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Abstract
We study augmenting a plane Euclidean network with a segment, called shortcut, to minimize the
largest distance between any two points along the edges of the resulting network. Questions of
this type have received considerable attention recently, mostly for discrete variants of the problem.
We study a fully continuous setting, where all points on the network and the inserted segment
must be taken into account. We present the first results on the computation of optimal shortcuts
for general networks in this model, together with several results for networks that are paths,
restricted to two types of shortcuts: shortcuts with a fixed orientation and simple shortcuts.
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1 Introduction

A fundamental task in network analysis, especially in the context of geographic data (for
instance, for networks that model roads, rivers, or train tracks), is analyzing how an existing
network can be improved. This can arise in many different contexts: in relation to facility
location analysis, for instance, to guarantee a certain maximum travel time from any point
on the network to the nearest hospital, or in road network design problems, to decide where
to add road segments to reduce network congestion [16].

Networks like the ones above are naturally modeled as a geometric network: an undirected
graph whose vertices are points in R2 and whose edges are straight-line segments connecting
pairs of points. Moreover, in many applications, it is reasonable to assign lengths to the
edges equal to the Euclidean distance between their endpoints. These are called Euclidean
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Figure 1 Left: Example of network with diameter 4 (each edge has unit length); in the highway
model, no single segment insertion can improve the diameter. Right: in the planar model, segment
pq is a shortcut, since its insertion reduces the diameter to d(r, r̄) = 3.5. However, pq is not a
shortcut in the highway model as its insertion increases the diameter to 5.

networks. When, in addition, there are no crossings between edges, the Euclidean network
is said to be plane. Many problems in geographic analysis, for instance, those involving
transportation networks, can be accurately modeled with a plane Euclidean network. In the
following, we shall simply write network, it being understood as plane and Euclidean.

One of the most fundamental ways to improve a network is by adding edges. This increases
the connectivity of the network and potentially can decrease travel times and congestion.
The most studied criteria to measure network improvement, in the geometric setting, are
related to distances. Particularly important is the maximum distance, or diameter of the
network, which provides an upper bound on the distance between any two network points.
Another important distance-related criterion in this context is the dilation, which captures
the maximum detour between two points on the network.

In this work, we focus on the problem of adding edges to a network in order to improve its
diameter. This can be seen as a variant of the Diameter-Optimal-k-Augmentation problem,
which consists in inserting k additional segments into a graph, while minimizing the largest
distance in the resulting network (see the survey [14] for more on augmentation problems
over plane geometric graphs). More precisely, we study a continuous version of the problem
for k = 1: we consider the addition of one segment, called shortcut, whose endpoints can be
any two points (not necessarily vertices) on the network. A segment will be considered a
shortcut only if its insertion improves the diameter of the resulting network. Note that the
resulting network includes the points on the shortcut inserted.

Our goal is to find an optimal shortcut: one minimizing the diameter of the resulting
network, over all possible shortcuts.

Two major variants of the problem arise, depending on how the shortcut is inserted into
the network. In the first variant, which we call highway model, the crossings between the
shortcut and the network edges do not form new network vertices: a path can only enter and
leave the shortcut through its endpoints. In contrast, in the planar model, every crossing
creates a new vertex, which can be used by paths in the network. Figure 1 illustrates some
of the differences between the two models.

In this work, we focus on the planar model. This model is more general, and is applicable
to a wider range of situations, like the addition of segments to road or pedestrian networks.
From a theoretical point of view, the difference between the highway and planar model is
important. The latter results in more complex problems, since the fact that a shortcut can
be used only in part, implies that the structural information on how the distances in the
network change after adding a segment is more difficult to maintain. Moreover, as we show
in this work, many intuitive properties of shortcuts do not hold in the planar model anymore.
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Related work. There has been a considerable amount of work devoted to the graph version
of the Optimal-k-Augmentation problem. Due to space constraints, we only discuss the
geometric version of the problem (i.e., where the graph is embedded in the plane), and where
the continuous diameter is used (i.e., the distances are taken over all pairs of points in the
network, as opposed to considering only pairs of vertices).

