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Abstract 

 

The present doctoral thesis, submitted as a compendium of publications, focuses on 
designing control schemes for three-phase three-wire voltage-sourced inverters connected 
to the grid under voltage disturbances. The research recognizes the large-scale integration 
of distributed power generation systems into the network and takes advantage of this 
circumstance to investigate and develop new control strategies in order to provide better 
support to the modern power grid. 

As a first contribution, a new algorithm to maximize power delivery capability of the 
inverter has been developed and experimentally tested under voltage imbalance 
conditions, i.e., during slight/shallow and deep asymmetrical sags. The algorithm of this 
control strategy meets grid code requirements, performs active power control, limits the 
maximum current injected by the inverter, and eliminates active power oscillations. As a 
result, six different cases of current injection were identified in this work, considering 
restrictions imposed by grid codes as well as different active-power production scenarios. 

The second contribution of this research work has provided an experimental analysis of 
a low-voltage ride-through strategy whose voltage support capability had not been tested 
when voltage sags occur. This study was performed considering a scenario of multiple 
grid-connected inverters, different profiles of active power injection, and the equivalent 
grid impedance seen from the output side of each converter. 

In the third contribution has been proposed a closed-loop controller for low-power 
distributed inverters that maximizes the current injection when voltage sag occurs. The 
control algorithm has been designed to meet grid code requirements and avoid 
overvoltage in non‐faulty phases during grid faults. The controller is responsible for 
meeting coordinately several objectives and addressing the interactions that appear 
among them. 

In the last two chapters, the argument of this doctoral thesis is complemented, the 
obtained experimental results are globally analyzed, finally, the present research work is 
concluded. 
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Resumen 

 

Esta tesis doctoral, presentada en la modalidad de compendio de publicaciones en 
cumplimiento parcial de los requisitos para optar al título de Doctor en Ingeniería 
Electrónica de la Universidad Politécnica de Cataluña, se centra en el diseño de esquemas 
de control para inversores trifásicos conectados a la red eléctrica durante perturbaciones 
de voltaje. La investigación reconoce la integración a gran escala de los sistemas de 
generación distribuida en la red y aprovecha esta circunstancia para estudiar y desarrollar 
nuevas estrategias de control con el propósito de brindar un mejor soporte a la red 
eléctrica moderna. 

Como primera contribución, se desarrolló un nuevo algoritmo para maximizar la 
capacidad de suministro de potencia del inversor en condiciones de desequilibrio de 
voltaje, es decir, durante caídas asimétricas de tensión leves, poco profundas y severas. 
El algoritmo de esta estrategia de control fue diseñado para cumplir los requerimientos 
de los vigentes códigos de red (grid codes), realizar control de la potencia activa, limitar 
la corriente máxima inyectada por el inversor y eliminar las oscilaciones de la potencia 
activa instantánea. Como resultado, en esta investigación se identificaron y validaron 
experimentalmente seis casos diferentes de inyección de corriente en la red, trabajo que 
tuvo en cuenta no solo las restricciones impuestas por los códigos de red, sino también 
los diferentes escenarios de producción de potencia activa. 

La segunda contribución de este trabajo de investigación ha proporcionado el análisis 
experimental de una estrategia de inyección de corriente cuya capacidad de soporte de 
voltaje no se había probado durante fallos de red. Este estudio se realizó sobre un 
escenario de múltiples inversores conectados a la red eléctrica, utilizando diferentes 
perfiles de inyección de potencia activa y considerando, como aspecto fundamental para 
el análisis experimental, la impedancia de red equivalente vista desde el lado de salida de 
cada convertidor. 

En la tercera contribución se diseñó un controlador en lazo cerrado para inversores 
distribuidos de baja potencia que maximiza la inyección de corriente cuando se produce 
una caída de tensión. Este algoritmo de control también satisface los requerimientos de 
los actuales códigos de red en cuanto a inyección de corriente reactiva durante fallos de 
red, pero cuenta con la capacidad adicional de evitar sobretensiones en las fases no 
defectuosas. De igual forma, este controlador es responsable de acometer 
coordinadamente varios objetivos y gestionar las interacciones que aparecen entre ellos. 

En los últimos dos capítulos se complementa la unidad temática de esta tesis doctoral, se 
analizan globalmente los resultados experimentales obtenidos y, finalmente, se concluye 
el presente trabajo de investigación agregando, también, futuros campos de estudio. 

 

 



 

vi 



 

vii 

 

 

 

 

 

Acknowledgment 

 

For the achievements and all the support received during the development of his Doctoral 
Program in Electronic Engineering, the author wishes to express his gratitude in the first-
person singular: 

“I want to express my infinite gratitude to God for being my guide and putting in my way 
the right people to undertake this great challenge, to my beloved wife and my children 
for being my vital support, and to the Colombian Navy and COLFUTURO for the help 
and support provided in all moment. 

When I speak of the right people to face this wonderful experience, I refer to my thesis 
directors, Dr. José Luis García de Vicuña Muñoz de la Nava and Dr. Jaume Miret i Tomàs. 
Their knowledge, research expertise, technical skills, and creative thinking have been 
vital for achieving the proposed objectives and always marked an appropriate course to 
reach safe harbor. My eternal gratitude for your support, guidance, and encouragement 
throughout my doctoral studies. 

I also wish to express my sincere gratitude to the professors and researchers of the 
research group, Dr. Miguel Castilla Fernández, Dr. Antonio Camacho Santiago, and Dr. 
Ramón Guzmán Solà. Their great human qualities, example, and passion for research 
always fed my motivation and confidence to move forward with total determination. My 
warm thanks to Jordi Prat Tasias for welcoming my family from the first moment and for 
giving us their friendship and affection. 

I also thank all my friends and laboratory colleagues who have been part of the research 
group. Thank you very much for your friendship and good advice Juan Rey, Carlos 
Alfaro, Javier Morales, Javier Torres, Lorena Sosa, Vangelis Papaioannou, Arash 
Momeneh, and Mohammad Moradi Ghahderijani.” 

 

 

 

 

 

 

 



 

viii 



 

ix 

Contents 
 

 

Abstract iii 
Resumen v 
Acknowledgment vii 
Contents ix 
  
  
1. Introduction 1 

1.1 Motivation of this work 2 
1.2 Argument of this thesis 2 
1.3 Research objectives 6 
1.4 Context and background of the topic 6 
1.5 Thesis outline 12 
1.6 Publications 13 

  
Publications 14 
  
2. Publication I: 16 

Control Strategy for Grid-Connected Three-Phase Inverters During 
Voltage Sags to Meet Grid Codes and to Maximize Power Delivery 
Capability 

17 

2.1 Introduction 17 
2.2 Grid-connected inverters under voltage sags 18 
2.3 Proposed control objectives and control algorithm 19 
2.4 Experimental results 24 
2.5 Conclusion 30 
2.6 References 30 
2.7 Biographies 31 

  
3. Publication II: 33 

Voltage Support Experimental Analysis of a Low-Voltage Ride-Through 
Strategy Applied to Grid-Connected Distributed Inverters 

34 

3.1 Introduction 34 
3.2 Multiple grid-connected inverters under voltage sags 36 
3.3 Problem statement 38 
3.4 Experimental results 42 
3.5 Conclusions 49 
3.6 References 50 

  
4. Publication III: 55 

PI-Based Controller for Low-Power Distributed Inverters to Maximize 
Reactive Current Injection While Avoiding Over Voltage During Voltage 
Sags 

56 

4.1 Introduction 56 
4.2 Grid-connected inverters under voltage sags 57 
4.3 Formulation of control objectives and proposed control algorithm 58 
4.4 Design guidelines for the control loops 61 
4.5 Experimental results 62 
4.6 Comparison to previous control schemes 64 



 

x 

4.7 Conclusions 64 
4.8 References 65 

  
5. Analysis of the results 68 

5.1 Introduction 69 
5.2 Basic topology of a grid-connected three-phase three-wire inverter 69 
5.3 Deduction of the reference currents 70 
5.4 Voltage support concept 73 
5.5 Active and reactive power oscillations 75 
5.6 Analysis of the maximum injected current 76 
5.7 Analysis of the control algorithms 79 
5.8 Analysis of the voltage support capability 81 

  
6. Conclusions and future work 84 

6.1 Conclusions of the thesis 85 
6.2 Future work 86 

  
References 88 
  
  
  
  

 

 

 

 

 

 

 

 

 

 



 

xi 



 

1 

1 
Introduction 

 

In this Chapter, the motivation to study control of grid-connected three-phase three-wire 
voltage-sourced inverters when voltage disturbances occur is presented, and the 
objectives that justify the argument of this work are established. Finally, the background 
and structure of the thesis are addressed. 
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1.1 Motivation of this work 

 

The present research work has been developed within the Grup de Recerca de Sistemes 
Electrònics de Potència i Control at the Universitat Politècnica de Catalunya. All the 
experimental results have been obtained at the Laboratori d’Electrònica de Potència of 
the research group at the Escola Politècnica Superior d’Enginyeria de Vilanova i la 
Geltrú. The contributions of this thesis are presented as a compendium of three 
publications [1]–[3]. 

This doctoral thesis focuses its efforts on designing control strategies for three-phase 
three-wire voltage-sourced inverters (VSI) connected to the grid, set in the power-
controlled current source mode, with the primary aim of improving the behavior of the 
electrical system during voltage disturbances, particularly during voltage sags. Therefore, 
this work intends to take advantage of all capabilities of inverters and provide them with 
auxiliary control functions to ensure that these disturbances, which may appear at their 
outputs, are eliminated or significantly reduced. The adequate injection of active and 
reactive currents of both positive and negative sequences—limiting the maximum output 
current—will be the key to avoid a widespread disconnection of distributed generation 
(DG) power facilities and achieve the desired control objectives. 

Based on the works previously released by the Power and Control Electronics Systems 
Research Group [4]–[13] and by other researchers, this thesis addresses three different 
issues, each of them with a specific purpose closely related to the control objectives. 
Consequently, aspects not discussed in state of the art concerning low-voltage ride-
through (LVRT) and grid codes (GCs), voltage support, and voltage regulation during 
voltage sags constitute the primary motivation of this thesis. This perspective has focused 
the research and findings in this field. The contributions of this work help understand 
better the mechanisms that lead to improving the features of the power system and, at the 
same time, protecting inverters during grid failures. 

 

1.2 Argument of this thesis 

 

The overall aim of this dissertation is to improve the performance of the electric power 
system (EPS) when a voltage disturbance is detected at the output of a grid-connected 
inverter delivering active power. Once such perturbation is detected, the conceived 
control algorithms are launched, and the reference currents are calculated based on the 
proposed control objectives. In this respect, the body of research of this thesis consists of 
four main chapters, of which three correspond to the published journal articles and one to 
the global analysis of the obtained results. 
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1.2.1 Control strategy for grid-connected three-phase inverters during voltage sags to 
meet grid codes and to maximize power delivery capability 

 

In the first contribution [1], the maximum current of the inverter is injected following GC 
requirements to avoid the disconnection of DG power facilities during voltage sags. This 
work allows understanding a problem already studied in the literature, but providing as a 
novelty a new multi-objective control algorithm that manages the requirements and 
restrictions of a GC. The proposed algorithm contemplates six methods of current 
injection according to different active-power production scenarios and several voltage sag 
profiles. This research work has as significant precedents in the literature, among others, 
the studies carried out in [5]–[7], [10], [11], [13], and [14]–[21]. 

From this perspective, control of injected currents to avoid disconnection of distributed 
generation sources (DGSs) due to overcurrent has been proposed in [5], [15], [17]–[19]. 
However, the harmonic distortion percentage increases in [5], the active power cannot be 
injected under unbalanced faults in [15], [17], the delivered power shows undesired 
oscillations in [18], and the controller reference currents may exceed the inverter current 
capability under severe failures in [19]. 

Reactive power injection to provide voltage support when balanced and unbalanced faults 
occur has been presented in [6], [7], [10]. The approach in [6] presents a positive- and 
negative-sequence reactive current injection (RCI) protocol that provides flexible voltage 
support without requiring closed-loop control; nevertheless, a basic strategy is selected to 
generate the references of active current, in which only positive-sequence voltage is 
considered. References [7], [10] propose controllers for high-power DGSs with the 
purpose of restoring faulted phase voltages within the boundaries of continuous operation, 
but active power delivery is completely suspended. 

