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19 Abstract

20 This study investigates the influence of the experimental procedure on 

21 determining the d-space enlargement of montmorillonite clay (MNT) produced by the 

22 absorption of polycarboxylate (PCE) based superplasticizers. d-spacing alterations 

23 registered by in situ X-ray Diffraction (XRD) analysis on fresh clay pastes have been 

24 compared against the results obtained when clay pastes are previously centrifuged and 

25 dried (reference methodology reported in bibliography). Data from experiments show 
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26 relevant differences between the two methodologies. While MNT clay d-spacing present 

27 limited expansion when recorded on samples previously separated and dried, direct XRD 

28 for fresh clay pastes shows much larger expansion of inter-laminar space. Clay expansion 

29 evolves with the increase of PCE dosage up to 3 times larger than typical data recorded 

30 when samples previously dried. The results shown here indicates that information 

31 collected following the typical experimental procedure based on sample drying could not 

32 be representative of MNT clay interference on dispersion mechanism of PCE 

33 superplasticizers.  

34

35 Keywords: XRD (C), Polycarboxylate (E), Clay (C), d-spacing (E), Portland cement 

36 (B), Intercalation (D)

37

38 1. Introduction

39 The capacity of montmorillonite clays (MNT) to inhibit the dispersing capacity of 

40 PCE-based superplasticizers for concrete is well known [1]. The interference mechanism 

41 is based on the preferential intercalation of polyethylene oxide/polyethylene glycol 

42 (PEO/PEG) side-chains of the PCE polymer in the MNT interlaminar space. From an 

43 initial d-spacing of 12.3–12.6 Å or 15.0–15.5 Å (depending on the degree of clay 

44 hydration) when no admixture is present [2, 3], PCE intercalation produces a d-spacing 

45 expansion of up to 17–18 Å when a PCE-based superplasticizer is used. This enlargement 

46 has been reported to correspond to one single intercalated poly-glycol chain in MNT clay, 

47 coordinated with water molecules [4-8]. All available studies in the literature address the 

48 interaction of clays with PCE-based superplasticizers via the same experimental 

49 procedure [1,4,8]. PCE-clay pastes are centrifuged and the solid residue is extracted. 

50 Subsequently, this residue is dried at temperatures between 40–80 ºC in all cases.



51

52 Other studies [8,9] have reported similar MNT d-spacing expansions by following 

53 the same experimental process, as shown in Fig 1. Nevertheless, other authors [10] 

54 reported experiments where the observed d-spacing expansions of MNT clays were not 

55 homogeneous and varied depending on the structure of the PCE polymer and the nature 

56 of MNT clay. In general, they reported expansions in the range of 4.9–5.5 Å.

57

58

59  Fig. 1. a) Laboratory XRD patterns for centrifuge-dried MNT samples with different 

60 PCE-based superplasticizers (adapted from [5]); b) Laboratory XRD patterns for 

61 centrifuge-dried MNT samples with PCE- and PEG-based superplasticizers (adapted 

62 from [9])

63

64 The main objective of our study is to identify the influence of the sample 

65 preparation procedure on the d-spacing expansion of clay-PCE pastes as measured by 

66 XRD techniques, since clay interference with PCE superplasticizer dispersion capacity is 

67 an exclusive effect of fresh state systems. Moreover, superplasticizer admixtures that can 

68 be more resilient to the negative effect of clay in aggregates have been very recently 

69 highlighted as a research priority [11], and can only be attained with a well-established, 

70 robust, methodology.



