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—— Abstract

We augment a plane Euclidean network with a segment or shortcut to minimize the largest

distance between any two points along the edges of the resulting network. In this continuous
setting, the problem of computing distances and placing a shortcut is much harder as all points
on the network, instead of only the vertices, must be taken into account. Our main result for
general networks states that it is always possible to determine in polynomial time whether the
network has an optimal shortcut and compute one in case of existence. We also improve this
general method for networks that are paths, restricted to using two types of shortcuts: those of
any fixed direction and shortcuts that intersect the path only on its endpoints.

1 Introduction

A geometric network of points in the plane is an undirected graph whose vertices are points
in R? and whose edges are straight-line segments connecting pairs of points. A Euclidean
network is an edge-weighted geometric network: edges are assigned lengths equal to the
Euclidean distance between their endpoints. When in addition there are no crossings between
edges, the Euclidean network is said to be plane. In the following, we shall simply say
network, it being understood as plane Fuclidean network.

In this work we study a variant of the Diameter-Optimal-k-Augmentation problem that
deals with inserting k additional segments into a network, while minimizing the largest
distance in the resulting network (see the survey [7] for more on augmentation problems
over plane geometric graphs). Concretely, we consider a continuous version of the problem
for k = 1: the endpoints of the inserted segment, called shortcut, are allowed to be any two
points on the network (instead of only vertices), and we seek to minimize the largest distance
between any two points on the edges of the augmented network. The complexity of the
problem, which lies in the fact that all points must be considered in computing distances and
placing the shortcut, motivates that there are very few results on this continuous version.

Yang [8] designed three different approximation algorithms to compute for certain types
of paths an optimal shortcut which, informally, is a segment that attains the minimum
of that largest distance. De Carufel et al. [3] gave an algorithm to determine in linear
time optimal shortcuts for paths and optimal pairs of shortcuts (k = 2) for convex cycles.
We want to stress that their definition of shortcut is simpler, as they do not consider the
intersections between the shortcut and the network as points of the augmented network. The
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same definition of shortcut was used in [4] to develop a study for trees, which includes the
computation of an optimal shortcut for a tree of size n in O(nlogn) time.

The first approach for general networks was presented in [2] where the authors compute
shortcuts (i.e., segments whose insertion improve the diameter) in polynomial time, but they
do not obtain optimal shortcuts. In Section 2, we do decide existence and compute such
optimal shortcuts in polynomial time. Section 3 focuses on paths: we first analyze how
distances change by the insertion of a shortcut, and compute the largest distance between
any two points on the augmented network in ©(n) time. We also improve the method of
Section 2 for shortcuts of any fixed direction and shortcuts that intersect the path only at
its endpoints. Due to space limitations, proofs are briefly sketched.

1.1 Preliminaries

The locus of a network N' = (V(N), E(N)), denoted by N, is the set of all points of the
Euclidean plane that are on N. Thus, A is treated indistinctly as a network or as a closed
point set. We write a € N for a point a on Ny, and V(N) C Ny. We will use P, instead of
N¢ when Ny is a path. A path P connecting two points a,b on Ny is a sequence auy . .. uxb
such that ujus,...,ux_1ur € E(N), a is a point on an edge (# ujus) incident to uy, and b
is a point on an edge (# ug—1uy) incident to u,. We use |P| to denote P’s length, i.e., the
sum of the lengths of all edges u;u;y1 plus the lengths of the segments au; and bug The
length of a shortest path P from a to b is the distance between a and b on N,. This distance
is written as dy,(a,b) or d(a,b) when the network is understood, and whenever ab ¢ E(Ny),
it is different from the Euclidean distance between the points, denoted by |ab].

The eccentricity of a point a € Ny is ecc(a) = maxpepn, d(a,b), and the diameter of Ny is
diam(Ny) = maxgen, ecc(a). Two points a, b € Ny are diametral whenever d(a, b) = diam(/Np),
and a shortest path between them is then called diametral path.