New algorithms considering certain specific techniques to maximize some power 
capabilities of the inverter are proposed in [11], [13], [20], [21]. The controller introduced 
in [11] provides different LVRT services, but its control algorithm is complex when 
compared with previous schemes; the algorithm implemented in [13] focuses on 
distributed photovoltaic (PV) systems and gives priority to active power delivery; the 
E.ON code is applied in [20], but the control strategy focuses on the maximum power 
point tracking (MPPT) of the boost converter for PV power systems; and two GCs are 
considered in [21], but the proposed method cannot avoid oscillations in the active power 
when only reactive current is injected into the grid. 

Different controllers are compared in [14]. Even though all of them can meet LVRT 
requirements, all the proposed control objectives cannot be achieved at the same time. 
Finally, it can be seen that in [14]–[17], [19] each control strategy determines the degree 
of power quality delivered to the network. 

Therefore, compared with the works previously described, the control strategy proposed 
as the first contribution of the thesis is relevant for any DGS since it gives priority to 
reactive power injection (as established by current GCs), performs active power control, 
limits the maximum current of the inverter, and avoids active power oscillations. 
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1.2.2 Voltage support experimental analysis of a low-voltage ride-through strategy 
applied to grid-connected distributed inverters 

 

The second contribution [2] focuses on using a control algorithm validated only for 
current injection, but in a network environment in which several inverters interact, an 
aspect hardly discussed in the literature [22]–[29]. In this work, the research focusing on 
the study of voltage support capability of inverters connected to networks with inductive 
and resistive characteristics. 

In a comprehensive literature review about scenarios of multiple inverters connected to 
the grid, many exciting works have been identified, but most of them only present 
simulation results [22]–[26], [29] and only a few studies provide experimental results 
[27], [28]. 

In this respect, the coordinated operation between a wind farm and a static synchronous 
compensator (STATCOM) in a power network is studied in [22]; a control scheme of 
allocation of reactive power to maximize resource sharing of grid-connected inverters is 
proposed in [23]; the contributions made in [24]–[26] are based on the study of a real PV 
low-voltage (LV) grid in Denmark, and these papers formulate the application of reactive 
power control as an optimization problem to mitigate the overvoltage issue existing in 
LV grids with high penetration of PV technologies; and a complete study of a grid-
connected industrial microgrid with two PV generators is carried out in [29], where 
sophisticated but complex control schemes are compared. 

On the other hand, about the works that provide experimental results, a control strategy 
of automatic mode transition for multiple inverters is proposed in [27], and a real 
laboratory setup composed of four nodes is introduced in [28]. In this last work three tests 
are conducted; in the first test, the four nodes are configured as network-feeding 
converters, that is, the converters are programmed as power controlled current sources, 
emulating four PV-generation modules. 

Hence, the second contribution of this thesis has provided an experimental analysis of an 
LVRT strategy whose voltage support capability had not been tested when voltage sags 
occur. This study was performed considering a scenario of multiple grid-connected 
inverters, different profiles of active power injection, and the equivalent grid impedance 
seen from the output side of each converter. 

This second work also motivated the search for control strategies that would allow the 
optimization of the voltage support in RL grids. The analysis of the literature showed that 
only a limited number of works [30]–[34] deal with the voltage support considering these 
networks, which contrasts with the interest of the subject since no network is purely 
inductive or purely resistive [35], [36]. Addressing the voltage support with a perspective 
of RL grids provides a much more realistic view of this subject. 
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1.2.3 PI-based controller for low-power distributed inverters to maximize reactive 
current injection while avoiding over voltage during voltage sags 

 

The third contribution [3] introduces a novel controller for low-power distributed 
inverters that maximizes the current injection when voltage sag occurs. Several positive- 
and negative-sequence current-injection protocols have been proposed in the literature to 
overcome overcurrent and overvoltage problems in one or more phases. Some of these 
current-injection protocols have been previously cited, but it is worth adding [37]–[44]. 

By drawing on the concept of overcurrent, positive- and negative-sequence RCI protocols 
have been proposed in different studies [1], [5], [11], [13], [18], [21]. The contributions 
made in [1], [13], [21], [39], [40], [43], [44] also provide additional functionalities during 
unbalanced voltage sags, among which reduction of dc-link oscillations stands out. 

The relationship between RCI and voltage support capability in mainly inductive grids 
has been widely investigated [6]–[8], [10], [12], [37], [38], [41]–[43]. In general, works 
such as those carried out in [7], [8], [10], [37], [38], [42] propose controllers based on the 
injection of positive and negative sequences to restore faulted phase voltages within their 
limits of continuous operation. Likewise, a scheme similar to that presented in [6] is 
implemented in [30] to study the effect of active power injection in resistive grids, and a 
proposal based on controlling amplitude and phase angle of negative-sequence current to 
minimize negative-sequence voltage is made in [43]. 

In the context of low-power DGSs, it is important to note that some works have addressed 
the problems of overcurrent and overvoltage separately, but that very few have tried to 
solve them simultaneously [12], [41]. However, these control methods have some 
drawbacks. In [12], the control operates in open loop, an accurate estimation of the grid 
impedance is required, and the complex mathematical calculation of the reference 
currents requires a complete active power curtailment. In [41], the injection of the 
allowable maximum reactive current is not an objective, and the method used to avoid 
overvoltage is to make the reactive current equal to zero in non-faulty phases, which also 
makes the voltage support equal to zero for slightly dropped phases. 

In this respect, the third contribution of this thesis proposes a complete control scheme 
that overcomes the limitations of the previous works. The proposed control algorithm 
meets GC requirements (LVRT and RCI) while avoiding overvoltage in non‐faulty 
phases during grid faults. Besides, a closed-loop controller is responsible for meeting 
coordinately several objectives and addressing the interactions that appear among them. 

 

1.2.4 General analysis 

 

The way in which the journal articles relate to each other and contribute to the central 
theme of the thesis is shown in Chapter 5. This chapter complements the argument of the 
present dissertation and unifies the analysis in terms of active and reactive currents 
injected into the grid. The final discussion tends towards optimal voltage support with 
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two main premises: 1) limiting inverter maximum current to its nominal value and 2) 
mitigating oscillations of instantaneous active power. 

The problem has been covered from different perspectives and network conditions, 
always ensuring that VSI systems operate safely—without exceeding their output current 
limits—and seeking delivery of active power without oscillations whenever possible 
since, in a grid-connected inverter, oscillations in the instantaneous power due to grid 
unbalance conditions can cause variation of the dc-link voltage. The control of the DC 
voltage, one of the basic tasks of the grid-side controller (see Table 1.5) [45], passes 
through the control of the power exchanged by the inverter with the grid and can be done 
either by controlling the current or controlling the AC voltage across the capacitor [46]. 

In summary, three-phase inverters in DG systems can help overcome imbalances and 
voltage anomalies that arise in the electrical network in order to guarantee the stability 
and reliability of the modern power system. 

 

1.3 Research objectives 

 

In this doctoral thesis, three research objectives have been formulated considering the 
concepts previously presented as well as the challenges and trends identified on control 
of grid-connected inverters: 

 

Objective 1. To design a new multi-objective control scheme for three-phase inverters 
connected to the grid under voltage sags with injection capability of active and reactive 
currents via positive and negative sequences. 

Objective 2. To perform a voltage-support experimental analysis of an LVRT current 
injection strategy in a complex scenario of multiple inverters connected to RL networks 
during voltage sags. 

Objective 3. To design a new closed-loop multi-objective control scheme for low-power 
distributed inverters connected to the grid under voltage sags with both active and reactive 
current injection and voltage regulation capabilities. 

 

1.4 Context and background of the topic 

 

This Section presents the background of the research work with the aim of providing a 
broad context to the information discussed throughout the doctoral thesis. Besides, it 
seeks to link the research objectives with the research topic through a logical flow of ideas 
and to help readers understand the reasons for conducting the present investigation. 
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1.4.1 Overview of power generation, transmission, and distribution system 

 

Large power plants and their long transmission lines have been the main components of 
traditional electricity infrastructure. At the generation site, bulky conventional 
transformers step the voltage up to long-distance transmission-line levels. These voltage 
values can be reduced for regional distribution using sub-transmission lines. At the main 
consumption centers, transformers located in distribution-system substations step the 
voltage down, and feeder lines carry the power to the end customers [47], [48]. 

In contrast to the conventional power distribution system with unidirectional power flow, 
environmental problems of recent decades have promoted the use of clean energies 
throughout distributed generation systems (DGSs), which are characterized by bringing 
generation centers closer to the consumption ones [49]. This new scenario involves 
environmental and energy improvements since it stimulates the development of 
renewable energies and reduces costs and losses [50]. 

The current and complex multi-source system has active functions and bidirectional 
power flow capability. This new scenario allows the grid to guarantee not only load-
management but also demand-management, as well as the use of electricity market prices 
and forecast of energy to optimize the distribution system entirely [49]. 

 

1.4.2 Distributed generation and connection to the network 

 

Some of the main definitions that can be found in the literature on the current dispersed 
or distributed generation model are collected and compared in [51]. However, it could be 
said that DG is a small-scale generation and that its technologies have already reached a 
stage of development that allows their large-scale implementation into the existing power 
system [52]. 

Table 1.1 
DG technologies and their categorization as renewable and nonrenewable 

Technology Renewable Nonrenewable 
Solar, photovoltaic or thermal x  
Wind x  
Geothermal x  
Ocean x  
Internal combustion engine  x 
Combined cycle  x 
Combustion turbine  x 
Microturbines  x 
Fuel cell  x 

It should be noted that DG can include synchronous and induction generators, internal 
combustion engines, gas microturbines, wind turbines, fuel cells, solar photovoltaics [53], 
etc. As can be seen from Table 1.1, these technologies can be categorized as renewable 
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and nonrenewable [54]. If some DG technologies were fully implemented, they could 
worsen current pollution problems. Renewable energy (RE) is obtained from virtually 
inexhaustible natural sources, either because of the immense amount of energy they 
contain or because they are capable of regenerating by natural means [55]. It comprises 
those methods of obtaining energy that can operate indefinitely without emitting 
greenhouse gases, essential not only for energy efficiency but also for decarbonization, 
as shown in Table 1.2 [56]. 

Table 1.2 
Reducing carbon dioxide emissions – “decarbonization” 

1. Renewable energies (REs) 
 Hydropower generation 
  Hydraulic turbines (rivers) 
  Marine energy—wave power and tidal power (oceans) 
 
 Solar energy 
  Solar thermal power generation 
  Solar photovoltaic (PV) electricity 
 
 Wind power 
  Wind turbines 
 
 Geothermal power generation 
 
 Heat pump (HP) systems 
2. Nuclear generation 
3. CO2 (carbon) capture and storage (CCS) 

At present, many factors could lead to new types of agreements and changes in the electric 
power industry. Among the most important ones are the following: Increase in the number 
of renewable energy sources connected to the utility grid together with advances in energy 
storage and control systems, and potential government incentive programs. The above 
mentioned, as a whole, will surely attract the attention of other sectors that have not yet 
used electricity, and this influence would have a positive impact on the environment, 
reflected in an additional reduction of CO2. 

 

1.4.3 Grid codes 

 

Although the large-scale integration of DGSs can negatively impact the stability and 
reliability of power system, mainly during grid faults, it also provides meaningful 
opportunities to develop new control strategies with multiple features to better support 
the modern network. Countries with a high penetration level of inverter-based distributed 
generators operating in grid-connected mode are defining, updating and redefining their 
network interconnection requirements [57]–[66]. These specifications indicate fault 
profiles that these systems must support and procedures they must follow [67]–[73]. 
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In compliance with these requirements, DG power facilities must remain connected to the 
network according to a voltage against time curve at the connection point during voltage 
sags. This capability is known as low-voltage ride-through and can be provided by each 
inverter injecting active and reactive powers into the network according to a grid code to 
support the power system and reduce the risk of voltage collapse during grid faults. These 
specifications are being reflected in the most recent GCs to take full advantage of the 
benefits of modern electric power grids but under appropriate safety and reliability 
conditions. 

 

1.4.4 Voltage disturbances 

 

Power quality refers to a wide variety of electromagnetic phenomena that characterize the 
voltage and current signals at a given time and place on the power system [74]. The 
increasing use of electronic equipment that may cause electromagnetic disturbances or 
that may be sensitive to these phenomena has increased the interest in this subject during 
the last years [75]. Electromagnetic phenomena are classified by the IEC into several 
groups as shown in Table 1.3 [74]. 