Most attention to the problem studied here has been on the highway model, for certain
classes of graphs. For paths, De Carufel et al. [6] gave an algorithm to find an optimal
shortcut in linear time, and also optimal pairs of shortcuts (i.e., k = 2) for convex cycles.
Trees have been studied in a recent follow-up work [7], which presents an algorithm to find
an optimal shortcut for a tree of size n in O(n logn) time. For circles, very recently Bae et
al. [1] have analyzed how to add up to seven shortcuts in an optimal way.

For the planar model much less is known. Yang [15] designed three different approximation
algorithms to compute an optimal shortcut for certain types of paths. Cáceres et al. [5]
were the first to consider general networks, for which they show that one can find a shortcut
in polynomial time if one exists (note that there are networks whose diameter cannot be
improved by adding only one segment, e.g., a cycle), but they do not look for an optimal one.

Our results. We present the first study of optimal shortcuts in the planar model for general
networks, and several improved results for paths. An important contribution of our work
is to highlight many important differences between the highway and planar models, the
latter resulting in considerably harder problems. In Section 2, we give a polynomial time
algorithm to compute an optimal shortcut if one exists. Moreover, we present a discretization
of the problem that immediately leads to an approximation algorithm for general networks,
generalizing an existing result for paths [15]. Section 3 focuses on paths: we first show that
the diameter of a path network after adding a shortcut can be computed in Θ(n) time. Then
we improve the method of Section 2 for shortcuts of any fixed direction. Finally, we study
simple shortcuts, a variant that has been studied before, which has applications in settings
where the added edge cannot intersect the existing network.

Due to space limitations, most proofs are not included here; they can be found in [12].

1.1 Preliminaries

We will use N = (V (N ), E(N )) to denote a network with n vertices, and N` for its locus,
the set of all points of the Euclidean plane that are on N . Thus, N` is treated indistinctly
as a network or as a closed point set. When N` is a path, we use P` instead of N`. Further,
we write a ∈ N` for a point a on N`, and V (N ) ⊂ N`.

A path P connecting two points a, b on N` is a sequence au1 . . . ukb such that u1u2,. . . ,
uk−1uk ∈ E(N ), a is a point on an edge ( 6= u1u2) incident to u1, and b is a point on an edge
( 6= uk−1uk) incident to uk. We use |P | to denote the length of P , i.e., the sum of the lengths
of all edges uiui+1 plus the lengths of the segments au1 and buk. The length of a shortest
path from a to b is the distance between a and b on N`. This distance is written as dN`

(a, b)
or d(a, b) when the network is clear, and whenever ab /∈ E(N`), it is larger than |ab|, the
Euclidean distance between the points.

The eccentricity of a point a ∈ N` is ecc(a) = maxb∈N`
d(a, b), and the diameter of N` is

diam(N`) = maxa∈N`
ecc(a). Two points a, b ∈ N` are diametral whenever d(a, b) = diam(N`),

and a shortest path connecting a and b is then called diametral path.
The diameter of N`, diam(N`), can be computed in polynomial time [5, 8]. Furthermore,

the diametral pairs of N` are either (i) two vertices, (ii) two points on distinct non-pendant
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edges1, or (iii) a pendant vertex and a point on a non-pendant edge [5, Lemma 6]. Thus, with
some abuse of notation, in Section 2, we will say that a diametral pair α, β ∈ V (N ) ∪ E(N )
may be (i) vertex-vertex, (ii) edge-edge, or (iii) vertex-edge.

A shortcut for N` is a segment s with endpoints on N` such that diam(N`∪s) < diam(N`).
We say that shortcut s is simple if its two endpoints are the only intersection points with
N`, and s is maximal if it is the intersection of a line and (N` ∪ s), i.e., s = (N` ∪ s) ∩ `, for
some line `. A shortcut is optimal if it minimizes diam(N` ∪ s) among all shortcuts s for N`.

2 General networks

The main result in [5] states that one can always determine in polynomial time whether
a network N` has a shortcut (and compute one, in case of existence). In this section, we
first prove the analogous result for optimal shortcuts. Our proof uses some ideas in [5]
but captures the property of being optimal with a much shorter argument based on some
functions defined in Lemma 1 below.