71

72 In this investigation, XRD patterns were recorded directly from fresh pastes of 

73 MNT clay, including different dosages of a PCE-based admixture without any phase 

74 separation or drying process. To provide a frame of comparison, clay pastes having 

75 identical composition were prepared according to the standard procedure described in the 

76 literature [1] and powder XRD patterns were recorded. To extend the assessment of the 

77 influence of the experimental methodology on the final clay d-spacing and to confirm the 

78 reproducibility of the results obtained when testing fresh samples directly, in situ XRD 

79 measurements were performed with two different X-ray diffractometers at two different 

80 facilities: standard laboratory XRD (Cu X-ray tube) and X-ray synchrotron radiation 

81 analyses. It should be noted that synchrotron radiation techniques are especially suited 

82 for carrying out in situ studies on unaltered cement pastes [12]

83

84 2. Materials 

85 The materials used for the preparation of pastes were sodium montmorillonite 

86 powder and pure non-formulated PCE polymer. The liquid phase used to produce the 

87 pastes was always a synthetic cement pore solution as a simulant of the liquid phase 

88 formed during the early-age hydration of Portland cement.

89

90 2.1 Sodium montmorillonite clay (Na-MNT)

91 The clay sample used was a sodium montmorillonite (Na-MNT) clay powder. 

92 Oxide composition by XRF is shown in Table 1, expressed in oxide wt.%. Measured BET 

93 specific surface was 49.5 m2/g (average of two measurements: 46.1 m2/g and 52.8 m2/g). 

94 The crystalline composition of Na-MNT clay was obtained by laboratory powder XRD 

95 analysis (see Fig 2). The clay presents basal displacement d001 of 12.3 Å deduced from 



96 its 2θ position at 7.2º. This value is typical for Na-MNT clays with one H2O molecule 

97 layer inside the interlaminar space [3] [11]. 4.8 wt.% of quartz and 3.3 wt.% of calcite 

98 were identified as minor impurities, so the last explains the LOI value observed. Both 

99 quartz and calcite impurities cannot intercalate polycarboxylate side chains thus not 

100 influencing in the interpretation of the experimental results [9].

101

SiO2 TiO2 Al2O3 Fe2O3 MgO MnO TiO CaO K2O Na2O LOI Total

63.12 0.01 19.88 1.37 2.33 0.04 0.06 2.24 0.44 3.43 5.97 98.89
102 Table 1. Oxide composition in wt.% by XRF for Na-MNT clay sample

103

104

105 Fig. 2. Laboratory XRD pattern for raw Na-MNT used in this study.

106

107 2.2 Polycarboxylate superplasticizer

108 Pure PCE polymer based on poly(ethylene glycol) ether on polyacrylate backbone 

109 from BASF Construction Chemicals was used. It is available in water-solution at 51 wt. 

110 % concentration. Basic PCE characteristics are given in Table 2. Dosages of the PCE 



111 admixture are always referred to percentage of PCE active solids by weight of clay 

112 (expressed as % bwc).

113

Parameter Value
Side-chain length 1.100 g/mol (25 mol EO)
Total carboxylic (by titration) 95 mg KOH/g PCE
Polymer type PEG side chain on acrylic backbone

114 Table 2. Chemical structure and characterization of PCE polymer

115

116 2.3 Synthetic cement pore solution

117 All clay pastes were produced using synthetic cement pore solution as the liquid phase. 

118 This solution is prepared by dissolving 14.3 g of Na2SO4, 3.05 g of NaOH and 3.00 g of 

119 Ca(OH)2 in 1 litre of distilled freshly-boiled water (equivalent to 0.157 mol/l of OH-, 

120 0.278 mol/l of Na+, 0.100 mol/l of SO4
2- and 0.040 mol/l of Ca2+ concentration). Synthetic 

121 cement pore solution used here was always recently prepared to avoid minimise 

122 carbonation.

123

124 3. Experimental methods

125 3.1. Preparation of clay pastes

126 Mixing procedures are reported to affect the admixtures’ performances [13]. 

127 Therefore, the same mixing procedure is always carried out here. Clay pastes were 

128 prepared at 22 ºC by dispersing 10 g of powder clay in 50 g of synthetic cement pore 

129 solution to produce a 16.7 wt. % paste concentration. The mixing process was done with 

130 a vertical shaft mixer equipped with a helical head, at 1200 rpm. The total mixing time 

131 was three minutes. The admixture was incorporated at the required dosage at the one-

132 minute mixing time.