Table 1.3 
Principal phenomena causing electromagnetic disturbances as classified by the IEC [76] 

Group Examples 

Conducted low-frequency phenomena 

Harmonics, interharmonics 
Signal systems (power line carrier) 
Voltage fluctuations 
Voltage sags and interruptions 
Voltage imbalance 
Power-frequency variations 
Induced low-frequency voltages 
DC in AC networks 

Radiated low-frequency phenomena Magnetic fields 
Electric fields 

Conducted high-frequency phenomena 
Induced continuous wave (CW) voltages/currents 
Unidirectional transients 
Oscillatory transients 

Radiated high-frequency phenomena 

Magnetic fields 
Electric fields 
Electromagnetic fields 
Continuous waves 
Transients 

Electrostatic discharge phenomena (ESD)  
Nuclear electromagnetic pulse (NEMP)  

As indicated in the IEEE Std 1159™-2009 [74], short-duration voltage variations are 
practically caused by fault conditions, energization of large loads, or intermittent loose 
connections in power wiring. Depending on the fault location and the system conditions, 
the fault can cause temporary voltage rises, voltage sags, or a complete loss of voltage. 
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The impact on the voltage during the fault condition, which can be close to or remote 
from the point of interest, is a short duration variation. 

Voltage sags are the main power quality concern for process industries as well as for most 
utilities and their customers [77], [78]. From [79], [80], it can be said that a voltage sag 
is a temporary reduction of the root-mean-square (rms) voltage at a point in the electrical 
system below a threshold. Voltage sags are generally caused by faults that typically occur 
within the customer facility or on the utility transmission and distribution systems. 
Starting large loads can also cause voltage sags that last several seconds. However, fault-
induced sags are much more severe than sags due to the starting of large loads. Equipment 

Table 1.4 
Categories and typical characteristics of power system electromagnetic phenomena [74] 

Categories Typical spectral 
content 

Typical 
duration 

Typical voltage 
magnitude 

Transients    
    Impulsive    
        Nanosecond 5 ns rise < 50 ns  
        Microsecond 1 μs rise 50 ns – 1 ms  
        Millisecond 0.1 ms rise > 1 ms  
    Oscillatory    
        Low frequency < 5 kHz 0.3–50 ms 0–4 p.u. 
        Medium frequency 5–500 kHz 20 μs 0–8 p.u. 
        High frequency 0.5–5 MHz 5 μs 0–4 p.u. 
Short-duration rms variations    
    Instantaneous    
        Sag  0.5–30 cycles 0.1–0.9 p.u. 
        Swell  0.5–30 cycles 1.1–1.8 p.u. 
    Momentary    
        Interruption  0.5 cycles – 3 s < 0.1 p.u. 
        Sag  30 cycles – 3 s 0.1–0.9 p.u. 
        Swell  30 cycles – 3 s 1.1–1.4 p.u. 
    Temporary    
        Interruption  > 3 s – 1 min < 0.1 p.u. 
        Sag  > 3 s – 1 min 0.1–0.9 p.u. 
        Swell  > 3 s – 1 min 1.1–1.2 p.u. 
Long-duration rms variations    
    Interruption, sustained  > 1 min 0.0 p.u. 
    Undervoltages  > 1 min 0.8–0.9 p.u. 
    Overvoltages  > 1 min 1.1–1.2 p.u. 
    Current overload  > 1 min  
Imbalance    
    Voltage  steady state 0.5–2% 
    Current  steady state 1.0–30% 
Waveform distortion    
    DC offset  steady state 0–0.1% 
    Harmonics 0–9 kHz steady state 0–20% 
    Interharmonics 0–9 kHz steady state 0–2% 
    Notching  steady state  
    Noise broadband steady state 0–1% 
Voltage fluctuations < 25 Hz intermittent 0.1–7% 
Power frequency variations  < 10 s ± 0.10 Hz 
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failure, lightning, tree limbs, and animal contact have been identified as the primary 
reasons for fault-induced voltage sags [78]. 

Table 1.4, extracted from the IEEE Std 1159™-2009 [74], provides additional 
information regarding typical spectral content, duration, and magnitude for each category 
of electromagnetic phenomena used for power quality community. Table 1.4 allows 
seeing a big picture of the different electromagnetic phenomena to identify the place 
occupied by the voltage sags. All categories of the voltage sags have the same range of 
voltage magnitude [in per unit (p.u.)], a decrease in rms voltage to typical values between 
0.1 p.u. and 0.9 p.u., but the typical duration of the sags is different in each category. 

 

1.4.5 Inverters and static power converters 

 

Power electronic (or static) converter is defined in [81] as a multiport circuit that is 
composed of electronic switches, and that can also include auxiliary components such as 
capacitors, inductors, and transformers. The primary function of a converter is to facilitate 
the exchange of energy between two or more subsystems based on pre-specified 
performance requirements. 

The range of applications for power electronics converters is so extensive that it goes 
from low power residential and traditional applications to high power transmission lines, 
but emerging applications on RE systems have generated more significant interest [49]. 

As explained in the IEEE Std 1547.2™-2008 [82], distributed resources (DRs) or 
distributed energy resources offer a variety of possibilities for energy conversion and 
electric power generation. Several energy sources, fuels, and converters are used to 
provide electricity through different technologies mentioned in Table 1.1. Three types of 
electrical converters are considered in the IEEE 1547 series of standards: synchronous 
generators, asynchronous generators, and static or electronic inverters. Static inverters 
can be supplied by DC generation/storage sources or by an AC generation source and an 
AC/DC converter. Their fundamental role in DR applications is to convert DC or non-
synchronous AC electricity from a prime mover energy source into a synchronous AC 
system of voltages that can be efficiently interconnected with electric power systems 
(EPSs). 

The importance of the control in distributed power generation systems (DPGSs) is 
highlighted in [45], where the authors divide the control tasks into two parts, as can be 
seen in Table 1.5. 

It is essential to review the grid parameters, among them maximum voltage harmonic 
levels, maximum voltage unbalance, maximum voltage amplitude variations, maximum 
frequency variations, and voltage sag profile are of interest for designing the control of 
PV inverters [83]. Requirements for wind turbines [84] include not only behavior during 
normal operation, such as control of frequency and voltage deviations, active power 
control, and reactive power control, but also during grid disturbances, such as voltage 
ride-through (VRT) and RCI. 
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1.5 Thesis outline 

 

The present doctoral thesis has been organized following the contributions published in 
specialized journals in this field of knowledge. The sequence of chapters, after the 
Introduction, is as detailed below: 

 

Chapter 1 deals with the Introduction of the present doctoral thesis. 

Chapter 2 is devoted to a control strategy for grid-connected three-phase inverters during 
voltage sags, which meets GCs and maximizes power delivery capabilities. 

Chapter 3 provides an experimental analysis of an LVRT strategy for multiple grid-
connected inverters in order to help support the grid during voltage sags. 

Chapter 4 is dedicated to a PI-based control strategy for low-power distributed inverters 
that meets GCs, maximizes reactive current injection, and avoids overvoltage during 
voltage sags. 

Chapter 5 addresses the global discussion of the results obtained during the development 
of the thesis. 

Chapter 6 concludes the doctoral thesis and raises new research expectations that the 
present work suggests. 

 

 

Table 1.5 
Control tasks in DPGSs 

Input-side controller Grid-side controller 
M

ai
n 

pr
op
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ty

 

To extract the maximum power from 
the input source. 

B
as

ic
 ta

sk
s 

• Control of active power generated to 
the grid. 

• Control of reactive power transfer 
between the DPGS and the grid. 

• Control of dc-link voltage. 
• Ensure high quality of the injected 

power. 
• Grid synchronization. 

B
as

ic
 ta

sk
 

To protect the input-side converter. 

A
nc

ill
ar

y 
se

rv
ic

es
 • Local voltage and frequency 

regulation. 
• Voltage harmonic compensation. 
• Active filtering. 
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Abstract: In recent decades, different control strategies have been designed for the increasing
integration of distributed generation systems. These systems, most of them based on renewable
energies, use electronic converters to exchange power with the grid. Capabilities such as low-voltage
ride-through and reactive current injection have been experimentally explored and reported in many
research papers with a single inverter; however, these capabilities have not been examined in depth
in a scenario with multiple inverters connected to the grid. Only few simulation works that include
certain methods of reactive power control to solve overvoltage issues in low voltage grids can be
found in the literature. Therefore, the overall objective of the work presented in this paper is to
provide an experimental analysis of a low-voltage ride-through strategy applied to distributed power
generation systems to help support the grid during voltage sags. The amount of reactive power will
depend on the capability of each inverter and the amount of generated active power. The obtained
experimental results demonstrate that, depending on the configuration of distributed generation,
diverse inverters could have different control strategies. In the same way, the discussion of these
results shows that the present object of study is of great interest for future research.

Keywords: active and reactive current injection; distributed generation; low-voltage ride-through;
multiple inverters; voltage sags; voltage support

1. Introduction

It is well known that electric power is fundamental for sustainable development because it is
necessary for economic growth and because this same necessity stimulates new alternatives concerning
renewable and clean energies [1]. The world’s leading countries in the development of less polluting
energy solutions are favoring the growth and expansion of distributed power generation systems
(DPGSs) based on renewable sources [2]. Therefore, considering the wide-scale penetration of these
systems in the distributed grid, power system operators have focused their attention on the challenge
of maintaining reliability and stability of the electrical network by implementing and updating rigorous
grid codes (GCs). These GCs are intended to limit the disconnection of these DPGSs under grid faults
as much as possible and avoid loss of power generation that could yield to power outages [3–6].

Grid fault conditions can generate short-duration voltage variations—a decrease in rms voltages,
typically between 0.1 p.u. and 0.9 p.u., for a period of 0.5 cycles to 1 min—one of the primary power
quality concern for process industries [7,8]. Consequently, during grid faults, GCs demand that the
distributed generation (DG) systems remain connected to the grid, support the voltage recovery,
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and resume the active power feed-in after the fault clearance [9–11]. As a result of the increasing
renewable power penetration level and the considerations mentioned above, latest GCs and power
grid operators require low-voltage ride-through (LVRT) capability. This requirement means that
DPGSs above a specific power range should stay connected during grid faults according to the
corresponding time–voltage curve. This function shows the voltage disturbance area at the grid
connection point that must be withstood by the facility. A capability that must not only be verified, but
also certificated [12,13].

During the last years, numerous studies and investigations on different fault ride-through (FRT)
control strategies for grid-connected inverters have been published in the literature, all intended to
improve the behavior of the inverter during grid faults [14–27]. However, most of these strategies
were presented for a single inverter connected to the grid. Nevertheless, some works address the
issue of the operation of multiple inverter-based renewable distributed generators [28–34]. In the
literature [28], the coordinated operation between a wind farm and a static synchronous compensator
(STATCOM) in a power network is studied. This work also refers to an improved system that could
use the inverter capability of a solar farm as a STATCOM device at night. However, despite making a
good approximation and presenting an interesting proposal, the solution is not widely developed and
no experimental results are presented. A control scheme of allocation of reactive power to maximize
resource sharing of grid-connected inverters is proposed in the literature [29]. The studied power
network considers several grid-connected inverters, but its topology includes both a point of common
coupling (PCC) connected to the utility grid or a co-gen plant generator and a communication scheme
that makes this control scheme appropriate for smart grids and microgrids. This work also presents
only simulation results.

The contributions made in the works of [30–32] are based on the study of a real photovoltaic
(PV) low-voltage (LV) grid located in Brædstrup, a village in the region of Østjylland, Denmark [35].
These papers formulate the application of reactive power control as an optimization problem to
mitigate the overvoltage problem existing in LV grids with high penetration of PV technologies. In [31]
a comparative analysis of five reactive power compensation techniques in these networks has also
been presented. These works consider communication schemes and present simulation results.

In the literature [33], a control strategy of automatic mode transition for multiple inverters is
proposed. When the grid is available, the inverters operate in current-control mode by injecting power
into the network. When a grid failure occurs, all inverters automatically switch to the drop-control
mode to achieve proportional power sharing and return to the current-control mode when network
availability is restored. Nevertheless, the system under consideration—with a typical microgrid
configuration—consists of two single-phase inverters, local loads, a bidirectional static transfer
switch, and a synchronization switch. A hardware and software description of a real laboratory
setup composed of four nodes is done in the literature [34]. This experimental network can emulate the
two main scenarios of a dispersed generation network: (1) distributed generation sources connected to
the grid and (2) microgrids in islanded mode. However, only in the first of the three tests, the four
nodes work as network-feeding converters without additional comparisons with other profiles of
generated power. Finally, a complete work of comparing sophisticated but complex control schemes is
carried out in the literature [36]; nonetheless, the study for a grid-connected industrial microgrid with
two PV generators is only validated with MATLAB simulations.