Let α, β ∈ V (N ) ∪ E(N ), and let e = uv and e′ = u′v′ be two edges of N . When α

is an edge, we use ecc(u, α) to indicate the maximum distance from u to the points on α
(analogous for β and the remaining endpoints of e and e′); if α is a vertex, ecc(u, α) = d(u, α).
In general, ecc(α, β) = maxt∈α,z∈βd(t, z).

I Lemma 1. Let y = ax+ b be a line intersecting edges e = uv and e′ = u′v′ on points p
and q, respectively, and let α, β ∈ V (N ) ∪E(N ). For each pair (w, z) with w ∈ {u, v} and
z ∈ {u′, v′}, function fw,zα,β (a, b) = ecc(w,α) + |wp|+ |pq|+ |qz|+ ecc(z, β) is linear in b.

The following theorem is the optimality version of Theorem 8 in [5].

I Theorem 2. It is possible to determine in polynomial time whether a network N` admits
an optimal shortcut, and compute one in case of existence.

It should be noted that the approach that leads to the preceding result, albeit polynomial,
has a very high running time. A direct implementation involves O(n4) functions fw,zα,β (a, b)
that must be computed, and this has to be done for O(n4) different cases. Moreover, each
evaluation of fw,zα,β (a, b) takes O(n2) time. All in all, its running time would add up to O(n10).

2.1 Discretizing the set of possible shortcuts: approximation
In light of the high running time of the previous approach, it becomes interesting to look for
faster approximation algorithms. Moreover, given the continuous nature of the problem, it
is natural to wonder to what extent the problem can be discretized. In other words, how
good can shortcuts be if we restrict them to some discrete collection of segments? The most
natural choice for such a collection is probably the segments defined by pairs of vertices u, v
of N`, but this choice can lead to poor results, as the example in Figure 2(left) shows. In
some cases, one can do better by considering the maximal extensions of the segments uv (i.e.,
the largest segment through uv with endpoints on N`), as Yang [15] did to obtain an additive
approximation for paths. Unfortunately, as Figure 2(right) shows, maximal extensions do not
work anymore as soon as N` is a tree. However, in this section, we show that if one considers
all extensions of segments defined by two vertices of N`, then it is possible to guarantee an
approximation factor for general networks.

1 An edge uv ∈ E(N ) is pendant if either u or v is a pendant vertex (i.e., has degree 1).
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Figure 2 Left: the optimal shortcut is the dashed purple segment, which contains the blue
segment. That blue segment (and any other segment between two vertices) gives a larger diameter
as points a and b are diametral for both segments. Right: the original diameter is given by the
orange path. The best shortcut connecting two vertices is bc. Contrary to intuition, extending bc to
bd worsens the diameter, which becomes given by points a and e (pink path).
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Figure 3 Left: approximating a shortcut s with a segment s′ ∈ S2. Right: using s′ instead s to
go from a to b causes a detour of at most 4ρ (purple path).

Let S be the infinite set of segments with endpoints in N`, and let S2 ⊂ S be the subset
of segments of S that contain two vertices of N`. The following proposition states that set
S2 is an approximation of S.

I Proposition 3. Let ρ be largest edge length in N`. Then, mins∈S diam(N` ∪ s) ≤
mins∈S2 diam(N` ∪ s) ≤ mins∈S diam(N` ∪ s) + 4ρ.

Proof. The first inequality is straightforward. For the second, it suffices to prove that given
s = pq ∈ S \ S2 there exists s′ ∈ S2 such that diam(N` ∪ s′) ≤ diam(N` ∪ s) + 4ρ.

