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Topology and disorder have deep connections and a rich combined influence on quantum transport.
In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with
controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling
of discrete momentum states of ultracold atoms. We characterize the system’s topology through
measurement of the mean chiral displacement of the bulk density extracted from quench dynamics.
We find evidence for the topological Anderson insulator phase, in which the band structure of
an otherwise trivial wire is driven topological by the presence of added disorder. In addition, we
observed the robustness of topological wires to weak disorder and measured the transition to a trivial
phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform
will enable future realizations of strongly interacting topological fluids.

Topology and disorder share many surprising connec-
tions, from the formal similarity of one-dimensional (1D)
pseudo-disordered lattices and two-dimensional (2D) in-
teger quantum Hall Hofstadter lattices [1, 2], to the deep
connection between the symmetry classes of random ma-
trices [3] and the classification of symmetry protected
topological phases [4]. Recently, there has been great
interest in exploring both disorder [5] and topology [6]
through quantum simulation, stemming from the dra-
matic influences that these ingredients can have, sepa-
rately, on the localization properties of quantum parti-
cles [7, 8]. When combined, disorder and topology can
have a rich and varied influence on quantum transport [9].
Indeed, one of the hallmark features of topological insula-
tors (TIs) is the topologically protected boundary states
that are immune to weak disorder [10]. The robust con-
ductance of such boundary states, such as the 1D edge
states of integer quantum Hall systems [8], or the 2D sur-
face states of three-dimensional (3D) TIs [11], serves as
an important counterexample to the inevitability of local-
ization in low-dimensional disordered systems [7, 12]. De-
spite the robustness to weak disorder, a change in topol-
ogy can result from strong disorder, and unusual critical
phenomena related to the unwinding of the topology can
accompany such transitions [13, 14].

Surprisingly, static disorder can also induce nontrivial
topology when added to a trivial band structure. This
disorder-driven topological phase, known as the topolog-
ical Anderson insulator (TAI), was first predicted to oc-
cur in metallic 2D HgTe/CdTe quantum wells [15]. There
has been much interest in the TAI phase over the past
decade [15–17], and many theoretical studies have shown
the TAI phenomenon to be quite general, emerging across
a range of disordered systems [18–21]. However, due to

the lack of precise control over disorder in real materi-
als, and the difficulty in engineering both topology and
disorder in most quantum simulators, the TAI has so far
evaded experimental realization.

We engineer synthetic 1D chiral symmetric wires with
precisely controllable disorder using simultaneous, coher-
ent control over many transitions between discrete quan-
tum states of ultracold atoms. We directly measure the
topological index of the synthetic wires through observa-
tion of the bulk dynamics of the atomic density following
a quench. We observe a robustness of topological wires
to weak tunneling (off-diagonal) disorder, while for very
strong disorder we observe a transition from topological
to trivial. We furthermore observe that a nontrivial topo-
logical band structure, the long-sought TAI phase [15],
can be induced from an incipient non-topological phase
through the addition of static disorder. These transi-
tions, enabled by our unique ability to synthesize many
precisely controlled disorder realizations, constitute the
first detailed investigations of disorder-driven changes in
topology in any experimental system.

The topological band structures we consider are 1D TIs
based off the Su-Schrieffer-Heeger model having chiral,
or sublattice, symmetry [4, 19, 22, 23]. The rich variety
of phenomena associated with 1D TIs (e.g. boundary
modes that are stable against disorder, bulk-boundary
correspondence, and quantized charge pumping) are easy
to visualize in such chiral symmetric wires. We describe
this system in terms of a tight-binding model with a two-
site unit cell, having sublattice sites A and B [depicted
in Fig. 1(a)]. We consider the Hamiltonian

H =
∑

n

[
mnc

†
nScn + tn

(
c†n+1

(σ1 − iσ2)

2
cn + h.c.

)]
,
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where c†n = (c†n,A, c
†
n,B) creates a particle at unit cell n

in sublattice site A or B, cn is the corresponding anni-
hilation operator, and σi are the Pauli matrices related
to the sublattice degree of freedom [23]. The mn and
tn characterize the intra- and inter-cell tunneling ener-
gies. This model can describe chiral wires of the AIII
or BDI symmetry classes, by choosing the intra-cell hop-
ping term to be S = σ1 (BDI) or S = σ2 (AIII). Both the
AIII and the BDI class models respect chiral symmetry,
i.e., they obey ΓHΓ = −H with Γ = σ3 ⊗ I the chiral
operator, whereas the BDI class also obeys particle-hole
and time-reversal symmetry [4].

We experimentally implement effective tight-binding
models of the form of Eq. (1) using the controlled, para-
metric coupling of many discrete momentum states of
ultracold atoms [24]. We start with a weakly-trapped
Bose-Einstein condensate (BEC) of 87Rb atoms and ap-
ply a pair of counter-propagating laser fields with nomi-
nal wavelength λ and wavevector k = 2π/λ. These lasers
are far-detuned from any atomic transitions, however
their interference pattern couples to the atoms through
the ac Stark effect. The spatial periodicity of the laser
interference pattern, π/k, defines the set of momentum
states having momenta separated by integer values of
2~k. These states may be coupled from the BEC, which
is a source of atoms with essentially zero momentum, and
they represent the effective sites of our synthetic lattice.
The tunneling of atoms between these sites is precisely
controlled by simultaneously driving many two-photon
Bragg transitions with the applied laser fields. The indi-
vidual, spectroscopically-resolved control over many such
transitions is allowed for by the Doppler shifts experi-
enced by the atoms, which are unique to the various
Bragg transitions [depicted in Fig. 1(b)]. This provides
local (in momentum space) control of the intra- and inter-
cell tunneling amplitudes and phases, directly through
the amplitudes and phases of the corresponding Bragg
laser fields [24].

