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Abstract

Objective

Rheoencephalography is a simple and inexpensive technique for cerebral blood flow

assessment, however, it is not used in clinical practice since its correlation to clinical condi-

tions has not yet been extensively proved. The present study investigates the ability of Poin-

caré Plot descriptors from rheoencephalography signals to detect apneas in volunteers.

Methods

A group of 16 subjects participated in the study. Rheoencephalography data from baseline

and apnea periods were recorded and Poincaré Plot descriptors were extracted from the

reconstructed attractors with different time lags (τ). Among the set of extracted features,

those presenting significant differences between baseline and apnea recordings were used

as inputs to four different classifiers to optimize the apnea detection.

Results

Three features showed significant differences between apnea and baseline signals: the

Poincaré Plot ratio (SDratio), its correlation (R) and the Complex Correlation Measure

(CCM). Those differences were optimized for time lags smaller than those recommended in

previous works for other biomedical signals, all of them being lower than the threshold

established by the position of the inflection point in the CCM curves. The classifier showing

the best performance was the classification tree, with 81% accuracy and an area under the

curve of the receiver operating characteristic of 0.927. This performance was obtained

using a single input parameter, either SDratio or R.

Conclusions

Poincaré Plot features extracted from the attractors of rheoencephalographic signals were

able to track cerebral blood flow changes provoked by breath holding. Even though further

validation with independent datasets is needed, those results suggest that nonlinear
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analysis of rheoencephalography might be a useful approach to assess the correlation of

cerebral impedance with clinical changes.

Introduction

Continuous monitoring of cerebral blood flow (CBF) is critical as it reflects the amount of

blood provided to the brain and therefore the amount of oxygen that reaches this organ. An

insufficient or excessive perfusion can have deleterious effects in patient’s health and for this

reason continuous CBF monitoring could increase patient safety.

Zauner and Muizelaar [1] described the characteristics of the ideal CBF monitor stating

that it should provide quantitative information, high spatial resolution, continuous measure-

ments, have no influence on normal brain function, represent none or minimal risk for the

patient, be cost-effective and suitable for clinical settings. Several monitors are currently avail-

able in clinical practice for CBF monitoring but they present limitations since some of the

most accurate ones are either invasive or expensive.

Among the existing methods for CBF monitoring, rheoencephalography (REG) is one of

the most cost-effective solutions but it is not used in clinical practice because reported results

have not been able to provide clear correlations to clinical scenarios [2]. REG is an explorative

method of cerebral circulation based on the measurement of electrical impedance through the

scalp, which allows a continuous observation of the blood flow in different cerebral regions.

The principle of this method is based upon the fact that blood is a good electrical conductor

therefore any increase in blood volume will lead to a reduction of the brain electrical resistance

and this will be reflected in a decrease of REG pulse amplitude given a constant current.

REG signals have traditionally been analyzed by assessing the geometrical properties of the

blood pulse waves in the time domain, such as the duration of the anacrotic phase of the pulse,

the maximum and minimum amplitudes, the slope and the area under the curve [3,4]. The

main limitation of REG data processing is the existence of artifacts, such as respiration or

movements, differences in tissue conductivity, and the lack of absolute measurements of CBF,

due to the fact that REG only provides information on relative changes in blood flow. Despite

these facts, since it is a non-invasive and very low cost technique, it is still attractive for

researchers [2]. REG was extensively used during the 1960s and 1970s but its popularity

decayed because the provided results were non-conclusive from a clinical viewpoint. Nowa-

days, with more precise electronics, software capabilities and newer methods for CBF assess-

ment such as image based techniques, which are very expensive but can be used as a reference

for validation purposes, investigations on REG are beginning to show signs of uptake once

more. [5].

One strategy used to evaluate CBF measurements consists of continuous assessment of

blood flow during the execution of respiratory challenges known to modify the CBF. For

example, episodes of apnea or breath holding reduce the amount of oxygen in blood and there-

fore partial CO2 pressure increases provoking increases in CBF. Kastrup et al. [6] quantified

the effect of an apnea procedure in regional CBF measured with magnetic resonance imaging

and, on average, found a regional CBF increase of 47–87%, dependent on apnea duration.

Increasing inhaled CO2 [7] is an alternative method that can be used to provoke changes in

CBF that has also been widely used though its implementation is far more complex since it

requires controlled CO2 inhalation.
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The challenges described would cause changes in cerebral perfusion however CBF is

affected by additional factors. Biological signals are known to be controlled by central nervous

system oscillators that make them complex, causing some irregular patterns [8]. Nonetheless,

some underlying well determined behavior exists. These signals could probably be better char-

acterized by dynamic nonlinear analysis instead of using standard linear time series signal pro-

cessing techniques.