Considering this topic not only attractive but also absent in the literature, as far as authors’
knowledge refers, this paper intends to make a first experimental approach to the injection of power by
several DG systems connected to the grid (multiple inverters) when voltage sags occur. Consequently,
a specific experimental platform with different combinations of impedance is used to analyze how a
conventional current generator acts. This analysis will highlight the advantages and disadvantages
of these injection procedures. Unlike the work of [37], the inverters do not make up a microgrid in
this study.
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The research objectives of this study, which are different from the control objectives of the
strategies that can be implemented in the controllers, are grouped or summarized basically into two
primary goals:

• To extend, in a scenario of multiple grid-connected inverters, the use or application of LVRT control
strategy [25], whose voltage support capability has not been tested when voltage sags occur.

• To carry out an analysis of the experimental results of the power injection profiles (PIPs) as a
function of the generated power (PG) and the equivalent impedance seen from the output side of
each converter.

This paper has been structured as follows. Section 2 describes the operation of multiple grid-
connected inverters under voltage sags. The problem statement is presented in Section 3. The experimental
results and a concise discussion on the behavior of the studied parameters are shown in Section 4.
Finally, Section 5 presents the conclusions of the paper and briefly describes the research guidelines for
future works.

2. Multiple Grid-Connected Inverters under Voltage Sags

This section deals with the description and characterization of the experimental distributed
generation network connected to the grid under voltage sags. Also, the primary GC requirements
during these disturbances are described.

2.1. Experimental Network Configuration

Figure 1 shows the implemented experimental network. A three-phase distributed generation
network composed of four voltage-sourced inverters (VSIs) and one programmable AC power
source, which emulates the utility grid, has been implemented in the power network laboratory
(PNL). Details on the design and implementation of the experimental test bench can be found in the
literature [34]. Each generation node (DPGS) is composed of a three-phase inverter with an output
LC filter connected to the network through a wye-delta transformer. A DC power source feeds each
inverter. The value of PG is one of the inputs of each controller that will help determine the amount of
injected power. The control block is responsible for driving the inverter switches to deliver power into
the grid, giving priority to the active power according to the control algorithm of the strategy under
test, but also to inject reactive power when necessary. The local voltages (v1 to v4) and the inverter
currents (i1 to i4) are measured instantaneously to accomplish this task.
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The blocks Z1–2, Z2–3, and Z3–4 model the impedances of the lines connecting the distributed/
dispersed nodes and the grid. The wye-delta transformer introduces the equivalent LCL output
inductance LT, as well as some parasitic resistance (see Table 1). The equivalent impedance of the
transformer is used in the testbed to emulate lines with non-negligible resistive components.

Table 1. Line impedances.

Quantity Acronym Value

transformer equivalent inductances 1 and 2 LT1,2 1.0 mH
transformer equivalent resistances 1 and 2 RT1,2 0.5 Ω
transformer equivalent inductances 3 and 4 LT3,4 0.6 mH
transformer equivalent resistances 3 and 4 RT3,4 1.13 Ω
line inductance between 1 and 2 L1–2 2.0 mH
line inductance between 2 and 3 L2–3 0.8 mH
line inductance between 3 and 4 L3–4 0.8 mH

As the equivalent impedance seen by each VSI is of particular interest, these data are shown
in Table 2.

Table 2. Equivalent impedance seen from the output of the voltage-sourced inverters (VSIs).
DPGS—distributed power generation system.

DPGS Req (Ω) Leq (mH) Zeq (Ω) Angle θeq (deg.) |Zeq| (Ω)

1 0.50 4.60 0.50 + 1.73j 73.92◦ 1.80
2 0.50 2.60 0.50 + 0.98j 62.97◦ 1.10
3 1.13 1.40 1.13 + 0.53j 25.04◦ 1.25
4 1.13 0.60 1.13 + 0.23j 11.32◦ 1.15

The equivalent impedance seen from the output side of each generator has been calculated by
appropriately adding the impedance of lines, transformers, and loads.

2.2. Voltage Sag Characterization

The interaction between the power inverter and the network under balanced and unbalanced
faults is a critical issue. However, the normal operation of the grid-connected inverters can be severely
affected when unbalanced grid failures occur, because these faults generate negative-sequence voltages
in the network [38,39]. The study of these voltage disturbances shows that the occurrence percentage
of balanced faults (symmetrical three-phase faults) is very low, close to 3–2% [40].

The method of symmetrical components permits to extend the per phase analysis to systems
with unbalanced loads or faults and provides a practical tool for understanding the operation of a
three-phase system during unbalanced conditions [41–47]. However, as stated in the work of [39], “the
interaction of the symmetrical components produces active and reactive power oscillations (p̃ and q̃) at
the output of the converter, which should be carefully controlled”.

During voltage sags, the instantaneous phase voltages (v1 to v4) at the output of each node (DPGS)
can be described as the sum of their positive- and negative-symmetric sequences [38]. Applying
Clarke’s transformation, these local voltages are expressed in the stationary reference frame (SRF) as

vα = v+α + v−α = V+ cos
(
ω t + φ+

)
+ V− cos

(
ω t + φ−

)
(1)

vβ = v+β + v−β = V+ sin
(
ω t + φ+

)
−V− sin

(
ω t + φ−

)
(2)
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where vα and vβ are the instantaneous voltages expressed in the SRF, vα
+ and vβ

+ are the
positive-sequence voltages, vα

– and vβ
– are the negative ones, and ω is the grid angular frequency.

V+ and V– are the amplitudes of the positive- and negative-sequence voltages, respectively,

V+ =

√(
v+α
)2

+
(

v+β
)2

(3)

V− =

√(
v−α
)2

+
(

v−β
)2

(4)

and φ is the angle between the positive and negative sequences.

φ = φ+ − φ− = cos−1

 (v+α v−α )−
(

v+β v−β
)

V+ V−

 (5)

Therefore, any voltage sag can be characterized by Equations (3)–(5).
Similarly, with the values of the voltage sequence amplitudes (V+ and V–), the effective voltage

(Ve) can be calculated as indicated in the IEEE Std 1459™-2010 [48]:

Ve =

√
(V+)2 + (V−)2 (6)

This collective value concept, introduced by Buchholz to represent the voltages and currents
collectively in a multiphase system [49], will be used to compare the voltage support responses
obtained in the experimental results.

2.3. Requirements under Voltage Sags

In the absence of grid failures, each DPGS delivers its PG into the grid while maintaining amplitude
control of the injected currents. During voltage disturbances, GCs require additional services to
maintain the integrity of the grid and increase its reliability. As a rule, under grid disturbances,
wind GCs primarily require LVRT and RCI capabilities. Other GCs also require both active and
reactive power injection to simultaneously feed and support the grid [10,11]. GCs for PV systems only
require active power injection, although reactive power injection is a mandatory capability in some
countries [50].

3. Problem Statement

This section presents the description of the problem that includes the concept of voltage support,
a comparative analysis of different control strategies for generating reference currents in grid-connected
converters, the formulation of the problem, and a brief explanation of the chosen control scheme.

3.1. Voltage Support Concept

The experiments carried out in this study take into account the complex impedance [51] of the
lines. This fact allows addressing the voltage support concept, whose primary objective is to regulate
the phase voltages within the limits established in GCs for continuous operation [18]. In this work,
these voltages are not regulated, but experimental data are obtained to analyze the changes in local
voltages due to the injected currents. As a result of the voltage support capability of each DPGS, the
amplitudes of the positive- and negative-sequence voltages for each node, Vi

+ and Vi
− (for i = 1 to 4),

can be expressed as a function of the equivalent grid voltage, the equivalent grid impedance (Zeqi),
and the injected current amplitudes as [52]

V+
i = Reqi I+pi + ωLeqi I+qi +

√(
V+

gi

)2
−
(

ωLeqi I+pi − Reqi I+qi

)2
(7)
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V−i = Reqi I−pi −ωLeqi I−qi +

√(
V−gi

)2
−
(

ωLeqi I−pi + Reqi I−qi

)2
(8)

where Ipi
+, Ipi

−, Iqi
+, and Iqi

− are the current amplitudes associated with the active and reactive powers
and Vgi

+ and Vgi
− are the amplitudes of the positive- and negative-sequence voltages at the grid

side, respectively. Notice that Vg is not available in a practical application. Indeed, Vg is never used
in the control algorithm (see Figure 2). Each local voltage vector vi is sensed at the output of its
corresponding inverter and, therefore, these are the voltages used in the control algorithm.Energies 2018, 11, x FOR PEER REVIEW  8 of 20 
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and can be expressed as [59] 
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where the current amplitudes (Ip+, Ip−, Iq+ and Iq−) are formulated based on the following relations: 
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Details on the derivation of the reference powers (P* and Q*) can be found in the literature [25]. 
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Figure 2. Block diagram of the control scheme.

In both Equations (7) and (8), the second term inside the radical is negligible; therefore, each
square root becomes Vgi

+ and Vgi
−, respectively. As shown in Equation (7), the amplitudes of the

positive-sequence currents (Ipi
+ and Iqi

+) increase the amplitude of the positive-sequence voltage
(Vi

+). Now, it can be seen from Equation (8) that the product Reqi Ipi
− must be negative to reduce the

amplitude of the negative-sequence voltage (Vi
−). From these two equations, it can be said that the

voltage support solution is related to the different amplitudes of injected currents, but it is closely
linked to the equivalent grid impedance.

When analyzing the voltage support effects, thanks to the use of symmetric sequences, the
inverters can be viewed as current sources [53] that inject active and reactive currents into the grid via
positive and negative sequences.

3.2. Comparison of the Principal Strategies for Generating Reference Currents in Grid-Connected Inverters

Different strategies and methods for generating the controller reference currents of a DG
system—to deliver into the network active and reactive powers (P and Q), under unbalanced grid
voltage conditions—can be found in the literature [19,39,54].

In this section, an injection method to implement a multi-inverter system with voltage support
performances is chosen. The analysis that is carried out in this section compares different control
strategies to identify their advantages and disadvantages. Active power oscillations, which can cause
system malfunction; total harmonic distortion (THD), which can affect the energy quality generated
by the inverter; and maximum current (Imax), which could be higher than the inverter rated current
(Irated) [19], are fundamental aspects to consider.

Based on the works of [54], the fundamental control strategies used to generate reference currents
and their characteristics are summarized in Table 3, in which it is possible to see which have a
better performance.
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Table 3. Comparison of different strategies for generating reference currents. THD—total harmonic
distortion; FBSS—flexible balance of symmetric sequences.

Strategy Power Behavior THD Imax

IARC [39] p̃ ≈ 0 and q̃ ≈ 0
negligible oscillations high high

AARC [39] when Q = 0⇒ p̃ 6= 0
when P = 0⇒ q̃ 6= 0 low low

BPSC [39,55] p̃ 6= 0 and q̃ 6= 0
lower oscillations low low

ICPS [55] if Q 6= 0⇒ p̃ 6= 0
if P 6= 0⇒ q̃ 6= 0 medium high

PNSC [39,55] when P 6= 0 and Q = 0⇒ q̃ 6= 0
when P = 0 and Q 6= 0⇒ p̃ 6= 0 low high

ZSCC [56] p̃ = 0 and q̃ = 0
four-wire or six-wire systems low very high

FPNSC [39] p̃ 6= 0 and q̃ 6= 0
power oscillations low properly controllable

FBSS (L grids) [16,25] p̃ = 0 and q̃ 6= 0
q̃ = 0 if P = 0 (special case) low properly controllable

FBSS (R grids) [57] P 6= 0, Q = 0, and q̃ 6= 0
p̃ = 0 (special configuration) low properly controllable

VSS (RL grids) [52,53] p̃ 6= 0 and q̃ 6= 0 low properly controllable

It can be seen from the data in Table 3 that only few control strategies, IARC [39], ZSCC [56], and
FBSS [16,25,57], avoid active power oscillations during voltage sags, which is especially important in
PV applications. The set of reference currents used by the authors of [25] is based on the work of [16],
a voltage support strategy that introduces the so-called “flexible balance of symmetric sequences
(FBSS)”. Therefore, different control objectives will be achieved by tuning the control parameters to
balance the positive- and negative-sequence voltages. One of those objectives is the cancellation of
active power oscillations (p̃), as these oscillations negatively affect the dc-link voltage and can provoke
an inverter malfunction.