The simplicity of chiral symmetric wires, described by
just a two-site unit cell with separate intra- and inter-cell
hoppings, has allowed for several other realizations based
on real-space superlattices [25, 26]. Such studies were
restricted to exploring BDI wires, as quantum tunneling
between stationary lattice sites is real-valued. In compar-
ison, our use of laser-driven tunneling, which allows an
independent and arbitrary control of all tunneling phases,
gives us access to not only the BDI class but also the AIII
class, whose recently proposed [27] real-space realization
would involve tremendous efforts. Enabled by these con-
trols, we observe a disorder-driven topological to trivial
transition in BDI-class wires and also a disorder-driven
trivial to topological transition in AIII-class wires, where
we find evidence for the TAI phase.

Our ability to create precisely defined disorder in the
off-diagonal tunneling terms is crucial for this study.
Unlike the site-potential disorder that is more natu-
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FIG. 1. Synthetic chiral symmetric wires engineered with
atomic momentum states. (a) Schematic lattice of the
nearest-neighbor-coupled chiral symmetric wire. Site-to-site
links within the unit cell (solid) and those connecting different
unit cells (dashed) have independent tunneling energies mn

and tn, respectively. (b) Schematic of the experimental im-
plementation of the tight-binding model depicted in (a), with
tunneling based on two-photon Bragg transitions between dis-
crete atomic momentum states.

rally realized in real-space cold atom experiments, e.g.,
through optical speckle [28] or quasiperiodic lattice po-
tentials [29], pure tunneling disorder is important for pre-
serving the chiral symmetry of our wires [19, 23]. In par-
ticular, we let

tn = t(1 +W1ωn), (2)

mn = t(m+W2ω
′
n), (3)

define the variations of our hopping terms, where t is
the characteristic inter-cell tunneling energy, m is the
ratio of intra- to inter-cell tunneling in the clean limit,
ωn and ω′n are independent random real numbers chosen
uniformly from the range [−0.5, 0.5], and W1 and W2 are
the dimensionless disorder strengths applied to inter- and
intra-cell tunneling.

We begin by considering the influence of disorder
added to a BDI-class wire. The wire is strongly dimer-
ized, as characterized by a small intra- to inter-cell tun-
neling ratio of m = 0.100(5) (with t/~ ≈ 2π × 1.2 kHz),
and hence is in the topological regime in the clean limit.
We fix the disorder amplitudes to be W ≡ W2 = 2W1,
and show in Fig. 2(a) the disorder-averaged topological
phase diagram of this model as a function of W and m,
as determined numerically by a real-space calculation of
the winding number ν for a system with 200 unit cells,
together with the critical phase boundary predicted for
an infinite system based on the divergence of the local-
ization length [23].

The strong dimerization produces a large (in units of
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FIG. 2. Disorder-driven transition from topological to trivial wires. (a) Topological phase diagram of the BDI wire model
described in Eq. (1), showing the winding number ν (inset color scale) as a function of disorder strength W and tunneling ratio
m with tunneling disorder strengths W ≡W2 = 2W1. The dashed line at m = 0.1 indicates the region explored experimentally.
The solid red curve indicates the critical phase boundary. (b) Integrated absorption images of the bulk dynamics following
a sudden quench of the tunnel couplings, for both weak disorder (W = 0.5) and strong disorder (W = 5), each for a single
disorder configuration. (c) Dynamics of C as calculated from the data shown in (b). The solid red curves are numerical
simulations with no free parameters. The dashed gray horizontal lines denote C̄ for each data set. (d) 〈C̄〉 as a function of
W for m = 0.100(5). The data are averaged over 20 independent disorder configurations and times in the range 0.5 to 8 ~/t
in steps of 0.5 ~/t. The solid gold line represents a numerical simulation for 200 disorder configurations, but with the same
finite time sampling as the data. The dashed gold line is based on the same simulation as the solid gold line, but sampled to
much longer times (τ = 1,000 ~/t) in a wire with 250 unit cells. The dotted grey curve shows the topological index in the
thermodynamic limit [23], which takes a value of 0.5 at the critical point, as indicated by the horizontal dashed line. The inset
shows C for W = 3 as a function of time for all 20 disorder configurations with C̄ for each disorder shown in the histogram. All
error bars in (c) and (d) denote one standard error of the mean.

the bandwidth) energy gap in the band structure. Such
large band gaps are typically favorable for experimentally
observing the topological nature of disorder-free nontriv-
ial wires via adiabatic charge pumping [25, 26] or the
adiabatic preparation of boundary states [30]. However,
it is expected that in disordered chiral symmetric wires
the bulk energy gap will essentially vanish at moderate
disorder strengths, well below those required to induce a
change in topology [23]. The energy gap is replaced by a
mobility gap, and the band insulator of the clean system
is replaced by an Anderson insulator that remains topo-
logical, with topology carried by localized states in the
spectrum [23]. Thus, without the spectral gap, experi-
mental probes relying on adiabaticity are expected to fail
in evidencing the topology of disordered wires.

We instead characterize the topology of our wires by
monitoring the bulk dynamical response of atoms to a
sudden quench. Specifically, we measure the mean chiral
displacement (MCD) of our atoms. This observable was
recently introduced in the context of discrete-time pho-
tonic quantum walks [31], and is herein measured for the
first time for continuous-time dynamics. We define the
expectation value of the chiral displacement operator as

C = 2〈ΓX〉 , (4)

given in terms of the chiral operator Γ and the unit
cell operator X [31]. The dynamics of C in general dis-

play a transient, oscillatory behavior, and its time- and
disorder-average 〈C̄〉 converges to the winding number ν,
or equivalently to the Zak phase ϕZak divided by π, in
both the clean and the disordered cases. At topologi-
cal critical points, moreover, 〈C̄〉 converges to the aver-
age of the invariants computed in the two neighboring
phases [31–33].