133



134 3.2 In situ XRD of fresh clay pastes with synchrotron X-ray source 

135 XRD patterns for six clay pastes were performed, including the reference paste at 

136 16.7 wt. % concentration without the admixture and pastes with 13%, 50%, 100%, 220% 

137 and 325% bwc active solids of PCE polymer. Each fresh clay paste was introduced into 

138 a thin glass capillary of 1.5 mm diameter just after mixing. Capillaries filled with fresh 

139 clay pastes were mounted on a capillary rack, as shown in Fig. 3. 

140

141

142 Fig. 3. Capillaries containing the fresh pastes mounted on the rack for synchrotron XRD 

143 data collection.

144

145 Samples were measured on the BL11-NCD device of ALBA Synchrotron 

146 (Barcelona). Small angle X-ray scattering (SAXS) and wide angle X-ray scattering 

147 (WAXS) patterns were simultaneously recorded at 12.4 keV. The sample detector 

148 distances were 2.450 m and 0.170 m for SAXS and WAXS respectively. The WAXS 

149 detector was tilted by 27° along the horizontal axis perpendicular to the beam path. The 

150 beam stop was located on the top left corner of the SAXS detector and the data acquisition 

151 time was five seconds.

152



153 3.3 In situ XRD patterns of fresh pastes with standard Cu K lab diffractometer 

154 XRD patterns for clay pastes without the admixture and clay pastes including 

155 different dosages of PCE were recorded at the CCiT facilities of the University of 

156 Barcelona using a laboratory X-ray powder diffractometer. Fresh pastes were sandwiched 

157 between two polyester films (thickness of 3.6 µm) and locked by two metallic rings as 

158 shown in Fig. 4.

159

160

161 Fig. 4. Holder containing the fresh pastes, sandwiched between thin polyester films, for 

162 Cu K laboratory XRD data collection.

163

164 A PANalytical X’Pert PRO MPD diffractometer of 240 mm of radius was used, 

165 in a configuration of convergent beam with a focalizing mirror and a transmission 

166 geometry with flat samples sandwiched between low absorbing films. Cu K radiation 

167 ( = 1.5418 Å) was produced by an X-ray tube operating at 45 kV–40 mA and measured 

168 by a PIXcel detector with active length = 3.347 º. The incident beam slits defining a beam 

169 height were 0.4 mm for wide-angle and 0.05 mm for small-angle. Two 2/ scans were 

170 recorded: i) SAXS data from 0.3 to 12 º2 with a step size of 0.013 º2 and a measuring 



171 time of 647 seconds per step; and ii) WAXS data from 2 to 30 º2 with a step size of 

172 0.026 º2 and a measuring time of 148 seconds per step.

173

174 3.4 Powder XRD patterns of separated-dried clay pastes

175 Clay pastes were also prepared following the same mixing process and transferred 

176 into a centrifuge tube. Samples were centrifuged at 10,000 rpm for 12 minutes. As an 

177 alternative approach to the centrifugation method for phase separation, some clay pastes 

178 were separated by filtration using a Buchner funnel powered by suction. The solids were 

179 collected, washed and dried at 40 ºC for seven days. Subsequently, the solid deposits were 

180 collected and dried at 40 ºC for seven days. Powder XRD patterns of the dried solid 

181 fractions were collected by using the same PANalytical X’Pert PRO MPD Cu K 

182 laboratory diffractometer at the CCiT facilities of the University of Barcelona. The 

183 incident beam slits defining a beam height were 0.4 mm for wide-angle and 0.05 mm for 

184 small-angle. The 2/ scan conditions were: i) SAXS data from 0.2 to 6 º2 with a step 

185 size of 0.013 º2 and a measuring time of 800 seconds per step; ii) WAXS data from 2 to 

186 60 º2 with a step size of 0.026 º2 and a measuring time of 298 seconds per step.

187

188 4. Results and discussion

189 4.1 Influence of separation method on d-spacing of dried clay pastes 

190 Prior to evaluating the possible impact of sample drying process on d-spacing 

191 measurement, the influence of separation method on XRD results of dried clay pastes was 

192 investigated. XRD patterns collected from dried clay pastes containing 13% bwc of PCE 

193 are shown in Fig. 5, where it is compared with the patterns for the samples separated using 

194 both centrifugation and filtration methods.