Regarding the reduction of the maximum current, BPSC [39,55], AARC [39], FPNSC [39],
FBSS [16,25,57], and VSS [52,53] have the best performances, while ZSCC [56] is the least favorable.
As for the harmonic distortion, the worst case is found in IARC [39], followed by ICPS [55]. The other
strategies have low THD. In terms of the control complexity, it is also important to note that
BPSC [39,55] and FBSS [16,25,57] are less complex than the others.

3.3. Problem Formulation

A certain impedance must be considered between the inverter connection point and the utility
grid to test the voltage support capability. When providing voltage support to the grid during voltage
sags, changes in the local voltage (vi) due to the injected current (ii) must be estimated. All the currents
(i1 to i4) injected into the network will produce effects on the inverter output voltages (v1 to v4) due to
the equivalent grid impedance Zeqi [52].

Mainly, the control strategy [25] has been chosen to evaluate its effect on voltage support and
because it has the following characteristics:

1. Capability to deliver both P and Q into the grid.
2. Current injection by positive and negative sequences (Ip

+, Iq
+, Ip

− and Iq
−).

3. Low THD.
4. Maximum current limitation.
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5. Mitigation of active power oscillations.
6. Reduced complexity (control algorithm with a set of reduced instructions).

This control strategy has not been studied for voltage support and it was validated only for
current injection considering a single inverter. As a contribution, the voltage support effects in the case
of multi-inverter systems are analyzed in this work.

3.4. Control Scheme

The general procedure of this control strategy is depicted in Figure 2. Firstly, the voltage sag
is detected. Secondly, the positive- and negative-voltage sequences (vα

+, vβ
+ and vα

−, vβ
−) are

obtained from the sequence extractor [58], and then the amplitudes (V+, V−) are calculated by
Equations (3) and (4). Afterwards, the power references (P*, Q*) are calculated based on the sag
characteristics (V+, V− and φ), the generated power (PG), and the rated current (Irated).

Note that the block of reference powers comprises the control algorithm. The maximum allowable
active power (Pmax) is always calculated and compared with PG to protect the inverter. If PG is higher
than Pmax, the controller applies an active power curtailment (APC) and sets P* = Pmax. During voltage
sags, the control algorithm works in the same way and gives priority to the delivery of active power,
but now each inverter is forced to inject Irated because of the fault conditions. If PG is less than Pmax,
then Irated is not exceeded and, therefore, a determined amount of reactive power must be injected to
reach Imax. Finally, the current references (iα*, iβ*) are computed.

The objective of this strategy is to inject the rated current of the inverter and avoid oscillations
of the active power when a voltage sag occurs. For this purpose, the control algorithm meets
five conditions:

1. To prioritize injection of active power.
2. To inject the rated current.
3. To apply APC when PG > Pmax.
4. To inject reactive power into the grid when PG < Pmax to reach Irated.
5. To avoid active power oscillations (p̃ = 0).

Therefore, the reference currents can be written as

i∗α =
2
3

(
v+α − v−α

(V+)2 − (V−)2 P∗ +
v+β + v−β

(V+)2 + (V−)2 Q∗
)

(9)

i∗β =
2
3

(
v+β − v−β

(V+)2 − (V−)2 P∗ − v+α + v−α
(V+)2 + (V−)2 Q∗

)
(10)

and can be expressed as [59]

i∗α = I+p

(
v+α
V+

)
− I−p

(
v−α
V−

)
+ I+q

(
v+β
V+

)
+ I−q

(
v−β
V−

)
(11)

i∗β = I+p

(
v+β
V+

)
− I−p

(
v−β
V−

)
− I+q

(
v+α
V+

)
− I−q

(
v−α
V−

)
(12)

where the current amplitudes (Ip
+, Ip

−, Iq
+ and Iq

−) are formulated based on the following relations:

I+p = 2
3

V+

(V+)2−(V−)2 P∗ , I−p = 2
3

V−

(V+)2−(V−)2 P∗ (13)

I+q = 2
3

V+

(V+)2+(V−)2 Q∗ , I−q = 2
3

V−

(V+)2+(V−)2 Q∗ (14)



Energies 2018, 11, 1949 9 of 20

Details on the derivation of the reference powers (P* and Q*) can be found in the literature [25].

4. Experimental Results

Only the injection of P and Q into the grid was evaluated in the literature [25], but the effect
that its control algorithm has on the voltage support was not considered. Hence, this effect on local
voltages during a voltage sag will be the major focus of the present study, but in a more complex
scenario of multiple grid-connected inverters. To this end, five experiments were performed using an
experimental prototype (at the PNL) that emulates the operation of multiple renewable distributed
generators based on inverters. Table 4 shows the values of the system parameter.

Table 4. System parameters.

Quantity Acronym Value

grid voltage V 110.0 V rms
grid frequency f 60.0 Hz
rated power Sb 1.5 kVA
rated current Irated 5.0 A
LC filter inductances Lf 5.0 mH
LC filter capacitances Cf 1.5 µF
LC filter damping resistors Rd 68.0 Ω
Common resistive load RL 22.0 Ω
Local resistive loads RL1, RL3 88.0 Ω
sampling/switching frequency fs 10.0 kHz

Different profiles of power injection have been tested—according to the power generated by each
DPGS—using the concept of the network topology presented in Figure 1. All values of generated
power (PG), reference active power (P*), and reference reactive power (Q*), are consolidated in Table 5.

Table 5. Power injection profiles. PG—generated power; P*—reference active power; Q*—reference
reactive power.

Power DPGS Profile 1 Profile 2 Profile 3 Profile 4 Profile 5

PG (W)

1 325.0 100.0 600.0 100.0 1000.0
2 325.0 300.0 300.0 100.0 100.0
3 325.0 300.0 300.0 100.0 100.0
4 325.0 600.0 100.0 1000.0 100.0

P* (W)

1 325.0 100.0 600.0 100.0 817.8
2 325.0 300.0 300.0 100.0 100.0
3 325.0 300.0 300.0 100.0 100.0
4 325.0 600.0 100.0 780.9 100.0

Q* (VAr)

1 898.0 935.3 669.5 937.2 0.0
2 848.8 842.7 846.7 903.0 881.3
3 800.2 801.5 810.2 856.2 846.5
4 786.6 541.7 851.7 0.0 841.7

4.1. Operation of Multiple Grid-Connected Inverters

A balanced profile of power injection has been chosen to explain the experimental results obtained
regarding the operation of multiple grid-connected inverters. In this profile, all the DPGSs have the
same generated power (PGi = 325.0 W), and almost identical values of Q* are obtained. Under these
circumstances, it is possible to see the effect of the equivalent impedance on the voltage support
capability at each node. Later it will be verified for this case that P* = PG.

Figure 3 shows the phase voltages of each DPGS, in which a 0.19-s voltage sag can be observed.
A voltage sag threshold of 90% of the declared voltage [60] has been specified to detect the start and end
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of the sag. At t = 0.10 s, the fault occurs but the control algorithm, together with the current limitation
algorithm, is not yet enabled. At this time, the set of positive- and negative-sequence reference active
currents focuses on maintaining the pre-fault power delivery. At t = 0.22 s, the control, together with
the current limitation algorithm, is activated to appreciate its control action. The voltage recovers the
pre-fault conditions from the instant t = 0.32 s, once the fault is cleared. The continuous red vertical
lines enclose the region where the control is activated.
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Although the voltage sag and the phase voltage unbalance can be seen in Figure 3, the control
action is easier to observe in Figure 4, in which the voltage sequence amplitudes are presented.
The upper subfigure reveals that there has been a marked increase in the positive-sequence voltage
amplitudes. However, the lower subfigure shows that the negative-sequence voltage amplitudes have
hardly changed as a result of the amounts of Iqi

− that are injected.
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The characteristics of the fault are also clearly indicated. The dashed blue vertical lines show the
duration of the failure (0.10 < t < 0.32 s), while the red lines delimit only the voltage sag below the
specified threshold and denote the sector where the control algorithm is enabled. The dashed black
horizontal lines indicate the upper and lower voltage thresholds.

Figure 5 shows the behavior of the current amplitudes (Ip
+, Ip

−, Iq
+ and Iq

−). In normal operation,
and after the fault is cleared, each DPGS only injects active power via positive sequence (Ip

+).
During the first half of the voltage sag, only active power is injected through both sequences (Ip

+ and
Ip
−). The reactive current injection (RCI) is enabled from the instant t = 0.22 s. Note that the four

components (Ip
+, Ip

−, Iq
+ and Iq

−) are only injected when the control is enabled.
Figure 6 shows how the experimental phase currents increase thanks to the control action, but

without exceeding the nominal value. The black dashed lines represent the maximum current that
can be injected by each DPGS. When the control is enabled during the voltage sag, ic = Irated (5 A).
Note that Imax is reached in the most dropped phase (see vc in Figure 3).
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Figure 7 displays the power delivered to the network by each DPGS. In the top subfigure, it can
be seen that the instantaneous active power (p) is free of oscillations. The opposite occurs with the
instantaneous reactive power (q) that exhibits oscillations at twice the network frequency, as seen in
the lower subfigure.

This profile corresponds to a low-power production scenario in which P* = PG. The DPGSs
inject the same amount of active power, but there are small differences between the amounts of
reactive power they inject into the network. Although the voltage sag programmed as the fault in
the three-phase Pacific AMX-360 AC source has a constant profile, each node sees a slightly different
voltage sag as a result of its propagation. Consequently, the calculation of Q* at each node varies
according to the measurement of the voltage sag characteristics (V+, V− and φ).
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Figure 7. Experimental measured powers with profile 1. DPGS1 (violet), DPGS2 (sky-blue), DPGS3

(emerald), and DPGS4 (burgundy).

4.2. Experimental Analysis of the Voltage Support Capability

The five power injection profiles listed in Table 5 are analyzed concerning the variations of the
collective rms value of the grid voltage at each DPGS. The equivalent impedance plays an essential
role in this evaluation because its effect is amplified when the control algorithm is activated during the
grid failure.

The experimental results of each test are presented in two subfigures. The effective voltages are
shown in the left subfigure. The dashed red vertical lines delimit the zone where the control is enabled,
and the dashed black horizontal line indicates the voltage sag threshold of 90% of the declared voltage.
The bar graph gives information on the voltage variation at each node during the voltage sag; the
light-colored left bar represents Vei when the control is disabled, and the dark-colored right bar depicts
Vei when the control is enabled. Besides, the four equivalent impedance values listed in Table 2 are
indicated at the top of each figure. They are expressed in polar form to quickly identify the network
behavior according to the impedance angle (θeqi).

4.2.1. Power Injection Profile 1

Figure 8 displays the operation of the network according to the first power injection profile,
considering PGi = 325.0 W (low-production scenario). The P injection is not suspended during the
voltage sag; the controller gives priority to this injection. Therefore, the voltage increase is due to
the Q injection in the interval 0.22 < t < 0.32 s. As PGi < Pmaxi, then P*i = PGi = 325.0 W, and a
considerable injection of reactive power Q* is produced. This injection maximizes the voltage support
in all the network nodes, but mainly in those that see a high equivalent inductance. This explanation
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agrees with the results presented in Figure 4, in which an increase in the positive-sequence voltage
amplitudes is observed. The node corresponding to the DPGS 4 has the smallest equivalent inductance
(Leq4 = 0.6 mH) of the testbed and, therefore, its voltage support is lower.Energies 2018, 11, x FOR PEER REVIEW  13 of 20 
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4.2.2. Power Injection Profile 2

Figure 9 shows the operation of the network according to the second power injection profile.
Since PGi < Pmaxi, then P*i = PGi. This change of profile did not affect the performance of the DPGSs.
Although P*2 and P*3 present the same power reduction (from 325.0 W to 300.0 W), the DPGSs 2 and 3
have values of Q* very similar to those of the previous profile. However, the DPGS 1, which increased
its value of Q*, and the DPGS 4, which doubled its amount of PG, did improve their voltage support
capability. Note also that, although Req3 = Req4 = 1.13 Ω, the DPGS 3 performs better voltage support
than the DPGS 4, because Leq3 = 7

3 Leq4.
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4.2.3. Power Injection Profile 3

The operation of the network according to the power injection profile 3 is shown in Figure 10.
As in the previous profiles, PGi < Pmaxi and, therefore, P*i = PGi. The DPGSs 2 and 3 maintain the
same values of P* (300.0 W) and, therefore, the values of Q* are similar to those of the previous profile.
Now, the DPGS 1 injects 600.0 W of active power into the network, which is why the effective voltage
(Ve1) at this node is the least affected during the voltage sag. However, in this profile, the voltage
variation ∆Ve1 is lower than in the previous one

(
∆VPIP 3

e1 < ∆VPIP 2
e1

)
. If Q* decreases because of a

higher P*, the voltage support capability also decreases. In this test, the effective voltage Ve4 is the
most affected when the fault occurs. The equivalent impedance seen by the DPGS 4 is dominantly
resistive, and its generated power is the lowest (P*4 = PG4 = 100.0 W). The value of Q*4 is high, but its
effect on the voltage support is reduced.
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It should be noted that active power references depend on the amount of generated power,
as opposed to the reactive power references. Therefore, in a low-power production scenario, the
possibilities of adjusting active power references are reduced.Energies 2018, 11, x FOR PEER REVIEW  14 of 20 
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4.2.4. Power Injection Profile 4

Figure 11 shows the operation of the network according to the fourth power injection profile.
A low-power production scenario has been configured for the DPGSs 1 to 3 (PG = 100.0 W), which
causes a high injection of reactive power Q* that mainly benefits the nodes 1 and 2. The opposite
occurs with the DPGS 4, which has a high active power production (PG4 = 1000.0 W) that makes the
reactive power reference zero (Q*4 = 0.0 VAr).