For our experiment we begin with all tunnel couplings
turned off, and the entire atomic population localized
at a single central bulk lattice site (site A of unit cell
n = 0, for a system with 20 unit cells). We then quench
on the tunnel couplings in a stepwise fashion. The pro-
jection of the localized initial state onto the quenched
system’s eigenstates leads to rich dynamics, as depicted
in Fig. 2(b) for both weak (W = 0.5) and strong (W = 5)
disorder. Such site-resolved dynamics of the atomic pop-
ulation distribution are directly measured by a series of
absorption images taken after dynamical evolution under
the Hamiltonian of Eq. (1) for a variable time τ (given
in units of the tunneling time ~/t ≈ 130 µs), and af-
ter the discrete momentum states separate according to
their momenta during a time-of-flight period [24]. From
the data shown in Fig. 2(b) we calculate C as a function
of τ as shown in Fig. 2(c), along with the time average C̄.
We additionally consider the disorder-averaged topolog-
ical characterization of the system by averaging C̄ over
many independent disorder configurations.
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FIG. 3. Observation of the topological Anderson insulator phase. (a) Topological phase diagram of the AIII wire model
described in Eq. (1), showing the computed winding number (color scale at right) as a function of disorder strength W and
tunneling ratio m with tunneling disorder strengths W ≡ W2 (W1 = 0). The striped black and white line at m = 1.12
indicates the region explored experimentally. The solid red curve indicates the critical boundary (i.e. the set of points where
the localization length diverges for an infinite chain). (b) 〈C̄〉 as a function of W for m = 1.12(2). The data are averaged over
50 independent disorder configurations and are averaged in time over the range 1.5 to 4.5 ~/t in steps of 0.5 ~/t. The solid gold
line relates to a numerical simulation for 200 disorder configurations, but with the same finite time sampling as the data. The
dashed gold line is based on the same simulation as the solid gold line, but sampled to much longer times (τ = 1,000 ~/t) in a
250 unit cell system. The dotted grey curve shows the topological index in the thermodynamic limit [23], which takes a value
of 0.5 at the critical points, as indicated by the horizontal dashed line. C as a function of time for all 50 disorder realizations
is shown at right for W = 2.5 and 6 and C̄ are shown in the histogram to the right of each plot. All error bars in (b) denote
one standard error of the mean.

The dependence of 〈C̄〉 on the strength of applied disor-
der W is summarized in Fig. 2(d). The inset of Fig. 2(d)
depicts the determination of 〈C̄〉 (shown for the case
W = 3), first from the time-average of C over 16 values
of τ evenly spaced between 0.5 ~/t and 8 ~/t, followed
by an average over 20 unique realizations of disorder. We
observe a robustness of 〈C̄〉 to weak disorder, maintain-
ing a nearly-quantized value close to one. For strong
disorder, W & 2, we observe a relatively steep drop in
〈C̄〉, with it falling below 〈C̄〉 = 0.5 for W & 3. Our ob-
served decrease of 〈C̄〉 with increasing disorder is in good
agreement with a numerical simulation (solid gold line) of
the Hamiltonian in Eq. (1) for experimental time scales.
The observed decay of 〈C̄〉 is associated to a disorder-
driven transition between topological (W . 4) and trivial
wires (W & 4). This observed crossover represents the
first systematic exploration of a disorder-driven change
of topology in any system, enabled by our unique ability
to precisely define disorder configurations.

On an infinitely long chain, we would expect to ob-
serve a sharp phase transition in the infinite-time limit
of our 〈C̄〉 measurement, yielding quantized values of the
invariant for all disorders, and half-integer values at the
critical phase boundary [33, 34]. However, we instead
observe a smooth crossover due to finite-time broaden-
ing from our abbreviated period of quench dynamics and
the corresponding finite number of sites. The observa-
tion of a moderately sharper transition, such as that of
the dashed-line numerical simulation in Fig. 2(d), would
require that we measure at extremely long timescales

(shown for 1,000 tunneling times) and for very large sys-
tems (shown for 250 unit cells), which at the moment
is beyond the capabilities of our experimental technique.
The slow convergence of this transition with increasing
measurement time and system size is a characteristic fea-
ture of random-singlet transitions [14], such as that found
in chiral symmetric wires at strong disorder.

Having demonstrated a disorder-driven change of
topology in BDI-class wires, we now turn our attention to
AIII-class wires where we investigate the surprising fea-
ture that an initially clean, trivial system can be driven
topological through the addition of disorder. This phe-
nomenon is manifest in the phase diagram of AIII-class
wires in Fig. 3(a) for m just exceeding one. The value
|m| = 1 is the critical point between the topological and
trivial phase in the clean limit, and values of |m| > 1
are in the trivial phase in the absence of disorder. How-
ever, we see that random tunneling disorder induces the
TAI phase over a broad range of weak to moderate W
values, eventually giving way to a trivial Anderson in-
sulator phase again for very large disorder. Beyond nu-
merics, a mechanism for the formation of a TAI phase
was first elaborated in Ref. [17] for 2D systems. In that
work, disorder is taken into account perturbatively using
the self-consistent Born approximation, and was shown
to effectively renormalize the parameters in the Hamilto-
nian (including the parameter(s) that tune between the
topological and trivial phases). The TAI phase arises
because, as disorder is added to the trivial phase tuned
near the clean critical point, the effective Hamiltonian is
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renormalized through the critical point and into the topo-
logical phase. This type of reasoning was adapted and
extended to describe the TAI phase in 1D systems includ-
ing both the BDI- and AIII-class wires that we consider
here [19, 34]. Although, strictly speaking, the sharpest
results of the latter work can only be applied in a sce-
nario with multiple wires, numerical evidence supports
the existence of the TAI even for a single wire [23].

Here, we probe the influence of tunneling disorder on
atomic wires of the AIII class. Since we are interested
in the TAI phase, we start with a slight dimerization
[m = 1.12(2)] that places the system in a trivial phase
in the clean limit. We note that being so near the crit-
ical point at m = 1 causes the band gap in the clean
limit to be much smaller than in the previous experi-
mental setup. The choice of disorder we consider here
differs from the previous case: we add disorder only to
the intra-cell hopping terms, i.e., setting W1 = 0 and
W ≡W2. From Refs. [17, 19, 34] we expect that, for weak
disorder of this form, the intra-cell hopping m should be
renormalized toward the topological phase resulting in a
TAI. Due to the smaller band gap in this case of reduced
dimerization, the effects of residual time dependence in
our driven system become more important. In order to
mitigate these effects, we reduce our tunneling energy to
t/~ ≈ 2π×600 Hz, resulting in a correspondingly lessened
experimental time range of τ = 1.5 ~/t to 4.5 ~/t.