195



196

197 Fig. 5. Laboratory XRD patterns for dried clay pastes by using two different separation 

198 methods.

199

200 From Fig. 5, it can be stated that both clay d-spacing results of 18.6 Å and 19.1 Å 

201 do not differ significantly from the literature values, using the same sample preparation 

202 approaches [3-5]. The difference in d-spacing observed in Fig. 5 between centrifugation 

203 and filtration separation methods ( 0.5 Å) is not very significant. Thus, it can be deduced 

204 that separation method has a minor influence on d-spacing measurements on dried clay 

205 pastes.

206

207 4.2 Influence of clay paste drying process on d-spacing measurements

208 Figure 6 displays the XRD patterns obtained with the non-separated, non-dried 

209 fresh clay paste series, as prepared without the admixture, with 13% bwc and with 50% 

210 bwc of PCE polymer. Synchrotron XRD patterns from fresh pastes collected at ALBA 

211 and laboratory XRD data are shown in Fig. 6(a) and Fig. 6(b) respectively. For the sake 

212 of comparison, Fig. 6(c) displays the laboratory XRD patterns for the same samples but 

213 after centrifugation and drying processes.

214



215

216 Fig. 6. XRD patterns for Na-MNT pastes with increasing PCE content for: a) fresh 

217 pastes collected with synchrotron radiation; b) fresh pastes collected with a Cu K  

218 diffractometer; c) centrifuged and dried pastes collected with a Cu K diffractometer.

219

220 The d001 spacing obtained from the XRD patterns shown in Fig. 6 are listed in 

221 Table 3. This value provides the basal spacing or layer stacking in a phyllosilicate. 

222 Despite using different equipment, the values presented in Table 3 are similar for the in 

223 situ analyses of fresh pastes at the three tested dosages. Conversely, the basal spacing 

224 obtained from powder XRD analyses are undeniably much lower at all PCE dosages. For 

225 clay pastes containing PCE polymer, the basal spacing measured from powder XRD 

226 analyses are compatible with d-spacing’s observed in MNT clay pastes with a single 

227 intercalated monolayer of PEO/PEG side-chains [16]. These experimental results are in 

228 agreement with values obtained under similar conditions by other authors [4, 5, 7, 9, 10].

229

d001 spacing (Å)
In situ XRD (fresh paste)Sample

Synchrotron Cu K
Powder XRD (dried paste) 

Cu K
0% PCE 18.5 18.6 15.4
13% PCE 48.7 51.7 18.6
50% PCE 55.2 56.1 20.7

230 Table 3. Basal spacing (d001) obtained from XRD measurements of clay-PCE pastes



231

232 Chiefly, when comparing in situ XRD patterns of fresh pastes with powder XRD 

233 patterns of dried pastes, major differences in d-spacing values are observed. This direct 

234 experimental result clearly indicates that some intercalated PCE side-chains and water 

235 molecules are lost during the drying process, thereby causing a reduction in the measured 

236 expansion. Therefore, we are forced to conclude that the final d-spacing recorded is 

237 critical on sample treatment by drying and it can be misleading as correlations should be 

238 established in the fresh paste state. 

239

240 XRD measurements for clay-PCE dried samples suggest intercalation of one 

241 single monolayer of PEG/PEO side-chains with two water molecules. However, in situ 

242 XRD data for similar samples but recorded in fresh pastes could be indicative of a 

243 mechanism based on multiple intercalated layers of side-chains. To the best of our 

244 knowledge, there are no references reporting diffraction data in these experimental 

245 conditions. Therefore, more studies by independent laboratories are needed to firmly 

246 establish this behaviour.