The equivalent impedance Zeq 4 seen by the DPGS 4 allows appreciating the significant effect that
the P injection has on the voltage support in resistive grids. Since the amplitude of the grid voltage
decreases during the grid fault, the generated reference currents, which focus on maintaining the
pre-fault power delivery, overpasses the limit value in the interval 0.10 < t < 0.22 s. At t = 0.22 s,
the control, together with the current limitation algorithm, is activated, which makes the currents
remain below the maximum admissible value, while the maximum active power is injected into the
grid (P*4 = Pmax4 = 780.9 W). As soon as the control is enabled, the APC is performed, that is, the
components of the active currents (Ip4

+ and Ip4
−) are reduced. This control action can be seen reflected

in the behavior of the effective voltage Ve4.
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4.2.5. Power Injection Profile 5

The results of the voltage support effect of the last power injection profile are presented in
Figure 12. In this case, the low-power production scenario was configured for the DPGSs 2 to
4 (PG = 100.0 W). Now, the DPGS 1 has a high active power production (PG1 = 1000.0 W) that reduces
the reactive power reference at this node to zero (Q*1 = 0.0 VAr).
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This profile of power injection is the least efficient regarding voltage support, except at the node 2,
which undergoes the most notable voltage change (∆Ve2) of the profile. The equivalent impedance Zeq2

seen by the DPGS 2, together with its reference of reactive power (Q*2) when the control is enabled,
maximizes the effective voltage variation. Now, the DPGS 1 performs the APC (from 1000.0 W to
817.8 W) when the voltage sag occurs. Observe that P*1 < PG1 because PG1 > Pmax1 during the failure.
Therefore, the current amplitudes Ip1

+ and Ip1
− are reduced, but the effective voltage Ve1 improves

when the control is activated because of ∆Ve2. Considering the characteristics of Zeq1, the reduction of
P*1 is important to control Imax1, but its effect on the voltage support is negligible.
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4.3. Discussion on Voltage Support Capabilities

Figure 13 shows the results of the voltage support capability of the DPGS 1 during the five tests
that were carried out. At this point, it is not necessary to analyze each DPGS, thus a single one has
been chosen to discuss its behavior. The primary variables have been normalized and are presented in
a single plane in per unit (p.u.). The maximum values obtained during each test are displayed using
circular markers. The gray markers indicate the effective voltage (Ve1) when the control is disabled
(DisC), the black ones indicate the value of this voltage when the control is enabled (EnC), and the
green ones represent its variation (∆Ve1). Finally, the blue and red markers indicate the active and
reactive power references, respectively, when the control is enabled (EnC).
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Considering the equivalent impedance Zeq1 seen by the DPGS 1, in this case, the injection of
reactive power (Q) has a very noticeable effect on the voltage support; the profiles 1, 2, and 4 confirm
this fact. On the contrary, the voltage support is minimized when the injection of active power (P)
is predominant; the profile 5 is a clear example. Thus, for the profiles 3 and 5 that have sufficient
generated power (PPIP 3

G1 = 600.0 W and PPIP 5
G1 = 1000.0 W), it would have been better not only to inject

Q, but also to inject a certain amount of P to achieve more appropriate voltage support considering
the equivalent impedance Zeq1. The impedance angle θeq1 directly marks the criteria to establish the
relationship between P and Q.

In general, the grid impedance is considered mainly inductive (θ ≈ 90◦), but in low-voltage
networks, the grid impedance is mainly resistive (θ ≈ 0◦) [57]. In this work, a mixed case has
been considered in which the equivalent impedance seen by each inverter has inductive and
resistive characteristics.

Given that the equivalent impedance seen by the DPGSs 1 and 2 is mainly inductive, based on the
experiments carried out in this work, it would be appropriate for these two inverters only to inject
Iq

+. The injection of Iq
− could be discarded as its effect on the negative-sequence voltage amplitude

V− is almost imperceptible (see Figure 4). In the same way, the equivalent impedance seen by the
DPGSs 3 and 4 is mainly resistive, which is why the maximum injection of active power during the
voltage sag will help to support the grid better; however, when the generated power PG is deficient,
reactive power must necessarily be injected. In the fourth power injection profile, the DPGS 4 has a
high active power production and need not inject reactive power during the fault, as explained in
Section 4.2.4.

It should be noted that if only the injection of Iq
+ is considered, then the voltage in each phase

rises equally [18], balanced phase currents are achieved, and the instantaneous active power exhibits
oscillations at twice the network frequency.

If only reactive power (Q) is injected into a mainly resistive network when a voltage sag occurs,
the injection has no effect on the voltage support, but it produces power losses due to core losses and
copper losses (P = I2

rmsR) [61]. Similarly, when active power (P) is injected into a mainly inductive
network, the injection also has no effect on the local voltages and, besides, limits the injection capability
of the inverter.

This analysis allows asserting that if Ip
+ is injected into an inductive network when a voltage sag

occurs, the voltage support is inefficient; likewise, that if Iq
+ is injected when a voltage sag occurs in a

resistive network, the reactive current injection does not mitigate the sag, but there are power losses.

4.4. Future Works

In future works, not only experimental tests will be carried out with multiple converters
simultaneously injecting active and reactive power into the grid, but different injection strategies will
also be tested. In the same way, different indexes of performance will be measured, compared, and
analyzed, among which it is essential to highlight the following: injected current, positive-sequence
voltage, negative-sequence voltage, voltage imbalance, injected active power, and injected reactive
power. Moreover, both voltage support and grid feeding have to be further evaluated.

5. Conclusions

Many solutions have been adopted to control a single inverter with different control strategies;
however, new analysis factors appear—which have not been observed in previous works—when
several grid-connected inverters coincide.

In this work, a specific control algorithm has been chosen for all inverters, and two main
parameters have been considered to perform the analysis presented in the previous section: (1) the
equivalent impedances (Zeqi) and (2) the generated power (PGi). The different profiles of active power
production provide a grid environment of variable conditions. The changes in these profiles have a
direct impact on the power delivery settings for each DPGS.
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The principle used with a single inverter to regulate the grid voltages through the injection of
reactive current has been verified experimentally in several inverters connected to a network with
complex impedance. In addition, each controller can simultaneously deliver active and reactive power
to the network through positive- and negative-sequence components.

Although the literature has documented the use of reactive power control methods to deal with
overvoltage problems taking advantage of the power capabilities of distributed inverters, this study
demonstrates experimentally that these capabilities can also be used to support the grid under voltage
sags in a more complex scenario.

It is essential to include the grid impedance effect when designing or selecting a control strategy
for DG systems. The impedance angle will delimit the injection method, and the impedance module
will determine the effect/impact of such injection.

If the local voltages are within the stipulated limits, no action will be necessary. Otherwise, each
DPGS will execute its control strategy according to the interests of the owners and transmission system
operators (TSOs) and, ideally, as a function of the equivalent impedance seen by each converter, an
exciting topic of research that is open for a new generation of GCs. The obtained experimental results
invite to continue with the investigation of the dynamics that arise in the grid when multiple converters
simultaneously inject power and help support this grid in the presence of faults such as voltage sags.
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5 
Analysis of the results: 

 

This Chapter summarizes the work carried out during the development of the thesis and 
comments on the results obtained. 
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5.1 Introduction 

 

This chapter shows in more detail the common thread of the whole research work, i.e., 
the argument of the present article-based thesis, in order to evidence how the manuscripts 
address related issues. The basic topology of a grid-connected three-phase three-wire 
inverter is the starting point since this system is the crucial element of study throughout 
the entire investigation. Next, the equations that give rise to the expressions of the 
reference currents in the manuscripts are deduced. These expressions are compared using 
tables to identify the similarities and differences that prevail when they are particularized 
either based on the selection of certain control parameters or based on performance 
conditions established by the control objectives. 

Considering the expressions of the reference currents collect the necessary information 
from the system so that the control objectives are met, it is possible to analyze the impact 
they generate in terms of voltage support and power quality. These aspects are also 
discussed globally. 

As expected, the common theme addressed by this thesis is identified from the 
Introduction, is developed in each of the intermediate chapters with a particular focus, 
and is globally discussed in this chapter in light of the information contained in the three 
manuscripts. As can be inferred, this approach offers the opportunity to explore the 
broader implications of the work. 

 

5.2 Basic topology of a grid-connected three-phase three-wire inverter 

 

Figure 5.1 shows a simplified, representative diagram of a three-phase three-wire voltage-
sourced inverter (VSI) connected to an RL grid. It should be noted that the inverter is set 
in the power-controlled current source mode. An external controller provides the 
reference of generated active power ( )GP  that should be injected into the grid. A dc-link 

 

Figure 5.1. Simplified diagram of a grid-connected three-phase inverter. 

i

v

GP

iiL oL

oC

dR

dcC

Inverter Filter PCC Grid

gL gR

gv

Power
source

Control

∗i
i
v

GP
P∗

Q∗
gZ



Analysis of the results 

70 

capacitor dcC  operates the interconnection between the power source and the inverter to 
balance the power flow. The control block is responsible for driving the inverter switches 
in order to deliver power to the grid. The diagram also depicts a damped LCL filter, which 
is used to obtain a grid-side current with low harmonic content [85]. The inverter is 
connected to the grid at the point of common coupling (PCC), where the current and 
voltage vectors ( ),i v  are sensed. The grid is modeled as a voltage source gv  and an 

equivalent grid impedance g g gZ R j Lω= + . 

The configuration of the control loops allows the inverter to behave as a current source 
that is able to inject into the network a reference current i* demanded to support the power 
system. Mathematically, the reference current will have a general expression of the form 

( ), ,f P Q∗ ∗=*i v , where P∗  and Q∗  are the references of active and reactive powers, 

respectively, and v  is the sensed voltage. 

 

5.3 Deduction of the reference currents 

 

As already explained above, it is possible to transform the instantaneous three-phase 
voltages at the PCC from the natural (abc) frame to the stationary (αβ) frame by using 
Clarke’s transformation 

 

1 11
2 2 2
3 3 30

2 2

a

b

c

v
v

v
v

v

α

β

   − −     =       −    
+

  (5.1) 

where vα  and vβ , during voltage disturbances, can be expressed as the addition of their 
positive- and negative-symmetric sequences [86], [87] 

 v v vα α α
+ −= +   (5.2) 

 v v vβ β β
+ −= +   (5.3) 

Therefore, based on the method of symmetrical components, positive- and negative-
sequence voltages can be written as 

 ( )cosv V tα ω φ+ + += ++   (5.4) 

 ( )cosv V tα ω φ− − −= ++   (5.5) 

 ( )sinv V tβ ω φ+ + += ++   (5.6) 

 ( )sinv V tβ ω φ− + −= − + . (5.7) 
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The difference of the initial phases (φ +  and )φ −  is called the phase angle φ . This phase-

angle difference is also formed between V +  and V − . The complete solution to determine 
the angle φ  is obtained as [10] 

 
  

cos
 

v v v v
V V

α α β βφ
+ − + −

+ −=
−

  (5.8) 

 
  

sin
 

v v v v
V V

α β β αφ
+ − + −

+ −=
+

  (5.9) 

 ( )atan2 sin ,cosφ φ φ=   (5.10) 

where atan2 is the two-argument arctangent function. 