Segment s may cross several faces of N`, refer to Figure 3. Consider the first and the last
ones, say F1 and F2, together with the vertices of N` that are adjacent to p and q in those
faces: u, v in F1 and u′, v′ in F2. Let V1 be the vertices of N` in the quadrilateral upqu′
(including u and u′), and let C1 be its convex hull. Analogously, we have V2 and C2 for the
quadrilateral vpqv′. Note that both convex hulls may have one point in common. Extending
one of the common internal tangents of C1 and C2 gives rise to a segment s′ with endpoints
on two of the edges of F1 and F2 containing points p and q. Observe that s′ intersects all
the edges of N` that are crossed by s. Thus, this construction allows us to show that, for any
two points a, b ∈ N`, the length of the shortest path between a and b that uses s′ is at most
4ρ plus the corresponding length but using s. To do this, we first use the triangle inequality
to compare the lengths of the used portions of segments s and s′, which gives a difference of
2ρ, and then we add the two distances indicated in Figure 3(right). A similar argument is
used for a ∈ s′ and b ∈ N`. J

The collection S2 is finite but quite large, it has size O(n4), which gives a time complexity
of O(n6) to compute the optimal among the segments in S2 (there are O(n2) possible
extensions per each pair of vertices, and for each of them one needs to compute the diameter
from scratch in O(n2) time [13]).

ISAAC 2018
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Figure 4 Left: function Φst
uv. Right: if the distance from p1 to st decreases when adding s0 = uv,

then, after adding s1 = up1 it will become even smaller.

We would like to find a small subset of S2 that preserves the property in Proposition
3. Ideally, we would like to consider not all the extensions of a segment with endpoints in
V (N`) (that is exactly S2), but only the best extension for each segment. Unfortunately, this
appears rather difficult: already for a tree with a single vertex of degree larger than two, it
may happen that an extension of a segment gives a worse diameter than the segment itself,
see Figure 2(right). However, we show next that we can speed-up the computation of the
diameter for each extension in S2, saving a nearly-linear factor in the total running time.

Given a segment s′ = p′q′, let r be the ray starting at p′ and containing s′, and let
P = p0, p1, . . . , pk be the sorted list of intersection points of r with edges of N` (note that
q′ = pj for some j). Segments si = p′pi are called extensions of s′ to the right; the extensions
to the left are defined similarly. Next we show how to speed-up the re-computation of
the diameter of N` ∪ si as we insert s0, s1, . . . sk, in that order. To that end, we split the
re-computation of distances into two parts: distances from points on si to points on N`, and
distances (in N` ∪ si) between two points on N`.

I Lemma 4. Let u and v be vertices of N`. It is possible to compute the eccentricities of all
the extensions to the right of segment uv in O(n2) time.

Proof. As a preprocessing step, we store the distances from each vertex to all the other edges
and the point at each edge attaining that maximum distance. This allows us to construct
the functions Φstuv : [0, 1]→ R+ that encode the information of the maximum distance from
each point on an edge uv to an edge st (see [13, Theorem 2] for their analytic expression).
Their shape is as follows – see also Figure 4(left): let u′ and v′ be the farthest points to,
respectively, u and v in edge st. Function Φstuv increases uniformly from 0 and from 1 until
the distance between both lines equals the distance between u′ and v′, at that moment it
stabilizes horizontally. Thus, knowing the farthest points u′ and v′ to u and v in the segment
st (and the distance between them), it is possible to build Φstuv in constant time.

The main idea of the proof of this lemma is that it is possible to update each map Φstuv
for each extension of a segment again in constant time. Observe that Φst

uv encloses the
information of the largest distance from any point of uv to the segment st.

In a first step, we insert segment s0 = uv. As u and v are in N`, they belong to some
edges g and g′, and we use the information of Φstg and Φstg′ to find the largest distance from
u and v to st (in N`). With that information, we compute Φstuv in constant time. Thus, the
maximum eccentricity of the edge s0 = uv can be computed in linear time.

Observe that building the map Φst
uv it is possible to detect if ecc(v, st) changes when

adding s0, so, we update the values of the distances from vp0 to all the other edges, and the
point on each edge giving that maximum distance (again, in linear time).
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s0 s1 s2 s3 s4 s5 s6 s7

N(0)

E(0)

Figure 5 For each segment extension, we consider two values: E(i) – maximum eccentricity on
si – (blue points), and N(i) – maximum eccentricity in N` ∪ si for points in N`– (red squares). For
each si, the diameter of N` ∪ si is given by the maximum of these two values. Only the blue points
with green arrows must be tested (they are the maximal blue points).