One nonlinear technique used to study beat to beat intervals is the method of delayed coor-

dinates for state-space analysis, the so-called Poincaré plot. Dimitriev et al. [9] analyzed by

means of nonlinear dynamics based on Poincaré plots how the state of anxiety affected heart

rate variability. Voss et al. [10] have previously published on the effects of age and gender in

short-term heart rate variability analyzed with Poincaré plots among other features and Ebra-

himzadeh [11] explored the prediction of sudden cardiac death based on complexity analysis.

Other biological signals have been studied by means of Poincaré plots. Hayashi [12] related the

delayed coordinates map to changes provoked by anesthesia in the electroencephalograph

(EEG). Xiong et al. [13] explored the ability of Poincaré plots from electromyogram (EMG) to

reflect facial paralysis and Son et al. [14] studied regularity in respiratory signals using this

same technique.

Hoshi et al. [15] used standard descriptors of Poincaré plot analysis to distinguish between

healthy subjects and patients suffering coronary disease, concluding that the SD1/SD2 index

provided useful information for that purpose. Even though some features extracted from Poin-

caré plots are known to be highly correlated to linear time domain information [16], some oth-

ers reflect nonlinear behaviors, complementing the diagnosis capabilities of heart rate

variability signals, such as the SD1/SD2 parameter or the Complex Correlation Measure [17].

Poincaré Plot Analysis is typically applied with a time lag of 1 sample, therefore plotting the

original signal versus its 1 sample delayed version. Several publications have explored the pos-

sibility of using different time lags to build the Poincaré plot. Since consecutive samples are

highly correlated, when a lag of 1 sample is used, data are concentrated on the identity line.

Increasing time lags would spread the data points over the Poincaré plot, because there is less

correlation between lagged samples [18,19].

Brennan et al. [16] discussed the effects of lagging the Poincaré plots, showing that those

lagged plots characterize the autocovariance function, yet there is no consensus on which lags

should be used [20]. Lerma et al. [21] determined that a lag of 4 heart beats would optimize the

detection of changes in heart rate variability due to hemodialysis in chronic renal failure

patients, while Thakre and Smith [19] stated that a heartbeat can only influence up to the next

6 to 8 beats and therefore higher lags would not be suitable for those applications. Therefore,

lags lower than 10 are typically used for RR intervals [20].

Contreras et al. [22] used lagged Poincaré plots and assessed the correlation between the

spectral features (HF and LF) and the SD1 parameter, concluding that the value of those corre-

lations was different healthy and pathological heart rate variability signals. Lagged plots were

also used by Goshvarpour [18] to analyze heart rate during mediation, detecting an increase in

the SD1 parameter for increasing lags up to 6 beats which reflects the transition between cigar-

shaped plots for the smallest lag to a cloud of points with the largest ones.

The preesent paper focuses on the analysis of the dynamics of REG signals through lagged

Poincaré plots aiming at understanding underlying nonlinear behavior and identifying how

those dynamics can assess physiological changes affecting the system. Since CBF is modulated

by several physiological conditions, applying nonlinear analysis could be a very promising

tool for improving clinical information extracted from REG. The analysis herein proposed is

therefore based on the method of delayed coordinates for state-space analysis since, to the

extent of the knowledge of the authors, it has not been used for REG data processing. A simple
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respiratory challenge, apnea, was used to explore REG capability to reflect CBF changes and to

analyze nonlinear dynamics in REG signals. Results obtained from this analysis were com-

pared to the ones provided by standard analysis using the geometrical properties of the pulses.

Finally, four different classifiers were applied to the Poincaré plots extracted features to explore

the possibility of predicting apneas using information on the nonlinear dynamics of REG

signals.

Database

Participants were 16 healthy volunteers aged 25.4 ±3.6 years, 59.6 ± 6.8 kg weight and 166.9

±8.3 cm height, including 8 males and 8 females. Four pre-gelled standard Ag/AgCl ECG elec-

trodes were placed on the subject temples as shown in Fig 1, two electrodes (red and yellow),

one on each temple, were used to send a constant 50kHz current through the scalp while the

other pair of electrodes (green and black) were responsible for measuring the output voltage at

a sampling rate of 250Hz. Since current is constant, this voltage reflects the effects of imped-

ance changes in the brain caused by variation of blood flows. The qCO monitor (Quantium

Medical, Barcelona, Spain) was used to monitor the cerebral bioimpedance signal (REG) for

cerebral blood flow (CBF) estimation.

The subjects were monitored in supine position for 8 minutes repeating twice the sequence

of 3 minutes at rest followed by 1 minute of breath holding. Subjects were asked to avoid talk-

ing, movements and blinking, since those would provoke artifacts. Apneas were planned to

stand for 1 minute however volunteers were instructed to stop earlier if needed and raise their

hand to communicate to the investigator that the apnea period was over. All subjects were

informed about the study and gave their written informed consent prior to participation. This

observational study was conducted under approval of the Institutional Review Board and Eth-

ics Committee of Hospital CLINIC de Barcelona (2013/8356) and adhered to the Declaration

of Helsinki.

