the distance with respect to the z-line

Frontiers in Physiology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 1760

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Marchena and Echebarria Model of Calcium in Cardiac Atrial Cells

FIGURE 14 | (A) Mean area occupied by a CaRU. (B) Nearest-neighbor distance among CaRUs, measured from the center of each CaRU. (C) Longitudinal

dispersion, measured as the mean distance between the RyRs and the center of the z-line. All calculations have been averaged over 35 configurations.

FIGURE 15 | Spark frequency for the four different configurations. The spark

frequency decreases with nearest-neighbor distance but increases with the

size of the CaRU.

(Figure 14C). Finally, the mean nearest neighbor distance is
shown in Figure 14B. In the new structure, since the RyRs are
more grouped, the total number of CaRUs is smaller, such that
the mean distance among them increases.

The spark frequency is one of the most important indicators
of the stochastic activity during a post-rest potential period.
The total number of spontaneous calcium sparks has been
recorded. In order to consider the sparks, we have counted all
the calcium release events greater than a certain spatial radial
threshold of 1.6 µm. As shown in Figure 15, we observe that
the frequency decreases with the longitudinal dispersionmeaning
that the cluster-cluster communication plays an important role in
stochastic activity. On the other hand, when the CaRUs are bigger
(structure configuration) this probability increases.

4. DISCUSSION AND CONCLUSIONS

In this work we present a novel model to fully simulate a
2D longitudinal plane of a cardiac atrial cell. By modeling
the intracellular calcium dynamics and solving the spatio-
temporal Ca2+ reaction-diffusion equations, both local and
global behavior have been recorded. Because of the high spatial
resolution, the model allows us to study in detail the dynamics
in the surroundings of the CaRUs, that is, the local calcium
concentrations and the spark activity. It is also well-suited
to study the effect of changes in the spatial distribution and
form of CaRUs. In this regard, important differences have been
noticed using different spatial configurations of RyRs, showing
that the resulting calcium dynamics is highly dependent on
the spatial distribution. We observe, for instance, a decrease
in spark frequency with CaRU spatial dispersion (Figure 15).
This is correlated with an increase in CaRU nearest-neighbor
distance, suggesting that cooperativity among local release events
at nearby CaRUs could play an important role in the generation
of sparks. In fact, sparks (or macrosparks) encompassing several
CaRUs have also been observed experimentally (Kockskämper
et al., 2001). When the same total number of RyRs of the
cell are distributed in larger CaRUs, we observe an increase in
spark frequency (Figure 15). These larger CaRUs are obtained
increasing their size, but maintaining the density of RyRs, similar
to what is observed in atrial cells presenting AF (Macquaide et al.,
2015). Due to the larger number of RyRs per CaRU, an increase
in the spark probability of each individual CaRU is expected, but,
since the number of CaRUs is decreased, the increase in spark
frequency per CaRUmust be non-linear with size. In this case, the
increase in nearest-neighbor distance (Figure 14) does not result
in a decrease in spark rate. However, it should be noted that we
have measured the nearest-neighbor distance from the centers of
the CaRUs, but since their size is larger, the distance between the
edges of the CaRUs could actually be similar, or smaller. A more
detailed study of the influence of the CaRU structure in spark
frequency, the appearance of macrosparks, and the transition to
waves is deferred to a future study.

In our simulations, the opening of the L-type calcium channels
induce a calcium increase in the periphery of the cell, that hardly
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reaches the interior (Figure 6). This result agrees with what is
observed in atrial cells without t-tubules where, under basal
conditions, calcium signals are restricted to subsarcolemmal
regions (Mackenzie et al., 2004). The observed values of the
calcium transients, slightly over 1 µM at the periphery and
0.2–0.3 µM at the center are similar to what we obtain in our
simulations (Figure 6). As observed in previous works (Dawson
et al., 1999), the speed of the wave varies roughly linearly
with the diffusion coefficient in the cytosol. Although we have
not changed the distance among z-planes in this work, the
fact that this linear relation continues at low values of the
diffusion constant, seems to indicate the lack of a threshold
for propagation in the model. This contrasts with results by
Izu et al. (2006) and Hoang-Trong et al. (2015) that found a
strong dependence on wave initiation with the distance among
CaRUs. However, one should notice that, for the calculation of
wave propagation (Figure 10), we have considered an increased
strength of the L-type calcium current, probably pushing the
threshold to smaller values of the diffusion constant than we
have considered. In our simulations, calcium waves are obtained
at transients larger than in experiments and with diffusion and
RyR cluster spacing in the upper and lower ranges, respectively,
allowing for diffuse and fire behavior. However, one should
mention the difficulty to reconciliate calcium wave propagation
at low calcium concentrations with a stochastic description of
the RyR cluster (Izu et al., 2013). Recent studies suggest also
an important role of SR calcium diffusion for the propagation
of the calcium wave, through junctional SR calcium depletion
and sensitization of the RyRs (Keller et al., 2007). We find that
the dependence with diffusion in the SR is not so pronounced
(Figure 10), seemingly ruling out an important role of SR Ca
diffusion in wave propagation. This effect, however, should be
studied in more detail, as well as the role of buffers, RyR
sensitivity and the level of cytosolic calcium in calcium wave
propagation.

The present study presents several limitations. To cite some,
that we consider a two-dimensional geometry, a voltage clamp
protocol, isotropic diffusion, or immobile buffers. The main
reason to use a two-dimensional geometry was computational
cost. A generalization to three-dimensions is straight-forward
and we are implementing it to study some of the questions posed
in this article in more detail. The dynamics of transmembrane
voltage can be also readily incorporated into the model, and
could be used to study the arrhythmogenic effect of spontaneous
calcium release events, for instance. The correct characterization
of calcium diffusion in the cell represents a harder challenge. We
have considered typical values of the diffusion coefficients in the
cytosol and SR and assumed that they depend linearly on the
cytosolic/SR volume fractions, as suggested by homogenization
(Goel et al., 2006). However, diffusion (particularly in the SR) is
most likely to be anisotropic, and this could importantly affect
wave characteristics. A better knowledge of the SRmicrostructure
could help to estimate these diffusion coefficients and give a

better representation of calciumwave propagation. An important
addition would be to incorporate a (partial) network of t-tubules.
The presence of t-tubules in atrial cells has been found to
depend on the species, and there is evidence of their presence
in large mammals’ atrial cells (Richards et al., 2011). Besides
transversal, axial tubules have also been found to contribute to
rapid activation of the atrial cell (Brandenburg et al., 2016).
In heart disease, including human heart failure (HF), there is
extensive remodeling, resulting in loss and disorganization of t-
tubules (Dibb et al., 2013). Besides, there are other important
factors that may affect calcium transients. For instance, the
presence of IP3R may affect the form of Ca2+ sparks, leading
to a difference between calcium handling at the peripheral
and central regions (Mackenzie et al., 2004; Kim et al., 2010).
Another important effect, not included in our model, is the
presence of mitochondria. In venticular myocytes, there is
evidence suggesting that the mitochondrial outer membrane is
linked to t-tubules (Hayashi et al., 2009). Models of excitation-
contraction coupling, including mitochondrial calcium handling
have been developed for ventricular myocytes (Cortassa et al.,
2003, 2006; Matsuoka et al., 2004; Maack and O’rourke, 2007;
Hatano et al., 2011) and used, to study, for instance, the
influence of the distance between mitochondria and Ca2+ release
sites (Hatano et al., 2013). In the atria, the mitochondria
has been suggested to act as a buffer that prevents inward
calcium propagation (Mackenzie et al., 2004). The effect of these
structural factors on wave propagation is an important matter for
future work.
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