247

248 d001 d-spacing values corresponding to fresh clay pastes without admixture (see 

249 Table 3), are compatible with MNT clay with three water molecules in the interlayer 

250 region, typical in calcium alkaline media [2, 3]. When clay pastes without admixture are 

251 dried, the original d001 spacing of 12.3 Å of raw-powder clay increases to 15.4 Å. This 

252 basal spacing value is referred to in publications as characteristic of calcium 

253 montmorillonite with two water molecules in the interlayer region [2, 3, 5]. This 

254 observation indicates that not all absorbed water is lost during the drying process (even 

255 considering that the tested sample was dried for 7 days at 40 ºC). The results also suggest 



256 that some cation exchange could take place, sodium by calcium, while the clay is 

257 dispersed in the cement pore solution.

258

259 4.3 Impact of PCE dosage on Na-MNT d-spacing expansion

260 To further investigate the influence of PCE dosage on the expansion of Na-MNT 

261 interlaminar space, an additional XRD study was performed. Fig. 7 reports the d-spacing 

262 values, obtained from synchrotron and laboratory XRD patterns, for clay pastes prepared 

263 with increasing dosage of PCE admixture.

264

265

266 Fig. 7. d-spacing of clay pastes with different PCE dosages and different XRD 

267 diffraction measurement conditions

268

269 Firstly, laboratory XRD data for corresponding dried samples show much smaller 

270 d-spacing values as shown in Fig. 7. Secondly, d-spacing variations recorded in dried clay 

271 pastes containing PCE from 13% bwc to 160% bwc show no significant difference. 

272 Maximum d-spacing of 20.7 Å is observed at PCE dosage of 50% bwc, which is identical, 

273 within the errors, to that of 160% bwc. For all dried samples, the obtained results are 



274 compatible with one single monolayer of intercalated PEO/PEG side-chain in a zig-zag 

275 planar disposition coordinated by two water molecules [7, 10]. Thirdly, for the fresh paste 

276 samples, changes in d-spacing values are observed with increasing PCE dosage, with both 

277 diffraction equipment set-ups. 

278

279 The largest observed d-spacing is close to 60 Å, being three times the maximum 

280 value obtained for dried clay pastes. From this observation, it can again be concluded that 

281 dried pastes do not reproduce the real impact on interlaminar expansion generated by PCE 

282 dosages, as observed in XRD patterns for fresh clay pastes (see Fig. 7). The large d-

283 spacings (layer expansion) observed upon PCE intercalation has been assigned to regular 

284 side chains intercalation between the clay layers. At this stage, it is not possible to rule 

285 out irregular side chain intercalation each few clay layers. This will be studied in a future 

286 research, but it does not affect the main findings of this work: the previously reported 

287 sample preparation for XRD yielded misleading results. Finally, d-spacing expansions 

288 recorded on fresh pastes by using synchrotron and laboratory XRD sources are quite 

289 similar for all PCE tested dosages. Therefore, we infer that the experimental conditions 

290 used for the diffraction experiments do not affect the results.

291

292 5. Hypothesis for PCE intercalation model in MNT clay

293 Based on the observed d-spacing expansion, a hypothesis for the PCE intercalation 

294 model on MNT clay can be proposed. The theoretical thickness of one monolayer of water 

295 molecules within the interlaminar space can be estimated by assuming a thickness of 9.6 

296 Å for the T-O-T layer structure of MNT clay [17]. Thus, inter-layer space can be deduced 

297 by subtracting this value from the experimental d-spacing values. Table 4 presents some 

298 reported d-spacing data from various references as well as from proposed coordination 



299 models, which allows for the derivation of the theoretical H2O monolayer thickness. As 

300 can be seen, almost all values are between 2.7 Å and 2.9 Å. The resulting average value 

301 of 2.81 Å would correspond to the thickness of one single H2O monolayer within the 

302 MNT interlaminar space. This result is in agreement with hydrogen bonding lengths in 

303 similar structures [19].

304

Data source
Sample      

state
d-spacing 

(Å)
Coord. 