Methodology

Signal preprocessing

The collected REG signals were pre-processed. REG recordings were high-pass filtered using

4th-order Chebyshev type II, with 0.1 Hz stop band frequency to eliminate DC fluctuations and

high-pass filtered using 8th-order Chebyshev type II, with 20 Hz stop-band frequency to avoid

electrical noise interferences. Since filtered signals could still be affected by artefacts, REG sig-

nals were visually inspected and sequences with at least 16 consecutive seconds free from inter-

ferences were selected within each recording. A total of 53 REG sequences of 16 seconds each

free of artefacts were extracted from the 16 volunteer recordings, 29 from apneas and 24 from

baseline periods. Fig 2 shows a filtered waveform of a REG signal from an apnea period.

Analysis of REG pulse wave geometry

The classical methods used to assess CBF by means of REG signals rely on the analysis of the

geometry of the pulse waves. The ability of those methods to distinguish between apnea and

baseline signals was studied. For that purpose, minimums and maximums of each pulse wave

and their respective derivatives were automatically detected, and the following features were

calculated for each signal in the dataset: maximum and minimum pulse amplitudes (Max and

Min), amplitude range of the pulse (Range), time between two consecutive maximums

(Δtmax), time between two consecutive minimums (Δtmin), time between each minimum and

the following maximum (Δtmin-max), the slope of the pulse during this interval (α), the area

Poincaré of CBF signals for apnea detection
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under the curve (Area), the maximum derivative (δmax) and the range of the derivative

(δrange). In each case, to reduce the effect of possible outliers, the median values for all the

pulses belonging to each recording was used as a reference. Fig 3 shows the graphical represen-

tation of those parameters to be extracted from each sequence.

Fig 1. Electrodes placement for cerebral bioimpedance recordings to measure cerebral blood flow.

https://doi.org/10.1371/journal.pone.0208642.g001

Fig 2. Waveform of a filtered REG signal of an apnea segment.

https://doi.org/10.1371/journal.pone.0208642.g002
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Results obtained for both apnea and baseline signals were tested for its ability to detect

apneas, by means of hypothesis testing, considering significance for p-values<0.05.

Poincaré plot analysis

Taken’s theorem [23] states that the attractor of a dynamical system can be reconstructed as a

state-space representation for a specific time delay (τ) and embedding dimension (m). This

attractor, X(t), can therefore be specified as:

XðtÞ ¼ ½xðtÞ xðt þ tÞ xðt þ 2tÞ . . . xðt þ ðm � 1ÞtÞ� ð1Þ

Even though the attractor of a given system might have a high embedding dimension, the

analysis of reconstructed attractors on two dimensions has been used extensively to character-

ize biomedical signals, such as heart rate variability, and has proven to provide relevant infor-

mation [21,24,25]. In this case, Eq (1) can be simplified as:

XðtÞ ¼ ½xðtÞ xðt þ tÞ� ð2Þ

Two-dimensional Poincare plots were constructed from the 16-second REG sequences.

Each Poincaré plot is generated with the x-axis representing the REG signal (REG(t)) and the

y-axis representing the REG signal after a specified time delay τ (REG(t + τ)), where the length

of the series is N and t moves from 1 to N-τ. The time lag τ to be applied to the signal samples

to build the Poincare attractor is commonly defined by these criteria:

• 1/4 or 1/5 of the dominant cycle period (T) of the signal [26]

• First local minimum of the auto-mutual information function (AMIF) [27]

Fig 3. Geometric features extracted from REG pulse waves.

https://doi.org/10.1371/journal.pone.0208642.g003
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• First zero crossing of the autocorrelation function (ACF) [28]

• First value for which the normalized autocorrelation function has a decay of 1/℮ [28].

• First sign change of the second derivative of the autocorrelation function [29]

• 1/10 to 1/20 of the first local minimum of the autocorrelation function [30]

The choice of the time lag τ is critical, since very low values would not allow the attractor to

expand, with a majority of points laying on the diagonal line [31], while very large values of τ
would cause deformations of the attractor due to the fact that pairs of samples would be uncor-

related [27] [29]. Since no previous work has been done on the analysis of REG attractors, a

wide range of τ values was used, from 1 up to the maximum of the above listed criteria, to pro-

vide the maximum possible information relating to the dynamics hidden in REG signals.

To generate more quantitative information on the distribution of REG signals in the Poin-

care plots, several features were extracted from the reconstructed attractor characterization.