Figure 3(b) shows the dependence of 〈C̄〉 on the
strength of added disorder in the AIII-class wire. The
measured 〈C̄〉 values are obtained, as in the previous case,
through the non-equilibrium bulk dynamics of the atoms
following a quench of the tunneling. Due to the restricted
range of τ , we include many more disorder configura-
tions (50) to allow for stable measures of 〈C̄〉. For weak
disorder, we observe that 〈C̄〉 rises and reaches a pro-
nounced maximum at W ≈ 2.5. This is consistent with
the expected change in the renormalized m parameter,
i.e., given the negative sign of the lowest-order correc-
tion to m, for weak disorder [17, 19, 34]. 〈C̄〉 then decays
for very strong applied disorder. This observation of an
initial increase of 〈C̄〉 followed by a decrease is indica-
tive of two phase transitions, first from trivial wires to
the TAI phase and then to a trivial Anderson insulator
at strong disorder, broadened by our finite interrogation
time.

Despite the effects of finite-time broadening, we see our
measured 〈C̄〉 rise to greater than 0.5 (the infinite-time
〈C̄〉 value associated with the critical point) for W ≈
2.5, lending further evidence to our observation of the
TAI phase. The excellent agreement of our experimental
〈C̄〉 data with a short-time sampled numerical simulation
(solid gold line), combined with the sharper transitions
expected for long-time measurements based on the same
simulations (dashed gold line for 1,000 tunneling times in
a 250 unit cell system), provide strong evidence for the
observation of disorder-driven topology in an otherwise

trivial band structure.

Unlike with real condensed matter systems and pho-
tonic simulators, where carrier mobility or lattice param-
eters vary from sample to sample, the spectroscopic con-
trol of our atomic physics platform has allowed us to
engineer many different, precisely tuned realizations of
disorder. In addition to enabling these first explorations
of disorder-driven quantum phase transitions in topolog-
ical wires, this unique level of control will also enable
future studies of quantum criticality in disordered topo-
logical systems [9, 13]. By simple extension to longer
evolution times, we may study in detail the interesting
physics of logarithmic delocalization at the random sin-
glet transition [14]. Combined with our ability to engi-
neer tunneling phases [24] and artificial gauge fields, our
technique may be extended to study disordered quantum
Hall systems [13]. And while our present study has been
restricted to a regime where interactions are relatively
unimportant, the presence of strong interactions in syn-
thetic momentum-space lattices [35] will enable future
studies of strongly interacting topological fluids.

Acknowledgments We thank Nathan Goldman, Maciej
Lewenstein, Hassan Shapourian, and Ian Mondragon–
Shem for helpful discussions. This material is based
upon work supported by the National Science Founda-
tion under Grant No. PHY17-07731 (EJM, FAA, and
BG). AD, MM, and PM acknowledge Spanish MINECO
(Severo Ochoa SEV-2015-0522, FisicaTeAMO FIS2016-
79508-P, and SWUQM FIS2017-84114-C2-1-P), the Gen-
eralitat de Catalunya (SGR874 and CERCA), the EU
(ERC AdG OSYRIS 339106, H2020-FETProAct QUIC
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I. EXPERIMENTAL SETUP

All the experiments shown in the main text begin with Bose–Einstein condensates (BECs) of 87Rb with roughly
105 atoms. The BECs are optically trapped by two crossed 1064 nm laser beams, with most of the trapping power in
just a single beam and the other providing weak confinement. This arrangement results in a weak harmonic trapping
along the propagation axis of the high-power beam (with a harmonic trapping frequency of roughly 10 Hz) and tighter
trapping (with a harmonic frequency of roughly 130 Hz) along the other two axes.

The lattice is created by passing the high-power trapping beam through a series of acousto-optic modulators which
turn the single frequency beam into a beam containing many slightly detuned frequency components. This multi-
frequency beam is then directed to counter-propagate with itself at the location of the atoms to drive the two-photon
Bragg transitions linking sites in the momentum-space lattice as shown in Fig. S1(a). Since the different synthetic
lattice sites have different momenta, we can image the atomic population at a site-resolved level by performing
time-of-flight imaging, where the time-of-flight period allows the atoms at different lattice sites to separate in real
space.

II. SPECTROSCOPIC ENGINEERING OF EFFECTIVE TIGHT-BINDING MODELS

A discrete set of states ψj with momenta pj = 2j~k are determined by the lattice laser wavevector k (k = 2π/λ
with laser wavelength λ). These states may be populated from a zero-momentum condensate through the stimulated
exchange of photons between the two counter-propagating laser fields as shown in Fig. S1(a). A unique energy
difference and Bragg transition frequency ωresj = (2j + 1)4ER/~ (with ER = ~2k2/2M the recoil energy and M the
mass of the atoms) between each pair of neighboring states ψj and ψj+1 is defined by the quadratic dispersion of
the atoms as shown in Fig. S1(b). By writing multiple frequency components onto the counter-propagating laser
field, each of which addresses a unique state-to-state Bragg transition, we achieve spectrally-resolved control over all
effective lattice parameters at the individual link level.

More formally, at the single-particle level the momentum-space evolution of the atoms is governed by the Hamil-
tonian H = H0 + V (t). Here, H0 =

∑
j Ej |ψj〉〈ψj | describes the kinetic energies Ej = 4j2ER of the ψj states

and V (t) =
∑
j(χ(t)|ψj+1〉〈ψj | + χ∗(t)|ψj〉〈ψj+1|) describes the interaction of atoms with the counter-propagating

laser field. The common (for all j) off-diagonal coupling constant is defined by χ(t) =
∑
l ~Ω̃le

iϕle−iω̃lt, and relates
to changes of momenta by +2~k via virtual absorption of a photon from the right-traveling beam and stimulated
emission into one of the left-traveling fields with index l (with right/left directions as depicted in Fig. S1(a)). Here,

the two-photon coupling strengths are Ω̃l = Ω−l Ω+/2∆ in terms of the single-photon detuning ∆ from atomic res-
onance (ground |g〉 to excited |e〉 state transition as shown in Fig. S1(b)) and the single-photon Rabi couplings
(assumed to be real-valued), with Ω+ relating to the right-traveling field and Ω−l to the lth frequency component
of the left-traveling field. Similarly, the two-photon phase shift is related to the phase difference between the in-
terfering fields as ϕl = φ+ − φ−l , and the two-photon frequency is given by the frequency difference between the
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FIG. S1. Experimental setup. (a) Cartoon depiction of the momentum-space lattice lasers incident on the Bose–Einstein
condensate (BEC). (b) Free-particle dispersion relation of individual atoms showing the available momentum states as points
along the parabola and the lattice lasers from (a) linking the states. (c) The resulting momentum space lattice formed by the
tunnel couplings shown in (a) and (b). This figure is adapted from Ref. [1].

