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Abstract

For a given graph G = (V, E), the degree mean rate of an edge
uv € E is a half of the quotient between the geometric and arithmetic
means of its end-vertex degrees d(u) and d(v). In this note, we derive
tight bounds for the Randié¢ index of G in terms of its maximum and
minimum degree mean rates over its edges. As a consequence, we
prove the known conjecture that the average distance is bounded above
by the Randi¢ index for graphs with order n large enough, when the
minimum degree 4 is greater than (approximately) A%, where A is the
maximum degree. As a by-product, this proves that almost all random
(Erdds-Rényi) graphs satisfy the conjecture.

Keywords: Edge degree rate, Randié¢ index, connectivity index, mean
distance.
MSC: 05C35, 05C90.

1 Background

We consider simple graphs G = (V, E), with vertex set V and edge set E.
Unless some distance parameters are considered, as in the next definitions,
(G is not necessarily connected, but we always assume that there are no
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isolated vertices. Given two vertices u,v € V, let denote by dist(u,v) the
distance between u and v. The mean distance of G is

w(G) = n—l Z dist(u, v).

Let d(u) denote the degree of vertex u, and 6 and A the minimum and
maximum degree of G. The Randié index [9], also called connectivity index,
of G is

Fajtlowicz [6] conjectured that, for any (connected) graph G,
1(G) < R(G). (1)

Besides, Caporossi and Hansen [5] generalized this conjecture by proposing
the inequality

w(G) < R(G) — [W— 2 (1 — i)] : (2)

Since then, some sufficient conditions have been given for these conjec-
tures to hold. For instance, Li and Shi [7] proved that, for any e € (0,1), if
G has minimum degree § > en, then holds for order n large enough. In
fact, we show that this result is a consequence of our main theorem and the
following bound for p(G) in terms of ¢ (see Beezer, Riegsecker, and Smith

[1)-
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W@) < 2. (3)

2 Bounds of the Randi¢ index for graphs with
given degree mean rate

Before giving our main result, we introduce the following concept. Given
a graph G = (V, E), the degree mean rate y(e) of an edge e = uwv € E is
a half of the quotient between the geometric and arithmetic means of its
end-vertex degrees d(u) and d(v), that is,

d(v)
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Moreover, the maximum and minimum of this parameter over all the edges
of GG are denoted by

Ap = max y(uv) and dp = min fy(uv)
uwekl uvel



Notice that
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with lower and upper bounds attained, respectively, by (any edge of) the
star Sy, (= Kj 1) and a regular graph.

Theorem 2.1. Let G = (V, E) be a graph on n vertices, with given Ag and
dg. Then, its Randié¢ index R(G) satisfies the following bounds:

Proof. Notice first that, as
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for any given constant, say p > 0, the Randi¢ index can be written as
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takes zero value at the straight lines with equations y = azr and y = Sz,
where
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Figure [1| (left) shows the function z = f(z,y), when n = 20 and p = 8, for
the region of interest 1 < xz,y < n — 1. Besides, it happens that f(z,y) >0
insides the region where a@ < £ < 3 (corresponding to the regions (II) and
(III) in Figure [1] (right)), and f(z,y) < 0 otherwise.

Now, let us go back to (6) by taking z = d(u) and y = d(v) and,
without loss of generality (because of the symmetry of f(z,y)), assume that
d(u) > d(v). If, for some p > 0, we have

d(v)
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Figure 1: Left: The function z = f(z,y), when n = 20 and p = 8, for the
region of interest 1 < x,y < n—1. Right: The different regions of z = f(z,y)
in the plane xy.

then all the other values of % are inside of the cone, in the region (I7) in

Figure |1l Hence, R(G) > p. Otherwise, if, for some p > 0, we have
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then all the other values of % are outside of the cone, in the region (I) in
Figure |1l Hence, R(G) < p. Then, solving for p (positive), we see that the
conditions @ and are equivalent, respectively, to

nva

P=a1 ™" (9)
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The above equalities are due to the fact that the function ¢(z) = z—‘ﬁ is
increasing for x € (0,1). Thus, the best lower and upper bounds in are
given, respectively, by @D and . This completes the proof. O

Note that the graphs G that satisfy ndp = R(G) = nAg are those whose
ratio d(v)/d(u) is constant for every edge. In this case, a = b (see (7)) and
(8)), and then p = Ag = /a/(14a) and R(G) = ny/a/(1+a). An example
is given by the complete bipartite graphs K, n, having R(Ky, n,) = /ning.
Another example is provided by the trees T}, for p = 1,2,..., with sets of
vertices Vp, V1,..., V), such that Vj is a singleton with degree 2P, and every
vertex of V; (with degree 2P~%) is adjacent to one vertex of V;_; and 2P~ — 1
vertices of V1. Thus, every edge of T}, say uv with v € V; and v € Vj4q,

has gézg = 2;;:1 = 3,80 6p = Ap = v2/3 and R(T,) = nv2/3. See the
example of T3 in Figure 2] (f).
See Table [1| for the values of the Randi¢ index and the given bounds for

the graphs of Figure 2| (a)—(e).