A shortcut for Ny is a segment s with endpoints on Ay such that diam(N,Us) < diam(Np).
We say that shortcut s is simple if its two endpoints are the only intersection points with
N, and s is mazimal if it is the intersection of a line and (N U s), i.e., s = (N U s) N ¥, for
some line £. A shortcut is optimal if it minimizes diam(A; U s) among all shortcuts s for Ap.

2 General networks

The main result in [2] states that one can always determine in polynomial time whether a
network N7 has a shortcut, and compute one in case of existence. In this section, we first
state the analogous result but for optimal shortcuts. Our proof mainly uses the ideas in [2],
but some additional information is needed to capture the property of being optimal.

By Lemma 3.2 of [2], diam(N¢) can be computed in polynomial time, and the diametral
pairs of points on Ny are either two vertices, or two points on distinct non-pendant edges, or
a pendant vertex and a point on a non-pendant edge (an edge is pendant if one of its vertices
has degree one). Thus, with some abuse of notation, we say that a diametral pair may be
vertex-vertex, edge-edge, or vertex-edge.

Let o, 8 € V(N)U E(N), and let e = uv and ¢ = v’'v’ be two edges of N'. When «
is an edge, we use ecc(u, ) to indicate the maximum distance from u to the points on «
(analogous for § and the remaining endpoints of e and ¢’); if « is a vertex, ecc(u, o) = d(u, ).
In general, ecc(e, §) = maxsca,-cpd(t, 2).

» Lemma 2.1. Lety = ax+Db be a line intersecting edges e = uv and ¢’ = u'v' on, respectively,
points p and q, and let o, € V(N) U E(N). For each pair (w,z) with w € {u,v} and
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Figure 1 ©(n) spikes placed symmetrically with respect to the midpoint o of a shortcut pg. The
spikes are spaced by one unit each, while their heights are set such that the distance from o to the
top of the spike is always the same, namely |pg|/2. Thus, the distance between the top of one spike
on the left of 0 and one on its right, like p; and g;, is |pq|, and equals the diameter of P, U pq.

z € {u/,v'}, function f,;(a,b) = ecc(w, ) +d(w,p) + |pq| + d(q, 2) + ecc(z, B) is linear in b.

Given a line m that crosses two fixed edges e,e’ € E(N), let P, (m) be the set of
equivalent lines to m that intersect edges e and e’.! Consider a line r =y = az+b in P, o/ (m)
and the set I = {e =eg,€1,...,ex, exr1 = €'} of edges that it intersects in between e and €’;
let e; = w;v; and p; = r Ne;. For a fixed diametral pair o, 8 € V(N) U E(N), a function of
the type f. 7 (a,b) with w € {u;,v;} and 2 € {uj,v;}, 0 <i# j <k + 1, computes ecc(a, )
when using a path that passes through vertices w, z and contains segment p;p;. For a fixed
value of a, each function f;”g (a,b) becomes a linear function on b. Thus, geometrically, an
optimal shortcut for Ny in P, ./ (m) is given by the minimum of the upper envelope of the
set of lines f,";(a,b). Note that any shortcut s satisfies that ecc(t) < diam(N,) for every
t € s, and so all segments p;p; must be included in the set of diametral pairs «, 3. Applying

the same argument to the O(n?) regions P, -(m), we obtain the following theorem.

» Theorem 2.2. [t is always possible to determine in polynomial time whether a network
Ny admits an optimal shorteut, and compute one in case of existence.

It would be interesting to characterize the networks A, that have an optimal shortcut,
even restricted to simple shortcuts. The following proposition is a first approach to this
question. Note that one must distinguish between an optimal simple shortcut and a simple
optimal shortcut. The first is a shortcut that is optimal in the set of simple shortcuts; this is
different of being optimal in the set of all shortcuts and, in addition, to be simple.

» Proposition 1. Let A be a network whose locus N, admits a simple shortcut, and let N be
the network resulting from adding to N all edges of the convex hull of V(N). If all faces of
N are convex, then Ny has an optimal simple shortcut.

3 Path networks

We begin by noting that the insertion of a shortcut to a path can create a quadratic number
of diametral pairs; as illustrated in the construction in Figure 1.