interfering fields as ω̃l = ω−l − ω+. We can move to the interaction picture to remove the diagonal kinetic energy

terms, leaving only H int = VI(t) = eiH0t/~V (t)e−iH0t/~, with VI(t) =
∑
j(χ̃j(t)|ψj+1〉〈ψj | + χ̃∗j (t)|ψj〉〈ψj+1|) and

χ̃j(t) = χ(t)ei(Ej+1−Ej)t/~ = χ(t)eiω
res
j t.

We achieve our goal of uniquely controlling all nearest-neighbor couplings at the single-link level by associating
each frequency component with a unique Bragg resonance. Specifically, we define ω̃l = ωresl , such that χ(t) =∑
l ~Ω̃le

iϕleiω
res
l t. In the weak-driving limit (~Ω̃j � 8ER ∀ j), each frequency component contributes to the coupling of

only two particular momentum states ψj and ψj+1. Ignoring all rapidly oscillating terms, we arrive at an approximate

description with controlled, nearest-neighbor couplings 〈j + 1|VI(t)|j〉 ≈ ~Ω̃je
iϕj . This brings us in final form to a

highly tunable single-particle Hamiltonian

Heff ≈
∑

j

tj(e
iϕj |ψ̃j+1〉〈ψ̃j |+ h.c.), (S1)

where arbitrary control over all tunneling amplitudes tj ≡ ~Ω̃j and tunneling phases ϕj is enabled in a link-dependent
fashion through control of the multi-frequency global addressing field. This gives us the ability to control tj and ϕj
not only locally but also time-dependently. Here, however, the only time dependence in these parameters is that they
are turned on suddenly in a step-wise fashion.

In addition to the single-particle dynamics driven by atom-light interactions, this cold atom system can also have
important contributions from real-space contact interactions between the atoms. In momentum space, for a one-
dimensional system, atomic scattering is predominantly momentum mode-conserving due to energy conservation and
the quadratic free-particle dispersion. This leads to self- and cross-phase modulation terms between the various
momentum modes, at the scale of the condensate mean-field energy U = 4π~2aρN (with a the scattering length and
ρN the uniform atomic number density in real space) [2]. Due to bosonic statistics, there is an added exchange energy
between atoms scattering in distinguishable momentum states. This results in cross-phase modulation terms that are
twice as large as the self-phase modulation terms. For repulsive real-space interactions, as in the case of 87Rb, this
added long-range (in momentum-space) repulsion can be recast as an effective attraction between atoms in the same
momentum mode. We can approximately capture the influence of interactions in our system by the time-dependent
Gross-Pitaevskii equation

i~ψ̇j = tje
−iϕjψj+1 + tj−1e

iϕj−1ψj−1 + U
(
2− |ψj |2

)
ψj , (S2)

where ψj are the normalized momentum-mode amplitudes and the tunneling elements relate to those of Heff. While
these interactions may enable us to study interacting topological quantum fluids in the future, this experiment
was designed to minimize the effects due to interactions. As such we find no evidence of significant effects due to
interactions in the data presented here or in the main text. For more information on the role of interactions in the
momentum-space lattice see Ref. [3].
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FIG. S2. Probing the topological Anderson insulating phase in BDI class wires. (a) Topological phase diagram of the BDI
wire model, showing the computed winding number (inset color scale) as a function of disorder strength W and tunneling ratio
m with tunneling disorder strengths W ≡ W2 = 2W1. The dashed horizontal line at m = 1.12 indicates the region explored
experimentally. The solid red curve indicates the critical boundary (i.e. the set of points where the localization length diverges
for an infinite chain). (b) Integrated absorption images of the bulk dynamics following a sudden quench of the tunnel couplings,
for both zero disorder (W = 0) and strong disorder (W = 6, for a single configuration of the disorder). (c) Dynamics of C for
the same data as in (b). The solid blue curves are numerical simulations with no free parameters. The dashed gray horizontal
lines denote C̄ for the data. (d) 〈C̄〉 as a function of W for m = 1.12(2). The data are averaged over 50 disorder configurations
and times in the range 1.5 ~/t to 4.5 ~/t in steps of 0.5 ~/t. The solid gold line represents a numerical simulation based on
the exact experimental time and disorder averaging. The dashed gold line is based on the same simulation as the solid gold
line, but sampled to much longer times (τ = 1,000 ~/t in a system with 250 unit cells). The dotted grey curve shows the
topological index in the thermodynamic limit [5], which takes a value of 0.5 at the critical points, as indicated by the horizontal
dashed line. The inset shows C as a function of time for all 50 disorder configurations (for W = 2.5) and a histogram of the
corresponding C̄ values. All error bars in (c) and (d) denote one standard error of the mean.

III. EVIDENCE FOR THE TAI PHASE IN BDI WIRES

In addition to the study in the main text that explores the influence of tunneling disorder on AIII-class wires,
here we study and provide evidence for a topological Anderson insulating (TAI) phase in BDI-class wires. The case
of disordered AIII-class wires in the main text utilized disorder that was only applied to the intra-cell tunneling
elements, similar to the theory study of Ref. [4]. However, here, for the BDI wires, we consider the same ratio of
disorder strengths on the intra- and inter-cell terms as was examined in theory in Ref. [5] and experimentally for
Fig. 2 of the main text, i.e. W ≡W2 = 2W1. The consequence of this disorder arrangement is that the region of the
topological phase diagram relating to the TAI is somewhat smaller than for the scenario in which W1 = 0. Because
of finite-time broadening, the measurement of 〈C̄〉 takes a smaller maximum value in this case as compared to the
case of fully asymmetric (W1 = 0) disorder, as the TAI phase is sandwiched between two trivial regions (for constant
tunneling imbalance m as a function of disorder strength W ).

