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To those outside the field, and even to some focused on empirical
applications, phylogenetics may appear to have little to do with al-
gebra. Probability and statistics are clearly important ingredients, as
modeling and inferring evolutionary relationships motivate the field.
Combinatorics is also an obvious component, as the graph-theoretic
notions of trees, and more recently networks, are used to describe the
relationships. But where does the algebra arise?

The models used in phylogenetics are necessarily complex. At the
simplest they depend on a tree structure, as well as Markov matrices
describing changes in nucleotide sequences along the edges. These two
components result in probability distributions given by rather compli-
cated polynomials on the parameters of the models, whose precise form
reflects the structure of the tree. Even following standard statistical
paradigms for inference, efficient calculation, such as by the Felsenstein
pruning algorithm [Fel81] used in likelihood calculations, depends on
understanding this algebraic structure.

But in the late 1980s the algebraic structure also suggested alter-
native inference frameworks to some researchers. These included the
phylogenetic invariants of Cavender and Felsenstein [CF87], and of
Lake [Lak87], and the Hadamard transform framework of Hendy and
his colleagues [HP89, HPS94]. While this early explicitly algebraic
work resulted in a number of interesting mathematical explorations,
perhaps culminated in Evans and Speed’s invariants work [ES93], it
had little impact on practical inference as simulations studies seldom
showed good performance [Hue95].

In the early 2000’s, works of Allman and Rhodes [AR03] and of
Sturmfels and Sullivant [SS05] revived interest in invariants. Interest
in applying algebraic perspectives to statistical problems, especially in
computational biology, was exemplified by the book of Pachter and
Sturmfels [PS05], which helped draw new researchers to the field. Of
course algebra in statistics has been present from the beginning, such as
in Pearson’s work [Pea94], but as theoretical and computational tools
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of algebra have developed, they had remained largely outside of the
inference toolbox.

In recent years, algebraic methods have been crucial to advances in
the theory of phylogenetic inference (in particular, parameter identifi-
ability of phylogenetic models [AR09, ADR18]) and in new methods of
tree reconstruction [FSC16], [CK14] that are competitive with tradi-
tional frameworks. The tools that have been used draw from algebraic
geometry, commutative algebra, computational algebra and algebraic
statistics as well as group representation theory and algebraic combi-
natorics.

The works in this volume showcase the varied directions in which
algebra is playing a role in current phylogenetic research.

Algebraic varieties underly the investigation of mixture models by
Gross et al., as well as the study of maximum likelihood inference using
recently developed numerical algebraic geometry tools by Kosta and
Kubjas. Sumner and Woodhams focus more tightly on the modeling
of sequence evolution, and the algebraic origin of nicely structured
models.

A number of works move beyond simple evolution on a tree. The
multispecies coalescent model, which describes the biological process by
which gene trees may differ from species trees, is analyzed by Disanto
and Rosenberg with tools of algebraic combinatorics. Long and Ku-
batko also consider this model, greatly weakening the assumptions nec-
essary to justify the invariant-based SVDquartets method of species
tree inference. Durden and Sullivant give an identifiability result for a
k-mer based distance under the coalescent.

Moving from trees to networks, Kim et al. investigate the impact of
admixture on phylogenetic distances and tree reconstruction. Consid-
ering both the coalescent and the hybridization, Baños mixes algebraic
and combinatorial approaches to show the identifiability of many net-
work features from gene tree data.

Two works highlight other algebraic tools. Terauds and Sumner ap-
ply representation theory to study improving distance estimates based
on gene order through maximum likelihood. Yoshida et al. bring trop-
ical geometry and algebra to bear on summarizing collections of trees,
through a new form of principal component analysis.

Finally, Huber et al.’s work highlights the role of submodularity,
a concept appearing widely in combinatorics and optimization, while
Wicke and Fischer address open questions on the Shapely value of trees.
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