Two of these features are considered the standard descriptors of Poincaré plots, being named

SD1 and SD2. They are obtained by defining a new set of perpendicular axis (x1 and x2 in Fig

4), x2 following the identity line and therefore rotating the axis 45˚ and fitting an ellipse to the

plot as shown in Fig 4. Features SD1 and SD2 are defined as the standard deviation of the dis-

tance along the axis x1 and x2 respectively, and lay on the axis of the fitted ellipse having half

its size [16,26,32–34]. They are computed following the Eqs (3) and (4), where var is the vari-

ance.

SD1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
REGðtÞ � REGðt þ tÞ

ffiffiffi
2
p

� �s

ð3Þ

SD2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
REGðtÞ þ REGðt þ tÞ

ffiffiffi
2
p

� �s

ð4Þ

Short term variability is reflected by SD1 while SD2 reflects both, long and short-term vari-

ability. Moreover, the area (A) of the ellipse (Eq (5)) has also been considered since it provides

a measure of the total variability of the attractor [33].

A ¼ p SD1 SD2 ð5Þ

The ratio of SD1/SD2 was also used as a parameter (SDratio) to measure the changes in the

scatter patterns. Hayashi et al. [26] proposed this technique as a useful tool for depth of anes-

thesia assessment by means of Poincaré plots as this ratio reflects the degree of linearity

included in the processed signal.

Correlation measures are also proposed to characterize the shape of the Poincaré plots. Eq

(6) shows the correlation measure (R) [16], in which E [] is the expected value of the time series

and � REG the average value of the REG(t) time series.

R ¼
E½ðREGðtÞ � REGÞðREGðtþ tÞ � REGÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðREGðtÞ � REGÞ2�E½ðREGðtþ tÞ � REGÞ2�
q ð6Þ

Another correlation descriptor considered is the Complex Correlation Measure (CCM)

[35]. Its computation identifies all possible sets of three consecutive attractor points of the

Poincaré plot and the area of the triangle they define is calculated (Fig 5). In cases where all

three points are aligned, the area is considered to be zero. The purpose of analyzing sets of
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three points in this way is that the descriptor will integrate information from different time

lags and instead of reflecting just the overall variance as with SD1 and SD2, it will integrate

temporal information as well. CMM is computed as indicated in Eq (7), where N is the num-

ber of points in the Poincaré plot, An is a normalization constant equivalent to the ellipse area

(An = π�SD1�SD2), τ is the time lag of the Poincaré plot and M(i) is the matrix including the

coordinates of the three points from each subset whose determinant is the area of the triangle

formed by them.

CCMðtÞ ¼
1

AnðN � 2Þ

XN� 2

i¼1

kMðiÞk ð7Þ

Statistical analysis and classification procedure

The features extracted from each constructed 2D-Poincaré plot by varying the τ value were

SD1, SD2, SDratio, SDarea, R and CCM. A statistical analysis was performed to select τ values

that allow 2D-Poincaré plot features to statistically distinguish between signals belonging to

apneas and resting periods. Hypothesis testing was applied using student t-test for normal

Fig 4. SD1, SD2 and ellipse fitting of a rheoencephalographic (REG) signal.

https://doi.org/10.1371/journal.pone.0208642.g004
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distributions and Mann-Whitney test for non-normal distributions verified by the Kolmogo-

rov–Smirnov test. Significant statistical level was set at p-value<0.05 and Bonferroni correc-

tion (p-value<0.025) was applied. The ability of the extracted features to distinguish between

apnea and baseline periods were further assessed by means of sensitivity, specificity, area

under the curve (AUC) of the receiver operating characteristic and accuracy.

Several algorithms were applied to the features extracted from REG signals, under the scope

of classifying them as apneas or baseline recordings. Among all the models available, the pres-

ent study focuses on logistic regression, naïve Bayes, support vector machines (SVM) and deci-

sion trees. While logistic regression aims at estimating the probability of belonging to a

defined class, based on the values of one or more predictors, naïve Bayes maximizes the a pos-

teriori probability by applying the Bayes’ theorem, assuming independence among predictors

[36]. The logistic regression classifier used in this work is based on a binomial distribution

while naïve Bayes was implemented using a Gaussian kernel. Decision trees are based on the

classification and regression trees (CART) algorithm [37]. In those algorithms a prediction

tree model is built in which each internal node evaluates conditions on predictors, branches

represent the output of those evaluations and leaves indicate the class to be assigned to a set of

attribute values. Finally, SVM [38] techniques aim to represent attributes in a typically high

dimensional space in which data points belonging to different classes are separated, as far

apart as possible. When new inputs are represented in the space, their position in the defined

Fig 5. Example of the application of the Complex Correlation Measure (CCM) algorithm in a subset of 5 data points.

https://doi.org/10.1371/journal.pone.0208642.g005
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hyperplane will define the class they belong to. SVM classifier was implemented with a linear

kernel and Sequential Minimal Optimization algorithm as presented in [39].