The topological phase diagram for the BDI wires as a function of m and W , equivalent to that of Fig. 2(a) of the
BDI case in the main text, is reproduced here in Fig. S2(a). Here, we measure 〈C̄〉 along the line m = 1.12(2), by
observing the bulk density response to a quench of the tunneling terms, as in the main text. The bulk response for zero
disorder (W = 0) and large disorder (W = 6, for a single configuration of the disorder) are shown in Fig. S2(b) and
the corresponding C measurement is shown in Fig. S2(c), where we find good agreement with a zero-free-parameter
numerical simulation (blue lines).

The measurements of 〈C̄〉 as a function of W are shown in Fig. S2(d), taken for 50 disorder configurations and for
times ranging from 0.5 ~/t to 4.5 ~/t, in steps of 0.5 ~/t for t/~ ≈ 2π×600 Hz. As in the case of AIII-class wires, here
we observe that the addition of weak to moderate disorder leads to an increase in 〈C̄〉, while strong disorder causes
〈C̄〉 to decay again. The data is in agreement with a numerical simulation (gold solid line in Fig. S2(d)) based on the
experimental time sampling. The sharp rise and fall of 〈C̄〉 found in simulations extended out to much longer times
(dashed gold line, for 1,000 tunneling times) suggest that we are observing successive topological phase transitions
that are broadened due to finite time sampling. To note, the maximum 〈C̄〉 measurement and even the equivalent-time
theory predictions are slightly less than 0.5 in this case, due to the different ratio of disorder strengths applied to
intra- and inter-cell tunnelings as compared to the AIII data of Fig. 3 of the main text.
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IV. TUNNELING CALIBRATIONS

To calibrate the tunneling strength t in these experiments, we expose the condensate to a single frequency component
linking site j = 0 to site j = 1. We then observe Rabi oscillations over several tunneling times. The measured
Rabi oscillation frequency allows us to extract the coupling strength t between the two sites. By ensuring that
this calibration laser field has the exact same strength as the experimental laser field we are able to calibrate the
experimental tunneling strength.

V. COMPARISON OF FULL AND APPROXIMATED NUMERICAL SIMULATIONS

While the data presented in Figs. 2 and 3 of the main text and Fig. S2 of the supplement agree very well with
the “ideal” numerical simulations of Eq. (S1), we also performed simulations that more exactly represent our system,
i.e. including effects due to off-resonant driving and interactions (assuming an interaction energy U ≈ 2π × 700 Hz
based on Bragg spectroscopy). The results of these “full” simulations are compared to their respective data and ideal
simulations in Fig. S3. We find, in general, that the full simulation and ideal simulation both agree with the data and
each other adequately such that the rotating wave approximation which gives the simplified form of Eq. (S1) of the
main text is reasonably justified.
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FIG. S3. Comparison of full and ideal simulations to data. (a) 〈C̄〉 as a function of W for a BDI-class wire with W ≡ 2W1 = W2,
m = 0.100(5), and t/~ ≈ 2π×1200 Hz. The dotted black line is a “full” simulation including off-resonant driving and interaction
effects with U = 2π×700 Hz as measured through Bragg spectroscopy. These are compared to the “ideal” simulations presented
in the main text for experimental system sizes and timescales (solid gold line) and for larger systems with 250 unit cells and
timescales of 1,000 ~/t (dashed gold line). (b) 〈C̄〉 as a function of W for a AIII-class wire with W1 = 0 and W ≡ W2,
m = 1.12(2), and t/~ ≈ 2π×600 Hz. The dotted black line is a full simulation and the gold lines are ideal simulations as
presented in the main text for small (solid line, experimental sizes and timescales) and large (dashed line, 250 unit cells and
1,000 ~/t) systems. (c) 〈C̄〉 as a function of W for a BDI-class wire with W ≡ 2W1 = W2, m = 1.12(2), and t/~ ≈ 2π×600 Hz.
The dotted black line is a full simulation and the gold lines are ideal simulations as presented in the main text for small (solid
line, experimental sizes and timescales) and large (dashed line, 250 unit cells and 1,000 ~/t) systems. All error bars denote one
standard error of the mean.

VI. WINDING NUMBER AND MEAN CHIRAL DISPLACEMENT FOR DISORDERED 1D CHIRAL
MODELS

The topology of 1D chiral models in classes AIII and BDI is characterized by the winding number ν. In trans-
lationally invariant systems the winding number is most simply calculated in momentum space using the Bloch
wavefunctions of the energy bands. However, in the presence of disorder, where translational symmetry is broken,
the winding number must be computed in real space as shown in Ref. [5], and references therein. Here we revisit the
real-space formalism, and present an alternative method that can be used to extract the winding number in disordered
systems even with open boundary conditions. Subsequently, we show that in the thermodynamic limit the winding
number of the disordered fermion system of our model matches the expectation value of the chiral displacement
operator.
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Given a generic Hamiltonian H, let us introduce its “flat-band analogue” Q = P+−P−, defined as the projector on
the positive-energy eigenstates minus the projector on the negative-energy eigenstates. If the original Hamiltonian is
chiral, so is the Q-matrix, and it is therefore possible to write it as

Q = QAB +QBA = ΓAQΓB + ΓBQΓA, (S3)

where ΓA,ΓB are projectors onto the A or B sublattices respectively, and Γ = ΓA − ΓB is the chiral operator. The
winding number is given by

ν =

∫ 2π

0

dk

2π
Tr[(QAB)−1 i∂kQAB ] = T {QBA[X,QAB ]} = T {QBAXQAB −QBAQABX}, (S4)

where Tr indicates a trace over the unit cell, and T indicates a “trace per volume” (i.e., per number of unit cells
N). The expression in momentum space (here referring to the generalized quasi-momentum space of the considered
tight-binding model, and not the physical momentum of the atoms) assumes periodic boundary conditions, since
translation symmetry is a necessary ingredient for the momentum space version of the formula. In position space,
one must be careful when evaluating this expression. The conventional (Hermitian) position operator is not a valid
operator when periodic boundary conditions are assumed, and a naive evaluation of the expression can give spurious
results. If one wants to maintain periodic boundary conditions then one must either carefully evaluate the matrix
elements of the X operator such that periodic boundary conditions are imposed, or instead calculate the Berry-Zak
phase φB in real-space using the formulation in Ref. [6]. For our system the latter method would be sufficient because
the winding number only takes values ν = 0,±1, and it was proven that in general ν mod 2 = φB/π mod 2 [5].
Hence, one could use the Berry-Zak phase to unambiguously determine which phases of our model are topological
and which are trivial.