For the present analysis, the voltage unbalance factor (VUF), defined as the ratio of the 
V −  to the V +  [88], will be identified by the letter u: 

 
( ) ( )
( ) ( )

2 2

2 2

v v
u V

V v v

α β

α β

− −−

+
+ +

+
=

+
=   (5.11) 

According to the power theory, the instantaneous active and reactive powers injected into 
the grid by a three-phase VSI can be expressed as 

 ( )3
2

p v i v iα α β β= +   (5.12) 

 ( )3
2

q v i v iβ α α β= − , (5.13) 

and using (5.12) and (5.13) it is possible to derive the expressions of the reference currents 
in the αβ-frame: 

 * *
2 2 2 2

2
3

vvi P Q
v v v v

βα
α

α β α β

∗
 

= +  + + 
  (5.14) 

 * * *
2 2 2 2

2
3

v vi P Q
v v v v

β α
β

α β α β

 
= −  + + 

. (5.15) 

Now, using (5.2), (5.3), and (5.4)–(5.7) into (5.14) and (5.15), the denominator of these 
expressions can be developed to obtain 

 ( ) ( ) ( )2 22 2 cos 2v v V V V V tα β ω φ φ+ − + − + −+ = + + + +   (5.16) 

where an oscillating term at twice the fundamental grid frequency appears when 
unbalanced grid faults occur. This term produces harmonic distortion in the reference 
currents so it must disappear when low harmonic distortion is required. Therefore, the 
reference currents are expressed as 
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( ) ( ) ( ) ( )

* *
2 2 2 2

2
3

v vv vi P Q
V V V V

β βα α
α

+ −+ −
∗

+ − + −

 ++ = +
 + + 

  (5.17) 

 
( ) ( ) ( ) ( )

* * *
2 2 2 2

2
3

v v v vi P Q
V V V V

β β α α
β

+ − + −

+ − + −

 + + = −
 + + 

. (5.18) 

The set of reference currents will include four control parameters ( pk + , pk − , qk + , and )qk −  

to balance the positive- and negative-sequence voltages appropriately. Thus, the new set 
of flexible reference currents is defined as 

 
( ) ( ) ( ) ( )

* *
2 2 2 2

2
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p p q q

p p q q

k v k v k v k v
i P Q

k V k V k V k V
α α β β
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∗
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  (5.19) 
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p p q q
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i P Q

k V k V k V k V
β β α α

β

+ + − − + + − −

+ + − − + + − −

 + + = −
 + + 

. (5.20) 

The control parameters can take different values within the range [ ]1,  1− , which gives 
rise to many injection possibilities. However, in this work, it is considered that the control 
parameters that balance the positive-sequence voltages are within the range ,0 1p qk +≤ ≤ , 
while the parameters that balance the negative-sequences voltages take their values in the 
range ,1 1p qk −− ≤ ≤  [89]. 

Added to that, the amplitudes of the positive- and negative-sequence currents ( pI + , pI − , 

qI + , and )qI −  associated with the active and reactive powers (P∗  and )Q∗  can be identified 

from (5.19) and (5.20) as 
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+
. (5.24) 

Therefore, (5.19) and (5.20) can be written in a general form as 
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 p p q q

v vv vi I I I I
V V V V

β βα α
α

+ −+ −
∗ + − + −

+ − + −

      
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  (5.25) 
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p p q q

v v v vi I I I I
V V V V
β β α α

β

+ − + −
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       
= + − −                 

. (5.26) 

With this scheme, the reference currents follow both the positive- and negative-sequence 
voltages, which will reduce the voltage imbalance. If a control action is performed to 
increase V + , the voltage will be raised in all phases, and if V −  decreases, a voltage 
equalization is obtained [6]. 

Table 5.1 shows the schemes of the reference currents used in the publications that make 
up this thesis. The particularization of these schemes obeys the previous statement of a 
specific set of control objectives. 

Table 5.1 
Scheme of reference currents used in each journal article 

Journal Reference currents pk +  pk −  qk +  qk −  

[1] 
(Ch. 2) 

*

p p q q

p p q q

v vv vi I I I I
V V V V

v v v vi I I I I
V V V V

β βα α
α

β β α α
β

+ −+ −
∗ + − + −

+ − + −

+ − + −
+ − + −

+ − + −

      
= − + +                 

       
= − − −                 

  1 –1 1 1 
[2] 

(Ch. 3) 

[3] 
(Ch. 4) 

*

p q q

p q q

v vvi I I I
V V V

v v vi I I I
V V V

β βα
α

β α α
β

+ −+
∗ + + −

+ + −

+ + −
+ + −

+ + −

    
= + +             

     
= − −           

  1 +0 1 1 

 

5.4 Voltage support concept 

 

It should be mentioned that the grid impedance must be known, for which different 
estimation techniques or methods can be used, including [90], [91]. From this perspective 
and based on Figure 5.1, the instantaneous voltages in the αβ channels at the PCC can be 
expressed as 

 g g g
div R i L v
dt
α

α α α= + +   (5.27) 

 g g g

di
v R i L v

dt
β

β β β= + +   (5.28) 
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where gv α  and gv β  are the sag voltages at the grid side, gR  is the grid resistance, and gL  
is the grid inductance. Then, the amplitudes of the positive- and negative-sequence 
voltages at the PCC side can be obtained using (5.25) and (5.26) in (5.27) and (5.28) as 
[34] 

 ( ) ( )2 2

g p g q g g p g qV R I L I V L I R Iω ω+ + + + + += + + − −   (5.29) 

 ( ) ( )2 2

g p g q g g p g qV R I L I V L I R Iω ω− − − − − −= − + − + . (5.30) 

Equations (5.29) and (5.30) can be rewritten and simplified as shown in the following: 

 g p g q gV R I L I Vω+ + + +≈ + +   (5.31) 

 g p g q gV R I L I Vω− − − −≈ − + . (5.32) 

From (5.31) and (5.32), it can be said that voltage support is related to the different 
amplitudes of injected currents, but the optimal solution is closely linked to the equivalent 
grid impedance. Note that pI +  and qI +  act on V +  and that pI −  and qI −  act on V − . Likewise, 

by simple inspection, it can be deduced that if 1p q qk k k+ + −= = =  and 1pk − = − , then V +  will 

increase and V −  will decrease when power is injected into the grid. 

Table 5.2 summarizes the main combinations of these parameters according to different 
voltage support possibilities (control objectives) that could be achieved. The upwards 
arrow ( )↑  means that this selection of parameters increases the value of the voltage 

amplitude (V +  or )V −  it accompanies. The downwards arrow ( )↓  represents the 

opposite. Also, the blue color denotes that the result is adequate or expected, while the 
red color indicates that this effect (or result) should be avoided. 

Table 5.2 
Control parameters ( pk + , qk + , pk − , and )qk −  

pk +  pk −  Objectives qk +  qk −  Objectives 

1 +0 V +↑  1 +0 V +↑  
0 +1 V −↑  0 +1 V −↓  

1 +1 V +↑  and V −↑  1 +1 V +↑  and V −↓  
0p =  

1 –1 V +↑  and V −↓  
0p =  1 –1 

0q =  

( )0P∗ =  

As can be seen from Table 5.2, the shaded rows suggest that this selection of parameters 
is the most appropriate to increase V +  and decrease V − , at the same time as the 
oscillations in the active power are eliminated ( )0p = . 
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5.5 Active and reactive power oscillations 

 

To better understand the behavior of these control parameters in the cancellation of active 
power oscillations, it is necessary to decompose the instantaneous active and reactive 
powers—injected by the VSI—into their positive, negative, and oscillating components 
as [13]. Thus substituting (5.4)–(5.7), (5.19), and (5.20) into (5.12) and (5.13) yields: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

*
2 2

*
2 2

*
2 2

cos 2

sin 2

p p

p p

p p

p p

q q

q q

k V k V
p P

k V k V

k k V V t
P

k V k V

k k V V t
Q

k V k V

ω φ φ

ω φ φ

+ + − −

+ + − −

+ − + − + −

+ + − −

+ − + − + −

+ + − −

+
=

+

+ + +
+

+

− + +

+

+ +

+

  (5.33) 

 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

*
2 2

*
2 2

2 2

cos 2

sin 2

q q

q q

q q

q q

p p

p p

k V k V
q Q

k V k V

k k V V t
Q

k V k V

k k V V t
P

k V k V

ω φ φ

ω φ φ

+ + − −

+ + − −

+ − + − + −

+ + − −

+ − + − + −
∗

+ + − −

+
=

+

+ + +
+

−
−

+

+

+

+

+

+

. (5.34) 

Equation (5.33) verifies that oscillations in the active power become zero in all cases 
exposed in [1] except in case 6 in which just positive-sequence reactive current ( )qI +  is 

injected due to severe grid fault conditions. The above is equivalent to saying that 
0p p qk k k+ − −= = =  and 1qk + = , in case 6, concerning Table 5.2. Avoiding active power 

oscillations is not a control objective in [3], and therefore no negative-sequence active 
current ( )pI −  is injected. 

In order to avoid reactive power oscillations [see (5.34)], it would be necessary to select 
1p pk k+ −= = , values that generate active power oscillations—which would not be 

convenient—or not to inject active power ( )0P∗ = . In any case, active power ripple will 

appear. 
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5.6 Analysis of the maximum injected current 

 

Limiting the maximum output current of the inverter to a specific value has always been 
an essential control objective to guarantee its safe operation. Usually, this value 
corresponds to the nominal/rated current of the inverter ( )ratedI . 

Assuming that the currents injected by the inverter into the grid follow their references, 
i.e., i iα α

∗≈  and i iβ β
∗≈ , the amplitudes of the phase currents can be calculated by replacing 

(5.4)–(5.7) into (5.19) and (5.20) and applying the inverse Clarke’s transformation. 
Concerning these amplitudes, the phase currents on the abc reference frame can be 
expressed as a function of different variables such as the positive- and negative-sequence 
voltages (V −  and )V +  and the reference powers (P∗  and )Q∗ , the positive- and 

negative-sequence active and reactive currents ( pI + , pI − , qI + , and )qI − , the positive- and 

negative-sequence currents ( I +  and )I −  calculated as (5.35) and (5.36), respectively, 

and the angle between positive and negative sequences (φ  or )iφ . 

 ( ) ( )2 2

p qI I I+ + += +   (5.35) 

 ( ) ( )2 2

p qI I I− − −= +   (5.36) 

Table 5.3 
Estimation of the maximum currents on the abc reference frame in each journal article 

Journal Maximum current 

[1] 
(Ch. 2) 

( ) ( )
( )

( ) ( )( )
2 2

2 2

max 2

2
p q

V V V V x
I I I

V

+ − + −
+ +

+

+ −
= +   

[2] 
(Ch. 3) ( ) ( )( )2 2

max
2 2
3

I V V V V x z+ − + −= + −   

[3] 
(Ch. 4) ( ) ( ) ( )2 2 2

max 2p q q qI I I I I I y+ + − − += + + +   

Table 5.3 shows the mathematical expressions used in each article of this thesis to 
calculate and, at the same time, limit the maximum current injected by the inverter into 
the grid, where 

 ( ) ( ) ( ){ }2 2
3 3min cos , cos , cosx φ φ π φ π= − +   (5.37) 

 ( ) ( ) ( ){ }2 2
3 3max cos , cos , cosi i iy φ φ π φ π= + −   (5.38) 
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 ( )atan2 ,
2i q pI I πφ φ+ += + −   (5.39) 

 
( ) ( ) ( ) ( )

2 2
* *

2 2 2 2
P Qz

V V V V+ − + −

   
   = +
   − +   

. (5.40) 

However, to be able to compare the expressions of the maximum current throughout this 
analysis, it is necessary to obtain a general equation from (5.25) and (5.26). Therefore, 
substituting (5.4)–(5.7) into (5.25) and (5.26) generates the following set of equations: 

 ( ) ( ) ( ) ( )cos cos sin sinp p q qi It tI tI tIα ω φ ω φ ω φ ω φ−∗ + − ++ − + −= ++ + + ++ −   (5.41) 

 ( ) ( ) ( ) ( )* sin sin cos cosp p q qi t t tI I I I tβ ω φ ω φ ω φ ω φ−+ − ++ − + −−+ + += +− − . (5.42) 

Now, taking into account that ( ) ( )af t f tα=  [92], the amplitude of aI  will be obtained 
from (5.41) to particularize the expression of the maximum current according to the 
control objectives proposed in each of the publications of this thesis. Then, 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
2 cos 2 sina p p q qI I I I I A Bφ φ+ − + −= + + + + +   (5.43) 

where 

 p p q qA I I I I+ − + −= −   (5.44) 

 q p p qB I I I I+ − + −= + . (5.45) 

The other two amplitudes are also expressed in terms of the positive- and negative-
sequence active and reactive currents and the angle φ : 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
2 2
3 32 cos 2 sinb p p q qI I I I I A Bφ π φ π+ − + −= + + + + − + −   (5.46) 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
2 2
3 32 cos 2 sinc p p q qI I I I I A Bφ π φ π+ − + −= + + + + + + +   (5.47) 

Based on Table 5.2 and (5.43)–(5.45), Table 5.4 compares the particularized expressions 
to calculate the amplitude aI  according to the control objectives formulated in each 
publication. It should be noted that in [1], [2] the negative-sequence currents are related 
to the positive-sequence ones through the VUF, as shown in (5.48) and (5.49), which 
allows simplifying and writing this amplitude as stated in Table 5.4. 

 p
p p

p

k VI I
k V

− −
− +

+ +=   (5.48) 

 q
q q

q

k VI I
k V

− −
− +

+ +=   (5.49) 
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In order to identify the phase with the highest amplitude, it is important to analyze not 
only the sine and cosine functions but also the values and signs of the control parameters 

pk + , pk − , qk + , and qk − . 