The four developed classifiers were validated using the leave-one-out strategy. The metrics

used to assess the performance of each classifier and compare the results among them were

AUC and accuracy.

Results

REG pulse waves geometry

Results obtained for the features extracted from the REG pulse waves and their derivatives are

summarized in Table 1. Even though some differences can be found between apnea and base-

line recordings, none of the selected parameters showed the ability to distinguish between

both with statistical significance.

Poincaré plot analysis and extracted features

The dominant cycle period of the REG recorded signals, the auto-mutual information and

autocorrelation were computed to determine the range of τ values to be used in the reconstruc-

tion of the attractors following the criteria previously listed. The average period of REG signals

was 0.99 ± 0.12s (mean ± standard deviation), equivalent to 246.9 ± 30.8 samples. No differ-

ences were detected between periods of apnea and baseline signals (p-value = 0.345). All values

presented for each criterion used for τ calculation are presented in Table 2. On average, the

highest τ is provided by the recommendation based on ¼ of the period (61.7 ± 7.7 samples)

and therefore the range of τ values used was from 1 to 70 samples (from 0.004 to 0.28 s).

Attractors were reconstructed for every signal and τ value. The two-dimensional Poincaré

plots for a baseline and apnea REG signal built for τ = 5, τ = 10 and τ = 70 samples are shown

in Fig 6. While low τ values seem to preserve the attractor shape, for τ = 70 samples the

attractor looks deformed.

From the reconstructed attractors, the defined Poincaré plot features (SD1, SD2, SDratio,

SDarea, CCM and R) have been calculated for every selected segment and every time lag, and

their ability to separate apnea from baseline signals has been assessed through hypothesis test-

ing. The evolution of all parameters, as a function of the chosen time lag τ, for both apneas and

baseline can be observed in Fig 7.

SD1 shows a curvilinear increase as τ increases (Fig 7a) for both apneas and baseline peri-

ods, presenting higher values in apneas for low τ values and reversing this behavior for τ values

above 40 samples. The behavior of SD2 is the opposite (Fig 7b), decreasing as τ increases, pro-

viding higher values for baseline periods for all tested τ values. None of those features show sig-

nificant differences between the apnea and baseline groups.

SDarea, which is a composite measure of SD1 and SD2 (Fig 7c), increases with an exponen-

tial pattern while τ increases and provides higher values for the baseline group, even though

differences are not significant. However, SDratio (Fig 7d) is also a composite feature and

shows significant differences between apnea and baseline periods for τ up to 53 samples,

resulting in higher values for the apnea group.

The values of parameter R have an opposite behavior when compared to SDratio (Fig 7e),

decreasing as τ increases, with the baseline group showing higher values than the apnea group.

These difference were significant for all τ lower than 49 and τ = 53. Finally, observing the evo-

lution of the values of the parameter CCM, it can be stated that they are higher in apnea group

than baseline group with p-value <0.05 for all range of the analyzed time lags.

Among all tested features, three have shown to be capable of distinguishing between apneas

and baseline data for several tau values: SDratio, R and CCM. The features R and SDratio
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showed statistically significant differences between groups for τ values below 50 samples,

showing the lowest p-value for τ equal 2 and 3 samples (p-value = 7.01�10−5). CCM showed

significant differences between groups for all τ values, presenting its minimum value for τ = 13

samples (p-value = 0.00012).

Fig 8 illustrates the comparison between the τ values for which the extracted features were

significant (Fig 7) with those τ theoretical values presented in Table 2. It can be observed that

R and SDratio are statistically different for τ values lower than 50 samples, while CCM is sig-

nificant for all range with lower values between 10 and 20. It should be noted that for the first

six proposed theoretical criteria (1/20 and 1/10 of the first local minimum of the autocorrela-

tion function, the first sign change in its second derivative, the first local minimum of the auto-

mutual information, a decay of 1/ of the autocorrelation and 1/5 of the signal dominant

period) the three extracted features remain significant, since when using the criterion of 1/5 of

the period all p-values are below 0.025.

Correlations were performed between features that were statistically significant (Fig 9).

Pearson’s correlation was applied to the full dataset including SDratio, CCM and R values

from all subjects and all time lags (i.e. resulting in 3710 data points in each case). Since their

definitions are quite similar both SDratio and R showed a high correlation (ρ = 0.965, p-

value<0.001) although not linear. As can be observed in Fig 9c. CCM showed lower correla-

tions with both SDratio and R.

The parameters that showed positive results were analyzed by means of computing their

sensitivity, specificity and AUC. Fig 10 shows the sensitivity and specificity for SDratio, R and

CCM features in the time lag values for which they showed statistical significant levels. Both

SDratio and R provide a high specificity but very low sensitivities, typically below 60% and

with higher values for low τ, for which it can be observed that SDratio shows better

Table 1. Results (average for apnea and baseline and obtained p-value).