Of course, the addition of s0 can change the eccentricity of p1 with respect to some other
edge (and the same with any of the other pi’s), but we will see that we do not need to update
that information at this moment. Indeed, if the distance from p1 to st changes when adding
s0, it can only decrease. Then, the addition of s1 is going to make it even smaller – see
Figure 4(right). Thus, in step i, we only need to update the information of the new vertex
pi, since by adding si, the value of pi+1 is going to be updated. J

I Lemma 5. Let u and v be vertices of N`. It is possible to find the extension s of segment
uv that minimizes diam(N` ∪ s) in O(n3 logn) time.

Proof. The value of diam(N`∪s) can be computed by calculating the eccentricity of segment
s and comparing with the eccentricities in N` ∪ s of all the points in N`. Thus, for each
extension s′ of uv to the left, we compute the eccentricities E(i) of all its extensions si to
the right using Lemma 4, in O(n2) time. Let N(i) be the maximum distance in N` ∪ si
between pairs of points in N`. Our goal is to compute mini max{E(i), N(i)}. Since N(i) is
a decreasing function as i grows, we do not need to compute N(i) for all values of i, but
only for those i for which E(i) is maximal: there is no j > i with E(j) < E(i) (see Figure 5).
Therefore, we can look for that minimum by binary search, computing N(i) only for O(logn)
values of i. Using [10], we can update the distances between vertices in quadratic time
and then compute N(i) also in quadratic time (the distance between pairs edge–edge and
vertex-edge can be computed in constant time knowing the distance between vertices), giving
a total time of O(n3 logn). J

We thus obtain the main result in this section.

I Theorem 6. Let ρ be the length of a longest edge of a network N`. Then, it is possible to
find a segment s′ such that diam(N` ∪ s′) ≤ mins∈S diam(N` ∪ s) + 4ρ in O(n5 logn) time.

This result immediately gives a simple approximation algorithm: subdivide each edge
in N` by adding dummy vertices such that the largest resulting edge length is ε. Then the
previous theorem implies the following result, which is a generalization to general networks
of the result for paths presented in [15, Theorem 8.1].

I Corollary 7. Let ρ be the length of a longest edge of a network N`. Then, for any 0 < ε <

ρ/2 it is possible to find a segment s′ such that diam(N` ∪ s′) ≤ mins∈S diam(N` ∪ s) + 4ε
in O((nρ/ε)5 log(nρ)) time.

ISAAC 2018
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op q

pi

qj

Figure 6 Schematic construction showing that the insertion of a shortcut pq can create Θ(n2)
diametral pairs. The distance between the top of one spike on the left of o and one on its right, like
pi and qj , can be made to be |pq|, and equal to the diameter of P` ∪ pq.

3 Path networks

In the remaining, we focus on networks that are paths. To illustrate the complexity of this
seemingly simple setting, we begin by observing that the insertion of a shortcut to a path can
create a quadratic number of diametral pairs; as illustrated in the construction in Figure 6.
It consists of Θ(n) spikes placed symmetrically with respect to the midpoint of the shortcut,
denoted with o. After inserting pq, each spike forms a face with a cycle of length roughly
twice its height. The spikes are spaced by one unit each, while their heights are set such that
the distance from o to the top of the spike is always the same, namely |pq|/2. In this way,
for any two spike tops pi and qj on the left and right of o, respectively, the distance between
pi and pj on P` ∪ pq is always equal to |pq|, which is also the diameter of P` ∪ pq.

3.1 Diameter after inserting a shortcut
The diameter of P` can be immediately computed in linear time, however, the addition of a
shortcut s can create a linear number of new faces, thus in principle it is not clear whether
diam(P` ∪ s) can be computed in linear time, i.e., without computing the diameter between
each pair of faces. The main result in this section is that this is still possible.

Path networks have the nice property that the maximal extension of an optimal shortcut
is also optimal [15]. Thus, we can assume that s = pq is maximal and horizontal. The
insertion of s splits P` into polygonal chains, which bound the different faces created. Our
goal is to compute the pair of chains that have maximum distance in P` ∪ s.

We number the polygonal chains from 0 to m in the order of their left endpoints from left
to right along s (using right endpoints to disambiguate). Except for possibly the first and
last, all chains have both endpoints on s. For the ith chain Ci, we denote its left and right
endpoints by pli and pri , respectively. If the first vertex of P` is not on s, we consider the
path from its first vertex to the first intersection of P` with s as a degenerate loop chain with
equal left and right endpoints on s (analogous for the last vertex of P`). Refer to Figure 7.