In this context, each case proposed in [1] is verified in order to demonstrate that equations 
(5.43)–(5.47) are a valid solution for any configuration of power injection: 

1) Case 1: Normal operation and low GP . Injection of positive- and negative-sequence 
active power during a voltage imbalance. 

2) Case 2: Normal operation and high GP . Injection of positive- and negative-sequence 
active power during a voltage imbalance. 

3) Case 3: Moderate grid fault conditions and low GP . Injection of positive- and 
negative-sequence active and reactive powers. 

4) Case 4: Moderate grid fault conditions and medium GP . Injection of positive- and 
negative-sequence active and reactive powers. 

5) Case 5: Severe grid fault conditions. Injection of positive- and negative-sequence 
reactive power. 

6) Case 6: Severe grid fault conditions. Injection of positive-sequence reactive power. 

Table 5.5 groups and summarizes a wide variety of cases that have been treated in 
different works, but partially. On the other hand, it could be said that in [3] two cases are 
considered when a voltage sag occurs: 

1) Case 1: Grid fault conditions and low GP . Injection of positive-sequence active 
power and positive- and negative-sequence reactive power. 

2) Case 2: Grid fault conditions and high GP . Injection of positive-sequence active and 
reactive powers. 

As can be seen in Table 5.4, the solution to determine the expression of the maximum 
phase current when injecting qI −  is not immediate, so it is convenient to express the term 

( ) ( )( )2 sin cosq p qI I Iφ φ− + +−  as 2 qI I y− + . When only pI +  and qI +  are injected, the solution 

Table 5.4 
Amplitude of the phase current aI  in each journal article 

Journal Phase current aI  

[1] 
(Ch. 2) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
2 cosa p p q qI I I I I u I φ+ − + − += + + + −   

[2] 
(Ch. 3) 

[3] 
(Ch. 4) ( ) ( ) ( ) ( ) ( )( )2 2 2

2 sin cosa p q q q p qI I I I I I Iφ φ+ + − − + += + + + −   
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is simple, and the controller will just have to guarantee that the GC is met and that pI +  

does not exceed the value of maxpI + . 

 

5.7 Analysis of the control algorithms 

 

The control algorithm of each power injection strategy is designed according to the 
proposed control objectives and is fundamental to achieve them. Figure 5.2 contrasts an 
abbreviated version of the three control algorithms used to obtain the experimental results 
of the articles included in this thesis. Amplitudes of the positive- and negative-sequence 
currents are used to give coherence to the analysis that is carried out in this chapter. 

As stated at the top of each algorithm, [1] and [3] give priority to the injection of reactive 
power ( )Q  into the network according to a specific GC. Therefore, whenever a voltage 
sag occurs, the control will guarantee a minimum of reactive power and the maximum 
output current of the inverter. 

Despite the apparent similarities, there are several differences between these two 
algorithms, in principle both manage multiple objectives, operate under a GC, and limit 
the inverter output current to a predetermined maximum value. However, the algorithm 
in [1] is part of an open-loop controller with six identified cases, including two during 
normal operation, that allows eliminating oscillations in the active power since it can 
inject pI − . By contrast, the algorithm in [3] is part of a closed-loop controller and does not 

cancel the active power oscillations because it does not inject pI − . 

Another significant difference lies in the way each controller determines the new value 
of qI +  when there is not enough GP , i.e., when maxp pI I+ +< . In [1] the value of qI + , and 

therefore that of qI − , is mathematically recalculated, while in [3] these values are 

Table 5.5 
Maximum currents on the abc reference frame  according to each case in [1] 

Injection 
cases Maximum current maxI  

Case 1 
Case 2 ( ) ( )2 2

max 2p p p pI I I I I x+ − + −= + −   

Case 3 
Case 4 ( ) ( ) ( ) ( ) ( )2 2 2 2 2

max 2p p q qI I I I I u I x+ − + − += + + + −   

Case 5 ( ) ( )2 2

max 2q q q qI I I I I x+ − + −= + −   

Case 6 max qI I +=   
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determined by two PI controllers. It is worth mentioning that in [1] it was shown that 

maxpI +  could be zero, which would be equivalent to a total active power curtailment (APC). 

The control algorithm cited in [2] is not a contribution of this research work, but it was 
used to perform all the experimental analysis about its effect on the voltage support when 
it is integrated into converters connected to RL networks. Note, as a first aspect, that it 
gives priority to the active power ( )P  delivery and that it will only deliver reactive power 

in GP  low-production scenarios under voltage sags, circumstances under which it will 

inject pI + , pI − , qI + , and qI − . Secondly, it is also part of an open-loop controller capable of 
eliminating the oscillations of active power and limiting the output current of the inverter. 
Finally, when maxp pI I+ +< , the values of qI +  and qI −  are also recalculated mathematically. 

 
 

Figure 5.2. Comparison of the control algorithms. 
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5.8 Analysis of the voltage support capability 

 

The existing literature on control of grid-connected inverters is extensive and focuses 
particularly on mainly inductive networks. Most of these works are based on symmetrical 
components, a practical tool for understanding the operation of a three-phase system 
under unbalanced conditions [93]. For converters connected to mainly resistive networks, 
fewer works have been presented, but strategies for these systems can be derived from 
the first ones as evidenced in [30], a recent study in which a flexible voltage support 
strategy (VSS) in LV grids is proposed. 

On the other hand, the grid impedance is not purely inductive nor is it strictly resistive in 
the case of LV networks. The line impedance consists of resistance, inductive reactance, 
and even capacitive reactance [35], [36]. Therefore, new control strategies for grid-
connected inverters during voltage sags should include a safe scheme of power injection 
into the network, with voltage support capability, but depending on the grid impedance 
angle, as evidenced in the voltage support experimental analysis carried out in [2]. 

Nevertheless, works considering networks with complex impedance are also limited. 
Using this approach, a VSS that increases V +  and injects ratedI  is presented in [31]. A 
zero-sequence compensated VSS is proposed in [32]. The control strategy implemented 
in [33] maximizes the voltage in the lowest phase considering the impedance angle gθ . 

Three different VSSs are introduced in [34], the first one maximizes V + , the second one 
minimizes V − , and the last strategy maximizes the difference between V +  and V − . 
However, none of these strategies provides a global solution that performs optimal 
voltage support based on the grid impedance, eliminates the active power oscillations, 
and allows limiting the inverter output current to a specific value, all at the same time. 

These considerations at least suggest that future updates of existing GCs should take into 
account aspects such as optimal voltage support, i.e., based on grid impedance, with 
control objectives that could be defined, for instance, as follows: 

1) To maximize V +  and minimize V − : 

 ( ){ ( )}max ,   ,p q p qV I I V I I+ + + − − −− . (5.50) 

2) To regulate V +  and V − in order to avoid overvoltage: 

 { }max , , 1.1 p.u.a b cV V V ≤   (5.51) 

3) To limit the amount of injected current to the maximum allowed by the inverter: 

 { }max , ,a b c ratedI I I I≤ . (5.52) 

4) To avoid oscillations in the instantaneous active power (p): 

 0p P p P P∗ ∗= + = + = . (5.53) 
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This analysis will prove useful in expanding the understanding of how the proper 
computation of positive- and negative-sequence active and reactive currents is the key to 
achieving more complex, sophisticated control objectives in RL grids. 
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6 
Conclusions and future work: 

 

This Chapter concludes the present doctoral thesis and proposes some research 
guidelines for future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

 
6.1 Conclusions of the thesis 
6.2 Future work 
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6.1 Conclusions of the thesis 

 

This investigation set out to optimize the operation of grid-tied inverters, taking full 
advantage of their capabilities, since power-electronic converters have become a potent 
resource to support the new decentralized-renewable electric-power systems adequately. 
Hence, the following conclusions can be drawn from the present study: 

 
1) The research results of this doctoral thesis represent a further step in the 

development of controllers in power grid environments with increasing penetration 
of distributed generation. The contributions of this work have explored the design 
of flexible controllers that allow improving the stability and quality of the network, 
ensuring safe and optimal use of available power in renewable energy sources 
connected to the utility grid. 

 
2) The present study has offered a framework for the exploration of a broad and 

diverse set of cases that cover from the control of inverters under perturbed grid 
conditions—including voltage imbalances and voltage sags—following grid codes 
and injecting maximum output current, up to voltage regulation techniques in low 
power networks. 

 
3) The research carried out in Chapter 2 is oriented to control of grid-connected 

inverters during voltage sags (including voltage imbalances) to meet grid codes and 
maximize power delivery. The control strategy improves network stability and 
ensures optimum use of entire power capability of inverters. This proposal can be 
incorporated in the new scenario of standardization allowing to satisfy a higher 
number of control objectives. 

 
4) Chapter 3 has provided a theoretical and experimental study of a low-voltage ride-

through strategy implemented into multiple inverters connected to the grid during 
voltage sags. The voltage support analysis for different generated-power profiles 
was carried out considering the real impedance (complex) of a functional network. 
The results have shown the importance of involving the grid impedance when 
designing or selecting a control strategy for distributed generation systems. 

 
5) The inverter control structure presented in Chapter 4 also incorporates the use of 

grid codes, but now with the additional capability to regulate the voltage through a 
voltage control loop implemented to avoid overvoltage in non-faulty phases due to 
the reactive current injection. This controller is proposed for low-power rating 
distributed inverters where conventional voltage-support provided by large power 
plants is not available. Besides, the control system implementation requires a low 
computational burden because it is based on traditional PI control loops. 
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6.2 Future work 

 

Several research lines derive from the development of this doctoral thesis, but the main 
challenges for future work would be the following: 

 
1) The design of the control algorithm proposed in Chapter 2 makes up an interesting 

research line since it exposes a scheme that combines grid code specifications with 
multiple control objectives that interact with each other. Implementing new control 
algorithms in this context is an opportunity for further researches. 

 
2) Research in control of multiple converters connected to the grid under voltage faults 

is a promising field of study, especially in RL networks in order to obtain optimal 
voltage support. The interest of the subject contrasts with the few works found in 
the literature and is a motivation to continue researching in this field. 

 
3) Further research needs to examine more closely the links between voltage ride-

through capability and optimal voltage support for three-phase three-wire inverters 
connected to RL grids during voltage sags. It would be interesting to develop new 
controllers that allow calculating reference currents according to the grid 
impedance angle and that, at the same time, guarantee both the safe operation of the 
inverter and the quality of power delivered into the network. 

 
4) Another possible area of future research, for distributed generation inverters in RL 

grid-faulty networks, would be to investigate smart voltage-regulation strategies 
with robust controllers able to regulate the positive-sequence voltage to an 
appropriate value within the normal operation range, cancel the negative-sequence 
voltage, and suitably limit the maximum current injected by the inverter. 
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