Parameter Units Apnea Baseline p-value

mean std mean std

Max O 0.041 0.014 0.045 0.017 0.356

Min O -0.051 0.017 -0.054 0.018 0.523

Range O 0.092 0.028 0.099 0.033 0.376

Δtmax samples 238.7 22.1 254.9 43.3 0.084

Δtmin samples 242.1 23.2 248.6 38.8 0.455

Δtmin-max samples 52.9 27.4 60.6 24.8 0.217

α a.u. 0.002 0.001 0.002 0.001 0.406

Area O.s 12.4 4.8 13.5 4.9 0.446

δmax O/s 0.006 0.002 0.005 0.002 0.272

δrange O/s 0.007 0.002 0.007 0.002 0.145

https://doi.org/10.1371/journal.pone.0208642.t001

Table 2. Tau values (in samples) calculated from the REG signals following the criteria recommended in literature.

1/4 of the

period

1/5 of the

period

1st Relati-ve min of

AMIF

1st zero of

ACF

1/ decay of

ACF

2nd deriva-tive of ACF

sign change

1/10 of 1st local

min ACF

1/20 of 1st local

min ACF

Mean 61.7 49.4 34.2 58.4 36.5 19.0 12.0 5.98

Std 7.70 6.16 11.6 14.3 9.73 9.63 3.15 1.57

Min 38.5 30.8 16.0 20.0 14.0 10.0 3.40 1.70

Max 76.9 61.5 70.0 91.0 56.0 49.0 17.5 8.75

Mean, standard deviation (std), min and max values are provided for each criterion.

https://doi.org/10.1371/journal.pone.0208642.t002
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performance. CCM shows better sensitivity and specificity, showing a peak of 90% specificity

for τ between 10 and 20, and maximal sensitivity for τ lower than 10.

For all three, the best performances are detected for very small τ values (lower than 5 sam-

ples), lower than the ones proposed in the literature for other physiological signals shown in

Table 2, the closest approximation being a time lag corresponding to 1/20 of the first local min-

imum of the autocorrelation function.

Fig 11 presents the AUC computed for each parameter and each time lag τ. Both SDratio

and R provide the best results, with values higher than 0.8 for low τ values (τ< 5 samples) and

decreasing when τ increases. Even though CCM also offers its best AUC values for low time

lags, it does not show such a monotonic decreasing behavior and remains significant for all τ.

As previously seen in the analysis of the obtained p-values, SDratio (Fig 7d) and R (Fig 7e) pro-

vide optimal results for τ values lower than the ones recommended in the literature (Table 2)

while the best performance of CCM takes place for τ values consistent with 1/10 of the first

local minimum of the autocorrelation function and the first sign change in its second

derivative.

Classification results

Four different classifiers were tested to assess the possibility of predicting the type of signal

(baseline or apnea), considering the information provided by the analysis of Poincaré Plots. A

feature selection algorithm, Relief [40], was used to identify the most discriminant features to

Fig 6. Poincaré plot reconstruction of apnea and baseline signals. Apnea signal (a,b,c) and baseline signal (d,e,f) for different time

lags: τ = 5 samples (a,d), τ = 10 samples (b,e) and τ = 70 samples (c and f).

https://doi.org/10.1371/journal.pone.0208642.g006
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Fig 7. Comparison of the results obtained for apnea and baseline periods (median values, interquartile range and statistical

significance) of all tested features in function of the time lag τ. (a) SD1; (b) SD2; (c) SDarea; (d) SDratio; (e) R; (f) CCM. Grey

solid color corresponds to statistical significance level of p-value<0.025.

https://doi.org/10.1371/journal.pone.0208642.g007

Fig 8. Statistical significance levels (p-value) for SDratio, CCM and R, as a function of the time lag τ when comparing apnea

and baseline segments. R and SDratio curves are overlapped for almost all values. The dotted horizontal black line shows

significance when applying Bonferroni correction. Vertical lines indicate the different criteria commonly used to determine τ.

https://doi.org/10.1371/journal.pone.0208642.g008
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be considered as inputs to the classifiers. Fig 12 shows the weights provided by the Relief algo-

rithm for each possible input and τ value.

SDratio, R and CCM were the parameters for which the Relief algorithm provided a higher

weight and therefore the ones selected as input candidates for the classification model. Each

classifier was trained using as inputs all the combinations between the three selected features

(SDratio, R and CCM) for each time lag τ. However, since R and SDratio are highly correlated,

combinations including both inputs were not considered in the classification process. The

results for each of the classifiers with AUC higher than 0.8 and accuracies of at least 80% are

summarized in Table 3.