3.1 Diameter after inserting a shortcut

The diameter of Py can be immediately computed in linear time, however, the addition of a
shortcut s can create a linear number of new bounded faces, thus in principle it is not clear

! Two lines are equivalent if the half-planes to the right (left) they define contain the same vertices of A’
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Figure 2 Left: faces created by s; fo and fs are degenerate faces. Right: detail for f3 (note that
the chain bounding f4 is not considered for f3). Thick lines are used here to denote distances.

whether diam(P; Us) can be computed in linear time, i.e., without computing the diameter
between each pair of faces. The main result in this section is that this is still possible.

Suppose, without loss of generality, that s = pq is horizontal and maximal. Assume
(bounded) faces are numbered in the order of their left endpoints from left to right along
s (using right endpoints to disambiguate). If the first vertex of P, is not on s, we consider
the path from its first vertex to the first intersection of P, with s as a (degenerate) face
(analogous for the last vertex of Py), see Figure 2(left). A face f; can be bounded by several
chains of P,. However, we are only interested in associating f; to its chain with leftmost
endpoint on s. Thus a face f; will be defined by a subsegment s; of s from point pt to p7,
and a polygonal chain C; on one side of s, see Figure 2(right). Let |C;| be the length of C;,
and let L; = |ppt| and R; = |plq| be the distances to the leftmost and rightmost endpoints
of 5. Finally, let D; be the distance on P, U s from pl to its furthest point p! on f;. Note
that this is identical to the distance from p] to the analogously defined point p;, and also to
the semiperimeter of f;, which is equal to (|C;| + |s;])/2.

» Observation 3.1 (Disjoint faces). Let f;, f; be two faces of (P¢Us) with s;Ns; =0 and s;
to the left of s;. The diameter of C; Upﬁp}’ uCjis D;+ |pfp§\ +D; =D;+R;,—R;—|sj|+D;
and is achieved by p; and ﬁé.

» Observation 3.2 (Nested faces). Let f;, f; be two faces of (PeUs) with s; C s;. The
diameter of C; Us; UC; is 1(|Cy] + |pip§\ +[pip}| +1C;1) = 3(1Cil+L;— L+ R; — R +C})).

» Observation 3.3 (Overlapping faces). Let f;, f; be two faces of (P U s) with s; Ns; # 0,
Pl ¢ s; and p; ¢ si. The diameter of C; Upﬁp;T ucC; is %(|C’z| + |p£p§| + Ipipjl +1C5)) =
3(ICil + Lj — Li + R — R; + |Cj]).

The preceding observations reveal a key property: the linear ordering between faces
induced by s defines uniquely how the diameter between two faces is achieved. Thus, the
algorithm for computing diam(P, Us) in linear time starts by going along Py and computing
all intersections with s in the order of Py. Then we apply a linear-time algorithm for Jordan
sorting [6] to obtain the intersections in the order along s, say, from right to left. Within
the same running time we can obtain the necessary information of each face created by the
insertion of s. Next we compute and store certain information for each face f;: its furthest
faces, respectively, to the right and to the left, its furthest face nested inside f;, and its
furthest face with one endpoint in f; and the other one outside. When sweeping the faces
along s, this information allows us to find in O(1) time, for each face f;, its furthest face
from the ones seen so far, so the maximum distance between any two faces can be found in
total linear time.
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» Theorem 3.4. Given a path P, with n vertices and a shortcut s, the diameter of (Py U s)
can be computed in O(n) time.

3.2 Optimal horizontal shortcuts

The observations in Section 3.1 also give us a way to compute an optimal horizontal shortcut
for a path considerably faster than using the general method in Section 2. After a suitable
rotation, this allows to find optimal shortcuts of any fixed orientation.