The real-space formulation of the winding number provides an accurate representation of the disordered phases
and the location of the disorder-driven topological phase transition in our model. Operatively, however, a single
determination of the winding within this formulation requires a measure over all possible eigenstates of the model,
which is not trivial to perform. To access the winding experimentally, we proceed along a very different way, and
directly measure the mean chiral displacement, a quantity which upon sufficient time- and disorder-average converges
to the winding number. For clean systems, this convergence has already been proven analytically in Refs. [7, 8]. As
we will explain in the following, the identification works also in presence of disorder.

To extend the proof to disordered systems, let us start from the static case, where we can use the results of Ref. [5].
At the end of that article it was shown that the ground state of our model, for any disorder strength, takes the form
of a “random-singlet” (or “random-dimer”) configuration, i.e., the many-body ground state is a Slater determinant
of single-particle states that are equal-weight linear combinations of exactly two sites of the lattice, one on sublattice
A and one on B. Hence, we can write the aysmptotically exact wavefunction as

|Ψ〉 =

Ncells∏

i=1

1√
2

(
αic
†
ni1,A

− βic†ni2,B

)
(S5)

where ni1 and ni2 are two unit cells in the lattice, and αi, βi are complex numbers with unit modulus. The set of
values ni1, ni2, αi, βi are random and depend on the details of the disorder configuration, but this general form has
enough information to prove our result. If we calculate the winding number of this ground state we find

ν =
1

Ncells

Ncells∑

i=1

(ni1 − ni2) . (S6)

Using the same ground state we can calculate the chiral displacement 2〈ΓX〉 and it is straightforward to find

2〈ΓX〉
Ncells

=
1

Ncells

Ncells∑

i=1

(ni1 − ni2) = ν. (S7)

Hence, in the thermodynamic limit we expect that, even when the system is disordered, the chiral displacement will
exactly match the winding number for this model. In the clean limit each dimer configuration contributes equally to
the winding number and the chiral displacement, and as disorder is increased there are a distribution of configurations
that always sum to an integer (assuming the system is not tuned to the critical point).
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FIG. S4. Topological phase diagrams. (a) Real space winding number ν, (b) the disorder- and time-averaged mean chiral
displacement 〈C̄〉, and (c) the disorder-averaged MCD in the infinite time limit 〈C̄〉∞ of the BDI model with disorder W ≡
W2 = 2W1. The simulations have been performed for a system of 50 unit cells and for 1000 disorder realizations. For the MCD,
the sliding average has been done for times τ ∈ [5, 50] with ∆τ = 1. The red lines (identical in all panels) indicate the critical
phase boundary, where the localization length diverges in the thermodynamic limit [5].

VII. DYNAMIC EXTRACTION OF THE WINDING NUMBER FROM THE MEAN CHIRAL
DISPLACEMENT

To uncover how the winding number is encoded in the experimental system we will instead consider open boundary
conditions. In this case a naive evaluation of the trace in Eq. (S4) yields identically zero, with the contribution from
the bulk interior canceled exactly by the boundary modes. However, we can modify a formalism introduced by Bianco
and Resta for a real-space calculation of the Chern number in quantum Hall insulators in Refs. [9, 10], and which
was subsequently used to describe Hofstadter quasicrystals in Ref. [11], to calculate the winding number instead.
This method consists of defining a “local topological marker” that depends on the eigenfunctions of the system. This
marker gives a local value for a topological invariant when evaluated in a region away from the physical boundary of
the system. While this quantity is not exactly quantized, it converges smoothly and rapidly to the integer value of the
corresponding invariant in the limit of an infinite system with mild assumptions of homogeneity of the bulk phase.

In the following, we will use the idea of Bianco and Resta to compute the winding number ν in real space, which
amounts to directly evaluating a symmetrized version of the argument of the trace per volume appearing in Eq. (S4)
over the central part of the chain. Our topological marker then takes the form

ν(j) ≡ 1

2

{
(QBA[X,QAB ])jA,jA + (QBA[X,QAB ])jB,jB + (QAB [QBA, X])jA,jA + (QAB [QBA, X])jB,jB

}

=
1

2

∑

a=A,B

{
(QBA[X,QAB ])ja,ja + (QAB [QBA, X])ja,ja

}
(S8)

where j indicates the lattice site index, and the subscripts jA and jB indicate the entries of the matrix corresponding
to the A or B sublattice for lattice site j. Note that this formula was symmetrized using the fact that the winding

number can equivalently be written as ν = −
∫ 2π

0
dk
2πTr[(QBA)−1 i∂kQBA]. To extract a value for the winding number

in a disordered system we then average ν(j) over a small region (∼ N/8 unit cells) in the center of the lattice, and
over disorder configurations. The numerical results of this method are shown for example in Figs. S2(a) and S4(a).
Their accuracy is confirmed by the fact that the numerical data display a very sharp drop in the vicinity of the red
line, which corresponds to the set of tunneling ratios and disorder strengths where the localization length of the edge
states diverges in an infinite system.