Let |Ci| be the length of Ci, let Li = |ppli| and Ri = |pri q|, and let si denote the segment
plip

r
i . Note that Ci ∪ si forms a cycle. We use Di for the distance on P` ∪ s from pli to its

furthest point p̄li on Ci ∪ si (i.e., Di is the semiperimeter of Ci ∪ si).
We make some basic observations about the diameter between two chains, depending on

their relative position. They reveal a key property of the problem: the linear ordering between
chains induced by s defines uniquely how the diameter between two chains is achieved.

I Observation 8 (Disjoint chains). Let Ci, Cj be two chains of P` ∪ s with si ∩ sj = ∅ and si
to the left of sj . The diameter of Ci∪pliprj ∪Cj is Di+ |pri plj |+Dj = Di+Ri−Rj−|sj |+Dj .
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R3L3

p̄l3p̄r3

D3

P`

C9

C3

Figure 7 Left: chains created by s; C0 and C8 are degenerate chains. Right: detail for chain C3,
showing the cycle formed by C3 ∪ s3. Thick lines are used here to denote distances.

I Observation 9 (Nested chains). Let Ci, Cj be two chains of P` ∪ s with sj ⊂ si. The
diameter of Ci∪ si∪Cj is 1

2 (|Ci|+ |pliplj |+ |pri prj |+ |Cj |) = 1
2 (|Ci|+Lj −Li+Rj −Ri+ |Cj |).

I Observation 10 (Overlapping chains). Let Ci, Cj be two chains of P` ∪ s with si ∩ sj 6= ∅,
pli /∈ sj and prj /∈ si. The diameter of Ci ∪ pliprj ∪ Cj is 1

2 (|Ci| + |pliplj | + |pri prj | + |Cj |) =
1
2 (|Ci|+ Lj − Li +Ri −Rj + |Cj |).

Note that, while in the case of disjoint chains the diameter is achieved by a unique pair
of points, that is not the case of nested and overlapping chains, for which an infinite number
of diametral pairs of points may exist. Also, observe that expressions in Obs. 9 and Obs. 10
are the same except for adding up either Rj −Ri or Ri −Rj . This difference only exists to
differentiate between the two possible orders of the right endpoints of the two chains.

The algorithm for computing diam(P` ∪ s) in linear time starts by going along P` and
computing all intersections with s in the order of P`. Then we apply a linear-time algorithm
for Jordan sorting [11] to obtain the intersections in the order along s, say, from left to right.
Within the same running time we can compute Ck and sk. Next, we sweep the endpoints of
the chains along s to compute, for each chain Ck, its furthest chain from the ones seen so far.
To that end, certain information is computed and stored:
1. The furthest chain from Ck to the left, given by arg max0≤i<k αi, where αi = Di + Ri.

Similarly, we store the furthest chain to the right.
2. The furthest chain nested inside Ck. This is given by arg maxj∈Nk

βj , where βj =
|Cj |+ Lj +Rj and Nk is the set of indices of all chains nested inside Ck.

3. The furthest chain with one endpoint in Ck, and one outside: given by arg maxj∈Or
k
γj ,

where γj = |Cj |+Lj −Rj and Ork is the set of indices of all overlapping chains with their
left endpoint inside Ck and their right endpoint outside. Similarly, we store those with
their left endpoints outside and the right one inside of sk.