Assume again that shortcuts are horizontal and maximal, so they can be treated as
horizontal lines. Now, consider the vertices in P, sorted increasingly by y-coordinate, and
let yq, Yy, with y, < yp, be the y-coordinates of two consecutive vertices in that order. By
Observations 3.1-3.3, the distance between any two faces f; and f; is a linear function d;;(y)
for y, <y < yp. Thus, each face is associated with & — 1 lines in 2D where £ is the total
number of faces, leading to a set £ of ©(k?) lines (note that k = O(n)). The optimal shortcut
over all y € [ya,ys] is given by the minimum of the upper envelope of £, which can be
computed in O(k?log k) time [5]. If this is done with each of the n — 1 horizontal strips
formed by consecutive vertices of A, the optimal horizontal shortcut is obtained in total
O(n®logn) time. Now, this method can be improved if, instead of computing from scratch
the upper envelope of £ at each horizontal strip, we maintain the upper envelope between
consecutive strips and only add or remove the lines that change when going from one strip to
the next one. The changes between two consecutive strips are of three types: (i) one of the
two line segments bounding a face within the strip changes; (ii) a face ends; (iii) a new face
appears. In the worst case, n — 1 lines are removed from £ and another n — 1 lines are added
to L. Maintaining the upper envelope of n lines is equivalent to maintaining the convex hull

of n points in 2D, which can be done in O(nlogn) amortized time and using O(n?) space [1].

» Theorem 3.5. For every path Py with n vertices, it is possible to find an optimal horizontal
shortcut in O(n?logn) time, using O(n?) space.

3.3 Optimal simple shortcuts

Consider now a simple shortcut s = pgq for a path P, with endpoints u,v. Suppose that
point p is closer to u than ¢ along Py; let = d(u,p) and y = d(v,q). There is only one
bounded face in Py U s whose boundary is a cycle C(p,q). Let p and § be the farthest
points from, respectively, p and ¢ on C(p,q), and let z = (dp,(p,q) — |pq|)/2. Note that
d(p,q) = |pgq| and z = d(p,q) = d(p, q). See Figure 3(left). There are three candidates for
diametral path in P, U s (see [3]): (1) the path from u to v via s is diametral if and only if
z = min{x,y, z}, (2) the path from u to P via s is diametral whenever y = min{z, y, z}, (3)
the path from v to g via s is diametral if and only if 2 = min{z,y, z}. Thus, diam(P, U s) €
{z+y+|pgl,z+ 2+ |pqg|,y + z + |pq|}. Further, in [3] it is proved that P, has an optimal
shortcut satisfying = y, which allows to compute it in linear time. Their method does not
apply here because, as explained in the Introduction, their definition of shortcut leads to a

much simpler situation. Nevertheless, in the same fashion, we can prove the following lemma.

» Lemma 3.6. Let pg be an optimal simple shortcut for Py. The following statements hold.

1. If neither p nor q are vertices of Py then v =y = z.
2. If p or q are vertices of Py then the two smallest values among x,y, z are equal.

With Lemma 3.6 in hand, we first compute the points p,q where z = y = 2z by solving
O(n) quadratic equations, and obtain O(n) candidates for optimal simple shortcut such that
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Figure 3 Left: Inserting a simple shortcut pg. Right: Shortcut that is pivoting on a vertex.

p,q & V(Py). We then classify them into three sets: S of simple shortcuts, £ of limit cases
(the segment intersects P, on three points), and shortcuts that intersect P, on four points.
Candidate segments with at least one endpoint in V(P;) must then be included in § and
L; this last set also contains those segments that are pivoting on a vertex of Py (see Figure
3(right)) and such that the two smallest values among z,y, z are equal. Finally, we obtain
the minimum value of diam(P, U s) over s € S U L; there exists an optimal simple shortcut
whenever the minimum is attained by a segment in S.

» Theorem 3.7. [t is always possible to decide whether a path Py with n vertices has an
optimal simple shortcut and compute one (in case of existence) in O(n?) time.

4 Conclusion

We compute optimal shortcuts for general networks and improve our method for paths but
restricted to simple shortcuts and those of any fixed direction. This is an ongoing research
and our first priority is to investigate techniques that allow us to design a more efficient
algorithm for computing an optimal shortcut (with no restriction) for a path. It would be
then interesting to develop a similar algorithmic study for more general networks and to
consider the analogous problems when augmenting the network with more than one shortcut.
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