H2O layers
Calc. length of H2O 

monolayer (Å)
[18] 12.6 1 3.0
[4]

dried
12.3 1 2.7

[3] fresh 19.1 3 3.17
[10] dried 15.2 2 2.8
[2] simulation 12.3–21.0 1–4 2.7–2.85
[5] dried 15.0 2 2.7

Raw 12.3 1 2.7
dried 15.4 2 2.9Cu K

18.6 3 2.99
This 
study

Synchrotron
fresh

18.5 3 2.97
305 Table 4. d-spacing data for MNT clay without PCE admixture

306

307 To theoretically estimate the thickness of one single PEG/PEO side-chain, 

308 intercalated into the MNT interlaminar space, Table 5 presents d-spacing results from 

309 references for MNT pastes treated with PCE polymers. Assuming an intercalation model 

310 where PEG/PEO side-chain is coordinated with two water molecules by hydrogen 

311 bonding [9], and arranged in a zig-zag planar disposition [7], the equivalent thickness of 

312 one single PEO monolayer can be deduced from the proposed configuration, as presented 

313 in Table 5. The result of the simple calculation is 2.48 Å. Considering a thickness of 2.81 

314 Å for H2O monolayer and 2.48 Å thickness for PEG/PEO side-chain monolayer and by 

315 accepting the intercalation model proposed, it is possible to calculate the number of H2O 

316 and PEO unit layers intercalated in fresh clay pastes. The number of intercalated layers 



317 calculated from d-spacing results obtained from synchrotron XRD source are given in 

318 Table 6.

319

Reference
Sample 

state
d-spacing 

(Å) 
H2O:PEO 

coordination
Calculated length of 
PEO monolayer (Å)

[4] dried 17.7 2:1 2.3

[5, 7, 9] dried
17.8
17.7

2:1
2.4
2.3

[20] simulation 17.9 2:1 2.5
[1, 8] dried 17.2 2:1 2.0

[10] dried
17.6
17.8
17.9

2:1
2.2
2.4
2.5

320 Table 5. d-spacing data for MNT clay with PCE admixture

321

PCE dosage 
(% bwc)

d-spacing 
(Å)

H2O layers 
coordinated

PEO layers 
coordinated

Error 
(Å)

13% 48.7 8 7 -0.7
50% 55.2 9 8 0.5
100% 56.1 9 8 1.4
220% 58.9 10 9 -1.1
325% 59.5 10 9 -0.5

322 Table 6. Calculated H2O and PEO layers intercalated into MNT clay

323

324 By comparing intercalated units of PEG/PEO side-chains from XRD patterns of 

325 fresh clay pastes (Table 6) with intercalation number deduced from XRD patterns of dried 

326 clay pastes (Table 5), it is possible to conclude that the degree of intercalation of PCE 

327 side-chains is up to nine times larger and increases with PCE dosage. The error calculated 

328 as the difference between theoretical (simplified) calculations and experimental d-spacing 

329 are also reported in Table 6. The maximum observed error, 1.4 Å, can be considered low 

330 and within the errors and approximations. Therefore, it would be possible to validate the 

331 model of multiple intercalation based on PEG/PEO side-chains coordinated with H2O 



332 molecules by H-bonding. This means that the theoretical thickness deducted for one H2O-

333 PEO layer corresponds to 5.3 Å, which fits with most reported data [1, 7, 10] while being 

334 in agreement with the experimental results reported here.

335

336 A scheme of the multiple intercalation model is displayed in Fig. 8(b), derived 

337 from an initial configuration of three H2O layers where no PCE admixture is present, as 

338 shown in Fig. 8(a). When PCE polymer is added, Fig. 8(b) proposes an intercalation 

339 model based on repetitive sequences of H2O-PEO layers (LH2O-PEO) ended by a single H2O 

340 monolayer bonded to internal MNT clay surface by H-bonding. 

341

342

343 Fig. 8. Intercalation models in MNT clay; a) without PCE polymer added; b) with PCE 

344 based admixture added

345

346 In situ XRD data from fresh clay pastes indicate that up to nine PEG/PEO side-

347 chains of PCE polymer can be intercalated in a single interlaminar space of MNT clay. 