Graph | ndg | R(G) | nAg
(@) |5.629 | 5.974 | 6.128
) 2.828 | 2.914 3
) | 2449 | 2710 | 3.5
)
)

2.904 | 2.957 3
2.710 | 2.834 | 2.981

Table 1: Values of ndg, R(G) and nAg for the graphs of Figure [2| (a)—(e).
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Figure 2: The graphs (a)—(e) correspond to Table [I} and (f) is the tree T3
satisfying ndg = R(G) = nAg.

As a corollary of Theorem [2.1} we obtain the following known result (see
Bollobés and Erdés [3], or Pavlovié and Gutman [8], or Caporossi, Gutman,
Hansen, and Pavlovié¢ [4]).

Corollary 2.2. The Randié¢ index of any graph G satisfies
vn—1< R(G) < g

Moreover, the lower bound is attained if and only if G = Ky, (or star
graph), and the upper bound is attained if and only if all components of G
are regqular (not necessarily with equal degree of regularity).

Proof. The lower and upper bounds come from . Besides, G = K1,
if and only if, in the proof of Theorem a=1>b=1/(n—1), that is,
R(G) = nép = nAgp = v/n—1. Analogously, all components of G are

regular if and only a = b = 1, that is, R(G) = nég = nAg = 3. O

Another consequence of Theorem is a sufficient condition for the
conjecture u(G) < R(G) to hold.

Corollary 2.3. Let G be a graph with minimum degree & satisfying

n
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Then, its Randi¢ index satisfies u(G) < R(G).
Proof. Apply Theorem by using the bound for p(G) in . O

OGS

In particular, if Tro/A > 7 t2,a80p > 1”+5//A, then we have

+2< ”V < nép < R(G). (12)

u@) < +1 5/A
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So, one see that the conjecture p(G) < R(G) holds, for n large enough,
when § is greater than (approximately) A3, Indeed, dividing by n the
second inequality in , we only need to show that

1 J3/A

541 - 1+6/A

or, equivalently, \/A/6 + \/§/A —1 < §, which holds when A < §2 since
d/A < 1.
Moreover, Corollary [2.3|implies the result of Li and Shi [7]:

Corollary 2.4. For any given ¢ € (0,1), if G is a (connected) graph with
order n and minimum degree 6 > en, then its Randié¢ index satisfies pu(G) <
R(G) for sufficiently large n.

Proof. Since § > en and A < n — 1, we have that i > n” E+"1 Le . Then, for

n large enough (for the second inequality to hold), we have

n n

o> >0 1> —1 13
ne= v/n(n—1)e 9 ~ nég — 2 ( )
-1
and Corollary 2.3 gives the result. O

To have an idea about the lower bound for n, notice that the second
inequality in gives (approximately) n > e=3/2. Indeed, for large n, such
inequality holds if ne > \/h, that is, € > ::é orn > e Y24 ¢3/2 that,

e+1
for small values of €, can be approximated by n > €3/2, as claimed.

In Table |2l we have listed, for ¢ = 1/r and r = 2,...,20, the bound on
n given by the second inequality in considering the equality, and its
approximation e 3/2. Notice that, for ¢ < 1 /13, the latter always applies.

Now we consider a random graph G from the standard Erdds-Rényi
model G(n,p). That is, G has n vertices and each edge appears indepen-
dently with probability p. Then, the condition ¢ > A3 implies the following
result.



€ bound on n from e 3/2
1/2 74 53
1/3 9.6 5.2
1/4 12.2 8
1/5 15.1 11.2
1/6 18.2 14.7
1)7 21.7 18.5
1/8 25.3 22.6
1/9 29.2 27
1/10 33.3 31.6
1/11 37.6 36.5
1/12 42.1 41.6
1/13 16.8 46.9
1/14 51.7 52.4
1/15 56.8 58.1
1/16 62.1 64
1/17 67.6 70.1
1/18 73.2 76.4
1/19 79 82.8
1/20 84.9 89.4

Table 2: Comparison between the bounds for n required by the second in-
equality in when considering the equality, and its approximation e3/2.

Corollary 2.5. Given any p > 0 almost every graph G in G(n,p) satisfies
w(G) < R(G).

Proof. 1t is known that, in the Erdds-Rényi model, almost all graphs G have
maximum degree

A(G) = p(n — 1) + (2pqnlogn)? +o((nlogn)?)
where ¢ = 1 — p. (See Bollobas [2]).

Since the minimum degree of G is » — 1 minus the maximum degree of
the complement of G, this implies that almost all graphs G in G(n, p) have
minimum degree

)(G)=n—1-p(n—-1)— (2pqn10gn)% + o((nlogn)%)
1 1
=q(n—1) — (2pgnlogn)2 + o((nlogn)z).
Now, the result follows from the fact that
A(G)
5(G)?

—
22 0.



In a similar way as done for the Randi¢ index, we could find lower and
upper bounds for the generalized Randic¢ index

uwvek

where now « is an arbitrary real number (the standard Randi¢ index cor-
responds to a = —1/2). More precisely, the same method applies from the
following equality:

Ru(G)=p+ Y [(d(u)d(v))a L (d(lu) + d(lv)ﬂ .
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