The classification tree showed the best performance, followed by SVM and logistic regres-

sion. Naïve Bayes classifier did not provide any results with both accuracy and AUC above the

established threshold. The logistic regression classifier provided its best results when inputs

were single parameters, either SDratio or R, and for very low τ values, with equal performance

for both but a slightly wider τ range for SDratio. Using the SVM method, SDratio and R as

inputs optimized the classification strategy with wider τ ranges than logistic regression. A two

inputs model based on SDratio and CCM also showed good performance despite being

restricted to a single τ value. It is important to note that despite the high correlation between R

and SDratio, the AUC and accuracy of the classifiers are affected using SDratio or R, since

using R and CCM as inputs for the SVM classifier did not provide positive results.

Fig 9. Correlations between R, CCM and SDratio. (a) R and CCM, (b) SDratio and CCM, and (c) CCM and R.

https://doi.org/10.1371/journal.pone.0208642.g009
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The classification tree outperformed the other methods, reaching an AUC of 0.927 for τ = 5

when inputs were either R or SDratio, and an AUC of 0.889 when two inputs were used. It can

be observed that for this classifier, τ ranges are very narrow and that including the information

of the CCM features does not improve the classification results.

Discussion and conclusions

In this work we have shown that several features extracted from Poincaré plots differ from

REG signals extracted from baseline and apnea periods (SDarea, R and CCM). When com-

pared to the performance of the classical parameters based on REG pulse wave geometry, Poin-

caré related features outperformed the former ones since none of the geometric time domain

features showed the ability to detect apneas.

Different time lags (τ) have been tested in Poincaré Plot analysis; lower values optimized

the detection of apnea periods both when either a) using single parameters or b) a set of

parameters as inputs for classification algorithms. No previous work has been found on the

delayed coordinates state-space representation for REG signals therefore results have been

compared to the ones provided in publications based on other biological signals, namely heart

rate variability. As published by Lerma et al. [21], increasing the time lag should increase SD1,

decrease SD2 and therefore increase SDratio. Our findings support these trends for the three

descriptors of the reconstructed attractor, showing a curvilinear increase for SD1, a curvilinear

decrease for SD2 and a linear increase for their ratio (SDratio). Although SD1 and SD2 did not

show any statistically significant differences among apnea and baseline groups, their ratio

Fig 10. Sensitivity and specificity of apnea and baseline classification as a function of the time lag values (τ). (a) SDratio, (b)

R and (c) CCM.

https://doi.org/10.1371/journal.pone.0208642.g010
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Fig 11. AUC of the receiver operating characteristic for SDratio, CCM and R, as a function of the time lag. AUC

for R and SDratio are overlapped.

https://doi.org/10.1371/journal.pone.0208642.g011

Fig 12. Weights provided by the Relief algorithm for each extracted feature and τ value.

https://doi.org/10.1371/journal.pone.0208642.g012
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(SDratio) was able to distinguish between both for τ lower than 53 samples (0.21s). It is notice-

able that the SDarea descriptor, which integrates SD1 and SD2 information, evolves in an

exponential fashion as τ increases but shows no significant differences between groups. The

correlation parameter R, having a definition very close to SDratio and showing a negative cor-

relation close to -1, has the opposite behavior when τ increases, keeping the statistical signifi-

cance for almost the same τ range.

The CCM feature was also computed for all the reconstructed attractors, showing a mono-

tonic decrease for τ up to 20 samples and a stable value for higher time lags. It demonstrated

the ability to distinguish (with statistical significance) between groups for all tested τ values.

Karmakar et al. [35] showed that CCM outperformed SD1 and SD2 when applied to heart rate

variability signals used to identify arrythmia and congestive heart failures, due to the fact that

CCM quantifies the underlying temporal dynamics of the system which are not considered in

the definition of the standard Poincaré features. They concluded that a decrease in CCM indi-

cates increased regularity and decreased variability in the signal. In this work, CCM provides

better results than SD1 and SD2 when used as a predictor for apneas, but SDratio offers even

lower p-values in the hypothesis testing. Therefore, short term (SD1) and long term (SD2) var-

iability are not affected by apneas in a significant manner, but their ratio and CCM value are,

which could be interpreted, following Karmakar’s conclusions, as an increased regularity and

less variability present in baseline signals.

The significance level of SDratio, R and CCM depends on the time lag used for the attractor

reconstruction as shown in Fig 8. The τ values for which the differences among apnea and

baseline groups were optimized were compared to the criteria traditionally used for the time

lag determination (summarized in Table 2). All those criteria aim at defining a time lag for

which the signal samples are still correlated or, in other words, the correlation width [29]. The

results from this work show that low τ values provide the best ability to differentiate between

apneas and baselines and that for high values, as illustrated in Fig 6 and discussed in other pub-

lications [27], the attractor deformation occurs. This suggests that the τ range used (1 to 70

samples) is too wide and that higher τ, instead of further unfolding the attractor, result in a

deformation of its underlying structure.