To make closer contact with the experimentally measured quantity, let us evaluate our topological marker at the
central unit cell j = 0. Consider a basis of states |0a〉 =

∑
i αai|φi〉 (a = A,B) that are completely localized on such

a cell, so that X|0a〉 = 0. Here |φi〉 are the energy eigenstates of the Hamiltonian H satisfying |φ−i〉 = Γ|φi〉, and
E−i = −Ei are the corresponding energies, ordered to satisfy . . . < E−2 < E−1 < 0 < E1 < E2 < . . .. To be explicit
let

M =
QBAXQAB −QBAQABX −QABXQBA +QABQBAX

2
, (S9)
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be an operator such that ν(j) =
∑
a=A,B〈ja|M |ja〉. For the center unit cell we can evaluate ν(0) using

〈0a|M |0a〉 =
1

2
〈0a|QBAXQAB −QABXQBA|0a〉 (S10)

where we have used X|0a〉 = 0. We now use the identity ΓBQ = QΓA,1 remember that ΓA and ΓB are projectors
(so that, e.g., ΓAΓA = ΓA) and we can exploit the fact that the chiral operator is local (i.e., diagonal in the position
basis), so that [X,ΓA] = [X,ΓB ] = 0, to find:

QBAXQAB −QABXQBA = Q(ΓA)4XQ−Q(ΓB)4XQ = QΓXQ. (S11)

Finally, using Q = I− 2P−,

ν(0) =
∑

a=A,B

〈0a|M |0a〉 =
∑

a

〈0a|
[

1

2
ΓX − P−ΓX − ΓXP− + 2P−ΓXP−

]
|0a〉

= 2
∑

a

〈0a|P−ΓXP−|0a〉

= 2
∑

a


∑

i<0

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉




=
∑

a


∑

i

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉+

∑

i,j>0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉


 .

(S12)

Numerically, we observe that the off-diagonal part of this expression provides a very small contribution (typically
∼ 1% of the total), so that the sum is completely dominated by the diagonal term.

Now we are ready to compare this expression to the chiral displacement calculated in experiment. The experimental
procedure starts with an initial state localized on either A or B in the j = 0 unit cell. The time evolution of this state
is simply given by e−iHτ |0a〉. As discussed in Ref. [8], in a two-band model such as ours the mean chiral displacement
at time τ can be defined as the mean value of the (time-evolved) operator 2ΓX over a single localized state:

C(τ) = 〈0a|eiHτ (2ΓX)e−iHτ |0a〉 = 2
∑

i

|αai|2〈φi|ΓX|φi〉+ 2
∑

i 6=j
α∗aiαaje

−i(Ej−Ei)τ 〈φi|ΓX|φj〉. (S13)

The second term of Eq. (S13) is rapidly oscillating, so that it converges to zero when averaged over sufficiently long
time sequences. The first term,

〈C̄〉∞ ≡ 2
∑

i

|αai|2〈φi|ΓX|φi〉, (S14)

is instead independent of time. Comparing with the dominant contribution to ν(0) in Eq. (S12) above, we see they
differ in that 〈C̄〉∞ has an additional factor of 2 and is evaluated for a fixed a = A or B, while ν(0) sums over both
A and B. In the limit of zero disorder, it can be shown analytically that starting with the initial state with a = A
yields the exact same result for 〈C̄〉∞ as the case when a = B. Hence, one can directly identify 〈C̄〉∞ = ν(0) [8]. In the
presence of disorder we find that, both numerically and experimentally, the projections αai of the initial state on the
different energy eigenstates are effectively randomly distributed variables so that (upon disorder average) the result
from initializing on site A is, on average, the same as initializing on site B. Hence, one can still make the identification
〈C̄〉∞ = ν(0) after disorder averaging.

To conclude, we provide here a quantitative comparison of the various methods. Figure S4 displays the phase
diagram of the BDI model with disorder ratio W ≡ W2 = 2W1 obtained with the real space winding number
[Fig. S4(a)] and with the MCD for both finite and infinite times [Figs. S4(b) and S4(c)]. The simulations show
results for a system with 50 unit cells and have been averaged over 1000 disorder realizations. The sliding average
for the MCD has been done between τ = 5 and τ = 50 with a sliding step ∆τ = 1. The various subfigures show a

1 With open boundary conditions, this equality does not hold for zero-energy edge states. But here we are only interested in a bulk state,
like |0〉, which has negligible overlap with the edge states.
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FIG. S5. Comparison of the winding number ν and the time- and disorder-averaged MCD 〈C̄〉. (a,b) Cuts through the phase
diagrams in Figs. S4(a) and S4(b), comparing the winding number ν (filled diamonds), the MCD 〈C̄〉 (lines with filled circles),
and its infinite time limit 〈C̄〉∞ (open circles), for a BDI model with disorder ratio W ≡W2 = 2W1.
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FIG. S6. Emergence of the TAI plateau. Winding number ν of the AIII model computed as a function of the disorder strength
W ≡ W2, with W1 = 0 and m = 1.12, averaged over 1000 disorder realizations. The various lines display results for systems
with an increasing number of unit cells N , and the gray dashed line indicates the expected thermodynamic limit, given by the
divergence of the localization length, as found in Ref. [5], and as indicated by the red line in Fig. 3(a) of the main text.

very similar phase diagram, and all reproduce accurately the phase diagram expected for an infinite chain: the red
line indeed represents the set of points where the localization length of the edge states is expected to diverge in the
thermodynamic limit [5].

For an even more accurate analysis, we compare the real space winding number and the MCD for several cuts in
the phase diagram. Figure S5(a) shows the behavior of 〈C̄〉 (solid lines with filled circles) and 〈C̄〉∞ (open circles)
for fixed values of the disorder W and varying the hopping m. The results are in very good agreement with the real
space winding number (filled diamonds). In this finite system size, the MCD has a sharp transition from 1 to 0 even
for rather large disorder strength, like W = 1. Figure S5(b) shows the behavior of the MCD for fixed values of m
and for varying W . When starting from the topological phase, the MCD presents a robust plateau before decreasing
smoothly. The results coincide remarkably with the real space winding number and the sharpness of the transition
here depends on the system size, as it is the case for the real space winding number. When starting from the trivial
phase (e.g. m = 1.1), the MCD starts from values close to 0 and increases until reaching a small plateau before
decreasing. This is the finite size signature of the topological Anderson insulator, since the sharp drops around a flat
plateau, which one expects in the thermodynamic limit of infinite chains, are smoothed out on finite-size chains. The
appearance of an actual large plateau at ν = 1 in the TAI region requires going to much larger system sizes, as shown
in Fig. S6.
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