The computation of the information in (1) is straightforward when sweeping along s, say,
from left to right. We just maintain the largest value of αi seen so far as we sweep. The case
of nested or overlapping chains, which is explained next, is more complicated because one
needs the maximum restricted to those chains that are contained or overlap with Ck. For
that reason, what we will do is to store βj and γj values for all chain endpoints. Suppose that
Ci starts to the left of Cj (the other case is analogous). We use a data structure for range
minimum queries [2,3]. This allows to preprocess an array A in linear time in order to find the
maximum value in any subarray A[a, b] in O(1) time. In our context, we need two such data
structures. We use arrays An and Ao to store the maximum β and γ values defined above
for the chains that are nested and overlapping, respectively. Each array has one position for
each endpoint of a chain, thus 2m in total. The positions are as they appear sorted along
s, from left to right. Refer to Figure 8. For a chain Cj , the position corresponding to its
left endpoint has a value equal to βj in the array An, and value γj in array Ao. The values
corresponding to the right endpoints of the chains are not used, i.e., they have value −∞, in
both arrays. At each array position, we also store pointers to the corresponding chains.
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p

C1

C2

q

C0
C3

0 1 2 3 4 5

β0An
6 7

-∞β1 β2 -∞ -∞β3 -∞

0 1 2 3 4 5 6 7
0 1 2 3 4 5

γ0Ao
6 7

-∞γ1 γ2 -∞ -∞γ3 -∞

Figure 8 Example of arrays with distances to chains that are nested (An) and overlapping (Ao).

To find the nested or overlapping chain furthest from Ci we would like to perform one
maximum range query in An and one in Ao, in both cases with a subarray corresponding
to the interval between the endpoints of Ci. The goal is to use these queries to obtain the
furthest chain of each type: nested and overlapping. However, there is an issue. In the
way An and Ao are defined, the result of a range query cannot distinguish between nested
or overlapping chains, it necessarily searches in both sets (i.e., Ni ∪Ori ). Fortunately, the
geometry of the problem guarantees that we can still use the result obtained, as we show
next. The following lemma shows that if the furthest face is associated to a βi value, then it
must be nested, and similarly, if it is associated to a γi value, it must be overlapping.

I Lemma 11. Let Ck be a chain with distance to Ci equal to d∗ = max{maxj∈(Ni∪Or
i

) |Ci|−
Li−Ri+βj ,maxj∈(Ni∪Or

i
) |Ci|−Li+Ri+γj}. Then it holds: (i) if d∗ = |Ci|−Li−Ri+βk,

then k ∈ Ni; (ii) if d∗ = |Ci| − Li +Ri + γk, then k ∈ Ori .

Therefore, when processing a chain Ck, we perform one maximum range query in An
and one in Ao, and keep the maximum of those two values. Lemma 11 guarantees that the
associated chain is the furthest one that is either nested or overlapping. Proceeding in an
analogous way for the chains that are overlapping with one endpoint to the left of Ck, the
furthest face from Ck of any of the three types (disjoint, nested, overlapping) can be found in
O(1) time, and the maximum distance between two chains can thus be found in linear time.

I Theorem 12. For every path P` with n vertices and a shortcut s, it is possible to compute
the diameter of (P` ∪ s) in Θ(n) time.

It is worth noting that the ideas used in this section do not extend to networks that are
trees, since in that case the structural results in Observations 8–10 do not hold anymore.

3.2 Optimal horizontal shortcuts
In this section we compute an optimal horizontal shortcut for a path considerably faster
than using the general method in Section 2. After a suitable rotation, this allows to find an
optimal shortcut of any fixed orientation.

Assume as in Section 3.1 that shortcuts are horizontal and maximal, so they can be treated
as horizontal lines. Now, consider the vertices in P` sorted increasingly by y-coordinate,
and let ya, yb, with ya < yb, be the y-coordinates of two consecutive vertices in that order.
Observations 8–10 are stated in terms of chains, but they also apply to faces. Indeed, they
imply that the distance between any two faces fi and fj is a linear function dij(y) for
ya ≤ y ≤ yb. Thus, each face fi is associated with k − 1 lines in 2D where k is the total
number of faces (each line represents the corresponding function dij(y) for j 6= i). Considering
all faces, we obtain a set L of Θ(k2) lines (note that k = O(n)). The optimal shortcut over
all y ∈ [ya, yb] is given by the minimum of the upper envelope of L, which can be computed
in O(k2 log k) time [9]. If this is done with each of the n − 1 horizontal strips formed by
consecutive vertices of N`, the optimal horizontal shortcut is obtained in total O(n3 logn)
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time. Now, this method can be improved if, instead of computing from scratch the upper
envelope of L at each horizontal strip, we maintain the upper envelope between consecutive
strips and only add or remove the lines that change when going from one strip to the next
one. The changes between two consecutive strips are of three types: (i) one of the two line
segments bounding a face within the strip changes; (ii) a face ends; (iii) a new face appears.
In the worst case, n− 1 lines are removed from L and another n− 1 lines are added to L.
Maintaining the upper envelope of N lines is equivalent to maintaining the convex hull of
N points in 2D, which can be done in amortized O(logN) time per insert/delete operation
with a data structure of size O(N) [4]. Since we have N = O(n2), we obtain the following:

I Theorem 13. For every path P` with n vertices, it is possible to find an optimal horizontal
shortcut in O(n2 logn) time, using O(n2) space.

3.3 Optimal simple shortcuts
In this section we consider optimal simple shortcuts, i.e., we restrict the possible shortcuts to
those whose interior does not intersect N`. We show that an optimal simple shortcut can be
computed much faster if it exists. Note that one must distinguish between an optimal simple
shortcut and a simple optimal shortcut. The first is a shortcut that is optimal in the set of
simple shortcuts; this is different of being optimal in the set of all shortcuts and, in addition,
to be simple. Interestingly, it is known that optimal simple shortcuts may not exist, even
for paths [16] (e.g., when the only optimal shortcut goes through a vertex, see [12, Figure
12(a)])). It is not clear, however, what the conditions for a network N` to have an optimal
shortcut are, even restricted to simple shortcuts. The following proposition is a first approach
to this question (note that its converse is not true, see [12, Figure 12(b)]).

I Proposition 14. Let N be a network whose locus N` admits a simple shortcut, and let N
be the network resulting from adding to N all edges of the convex hull of V (N ). If all faces
of N are convex, then N` has an optimal simple shortcut.

We now turn our attention to the computation of an optimal simple shortcut if one exists.
Let s = pq be a simple shortcut for a path P` with endpoints u, v. Suppose that point p

is closer to u than q along P`; let x = d(u, p) and y = d(v, q). There is only one bounded
face in P` ∪ s whose boundary is a cycle C(p, q). Let p and q be the farthest points from,
respectively, p and q on C(p, q), and let z = (dP`

(p, q)− |pq|)/2. Note that d(p, q) = |pq| and
z = d(p, q) = d(p, q). There are three candidates for diametral path in P` ∪ s (see [6]):
1. The path from u to v via s is diametral if and only if z = min{x, y, z},
2. the path from u to p via s is diametral if and only if y = min{x, y, z},
3. the path from v to q via s is diametral if and only if x = min{x, y, z}.

Thus, diam(P` ∪ s) ∈ {x+ y + |pq|, x+ z + |pq|, y + z + |pq|}. For the highway model, it
was proved in [6] that P` has an optimal shortcut satisfying x = y, which allows to compute
it in linear time. In the planar model the situation is more complicated but, in a similar
fashion, we can prove the following lemma, which lead to Theorem 16.

I Lemma 15. Let pq be an optimal simple shortcut for P`. The following statements hold.
1. If neither p nor q are vertices of P` then x = y = z.
2. If p or q are vertices of P` then the two smallest values among x, y, z are equal.

I Theorem 16. It is possible to decide whether a path P` with n vertices has an optimal
simple shortcut and compute one (in case of existence) in O(n2) time.
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4 Conclusions

In this work, we have presented the first results on the computation of optimal shortcuts for
the planar model. We have shown that an optimal shortcut can be computed in polynomial
time, and given a discretization of the problem that results in an approximation of the original
continuous version. Even though the discretization obtained is too large to be of practical
use, it is interesting from a theoretical point of view, and hopefully will be useful to obtain
smaller discretizations in the future. We also presented new results for paths, including how
to quickly compute the diameter after inserting a shortcut, the computation of an optimal
shortcut of fixed orientation, and of an optimal simple shortcut. These are important first
steps on a relevant and difficult problem, which leave many intriguing questions open. The
existence of small discrete set of segments to approximate an optimal shortcut, or a fast
algorithm to find an optimal shortcut for paths (any orientation), are some examples. Finally,
the questions studied but for optimal sets of k > 1 shortcuts pose challenging open problems.
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