348 This value is much larger than the intercalation numbers deduced from powder XRD 

349 patterns for dried clay samples. Considering the potential steric repulsion derived from 

350 the concentration of a large number of long PEG/PEO side-chains in a limited space, it 

351 is possible to propose that all side-chains intercalated in a single unit of dispersed MNT 



352 clay particle belongs to a restricted number of polymer units or even to a unique PCE 

353 molecule adsorbed on the clay surface. The multiple intercalation model proposed is not 

354 in contradiction with the mechanisms proposed by Ng & Plank [4] Tan et al. [7]. In fact, 

355 the assumed molecular interaction is the same as that proposed by the aforementioned 

356 authors, but data from in situ XRD patterns obtained on fresh clay pastes allow for an 

357 extension of the initial PEG/PEO monolayer model of intercalation to a multiple-chain 

358 intercalation model, where many PCE side-chains can be absorbed at the same time into 

359 interlaminar space of MNT clay.

360

361 6. Conclusions

362 An undesired influence of the drying process of clay pastes on d-spacing 

363 determination by XRD has been identified. Changes in d-spacing due to the intercalation 

364 of PCE side-chains measured in dried clay pastes by powder XRD are systematically 

365 much lower than the changes observed by in situ XRD recorded for fresh pastes. Absolute 

366 d-spacing values, when the PCE admixture is used, are altered by the drying process, and 

367 up to nine times lower number of intercalated PEG/PEO side-chains are observed. 

368 Furthermore, the dried sample XRD data does not reproduce the true degree of 

369 intercalation as the dosage of PCE admixture increases.

370

371 The behaviour of fresh paste analysis has been confirmed by performing in situ 

372 measurements with two different sets of equipment, a synchrotron and a laboratory 

373 diffractometer, which yielded comparable results. Based on these observations, a multiple 

374 intercalation model of PCE side-chains has been proposed, based on a sequence of 

375 overlapping H2O-PEO layers ending with a H2O monolayer.

376
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 Fig. 1. a) Laboratory XRD patterns for centrifuged-dried MNT samples with different PCE 
based superplasticisers (adapted from [5]); b) Laboratory XRD patterns for centrifuged-
dried MNT samples with PCE and PEG based superplasticisers (adapted from [9])

a) b)



Fig. 2. Laboratory XRD pattern for raw Na-MNT used in this study.



Fig. 3. Capillaries containing the fresh pastes mounted 
on the rack for synchrotron XRD data collection.



Fig. 4. Holder containing the fresh pastes, sandwiched between 
thin polyester films, for Cu K laboratory XRD data collection
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Fig. 5. Laboratory XRD patterns for dried clay pastes by 
using two different separation methods.
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Fig. 6. XRD patterns for Na-MNT pastes with increasing PCE contents: a) data for fresh pastes 
collected with synchrotron radiation; b) data for fresh pastes collected with a Cu K  
diffractometer; c) data for centrifuged and dried pastes collected with a Cu K diffractometer.

d001= 18,6 Å
(0% PCE)

d001= 51,7 Å
(13% PCE)

d001= 56,1 Å
(50% PCE)

d001= 15,4 Å
(0% PCE)

d001= 18,6 Å
(13% PCE)

d001= 20,7 Å
(50% PCE)

Position 2θ

In
te

ns
ity

0 1 2 3 4
0

3000

6000

9000

12000

15000

18000

21000

24000

No PCE

d001= 18,5 Å
(0% PCE)

d001= 48,7 Å
(13% PCE)

d001= 55,2 Å
(50% PCE)

a) b) c)



d-
sp

ac
in

g 
(Å

)

No                
PCE

2%         
bwc

5%         
bwc

13%          
bwc

50%       
bwc

100%       
bwc

220%        
bwc

325%         
bwc

No                
PCE

13%          
bwc

50%       
bwc

160%       
bwc

XRD on fresh paste XRD on dried paste

0

10

20

30

40

50

60

70
ALBA - Synchrotron light

Fig.7. d-spacing of clay pastes with different PCE dosages and 
different XRD diffraction measurement conditions



Fig.8. Intercalation models in MNT clay; a) without PCE polymer 
added; b) with PCE based admixture added