The time lags for which SDratio, and R are optimal are included in the set of τ values rec-

ommended in the literature when using 1/20 of the first relative minimum of the correlation as

the reference criteria. For CCM the best performance is achieved for τ values closer to 1/10 of

the period. Other methods usually applied in literature for other physiological signals propose

a set of τ values that would not be suitable for this application. This suggest that those criteria

might need to be reviewed for REG signals since the work herein presented indicates that they

Table 3. AUC and accuracy values for the best model of each classifier when classifying apnea and baseline segments.

Input Variables Time lag τ
(samples)

AUC

(mean ± std)

Accuracy (%)

(mean ± std)

Logistic regression SDratio 3� τ� 8 0.814 ± 0.004 81.1 ± 0

R 4� τ� 5 0.814 ± 0.001 81.1 ± 0

Support Vector Machine SDratio 3� τ� 13 0.813 ± 0.003 81.1 ± 0

R 3� τ� 7 0.815 ± 0.004 81.1 ± 0

SDratio and CCM τ = 3 0.813 ± 0 81.1 ± 0

Classification Tree SDratio τ = 5 0.927 ± 0 81.1 ± 0

R τ = 5 0.927 ± 0 81.1 ± 0

SDratio and CCM 3� τ� 5 0.889 ± 0.006 81.1 ± 0

R and CCM 3� τ� 5 0.889 ± 0.006 81.1 ± 0

https://doi.org/10.1371/journal.pone.0208642.t003
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contain useful clinical information, but it is not available, or maximized, by the same time lags

commonly accepted for other applications.

Besides the possibility of using 1/10 or 1/20 of the first minimum of autocorrelation func-

tion as the range of τ values to be investigated, the evolution of the CCM parameter over the

different time lags suggests that CCM could be a useful reference to determine the maximum τ
value for which the system should be tested. The trend of CCM as a function of τ (Fig 7f)

clearly shows a first stage in which CCM decreases monotonically until a plateau is reached in

both apnea and baseline signals. This inflection point in CCM could be interpreted as the loss

of correlation between the signal and its delayed version, presenting CCM as a suitable crite-

rion to identify the range of τ values useful for this application. Furthermore, the inflection

point in the CCM trend is consistent with the second derivative sign criteria presented in

Table 2 (τ = 19), indicating that optimal range within the 1 to 70 samples interval for all studies

parameters is delimited by this upper threshold. Instead of targeting a specific τ value for Poin-

caré plot analysis, this work suggests that an interval of time lags should be used, which con-

firms Lerma’s findings [21], and that this interval could be limited by the inflection point

observed in the CCM parameter.

The classification tree showed the best performance, followed by logistic regression and

SVM. Naïve Bayes classifier did not provide any results with enough accuracy and AUC, sug-

gesting it is not suitable, at least when using a Gaussian kernel, for this application. The best

results for each classifier were obtained when using either SDratio or R as single inputs. Even

though CCM as a single parameter was proved to be different among both groups, its use as

input for the classifiers in combination with SDratio (or R) does not improve the results for

any τ value. The behavior of all classifiers was optimal for low τ values (between 3 and 13) with

SDratio providing good results for a wider range of τ. As previously discussed, higher τ values

do not provide suitable accuracy and AUC values. This can be explained by the deformation

suffered in the reconstructed attractors with elevated time lags.

Two limitations deserve special attention: the reduced sample size and the inexistence of

previous results to compare against. Regarding the reduced sample size: while available data

are large enough for determining relevant features to distinguish between apneas and base-

lines, the proposed dataset might compromise the performance of classifiers and its compari-

son. As previously published [41], AUC calculations present high deviations for small sample

sizes and therefore comparisons may be inaccurate. Moreover, the set of inputs for the classifi-

ers have always been restricted within this publication to the features computed for a specific

time lag because the available data were insufficient to increase the number of attributes to

include. For example, features obtained with different time lags in the same classifier.

The second main limitation is related to the inexistence of previous results which does not

allow comparison between the presented findings with other research outcomes of REG sig-

nals. However, since information related to REG changes has been obtained by means of fea-

ture extraction from the Poincaré plot analysis, the findings indicate that this topic deserves a

deeper look with an extended and independent database to validate the models herein pre-

sented. Furthermore, since REG signals for apneas and baseline periods have shown to present

statistical differences in the features extracted, this suggests that CBF changes provoked by

apneas are traceable by means of REG recordings.

Bearing in mind the results of this investigation, and considering that other commonly

used techniques for CBF monitoring are expensive and/or invasive, the authors consider that

the application of nonlinear techniques to REG signals could allow the use of this technology

in clinical practice, once it is non-invasive and affordable.
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