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Abstract

For a given graph G = (V,E), the degree mean rate of an edge
uv ∈ E is a half of the quotient between the geometric and arithmetic
means of its end-vertex degrees d(u) and d(v). In this note, we derive
tight bounds for the Randić index of G in terms of its maximum and
minimum degree mean rates over its edges. As a consequence, we
prove the known conjecture that the average distance is bounded above
by the Randić index for graphs with order n large enough, when the
minimum degree δ is greater than (approximately) ∆

1
3 , where ∆ is the

maximum degree. As a by-product, this proves that almost all random
(Erdős-Rényi) graphs satisfy the conjecture.
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1 Background

We consider simple graphs G = (V,E), with vertex set V and edge set E.
Unless some distance parameters are considered, as in the next definitions,
G is not necessarily connected, but we always assume that there are no

∗This research is partially supported by the project 2017SGR1087 of the Agency for
the Management of University and Research Grants (AGAUR) of the Government of
Catalonia.

This research has also received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 734922.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185530711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


isolated vertices. Given two vertices u, v ∈ V , let denote by dist(u, v) the
distance between u and v. The mean distance of G is

µ(G) =
1

n(n− 1)

∑
u,v∈V

dist(u, v).

Let d(u) denote the degree of vertex u, and δ and ∆ the minimum and
maximum degree of G. The Randić index [9], also called connectivity index,
of G is

R(G) =
∑
uv∈E

1√
d(u)d(v)

.

Fajtlowicz [6] conjectured that, for any (connected) graph G,

µ(G) ≤ R(G). (1)

Besides, Caporossi and Hansen [5] generalized this conjecture by proposing
the inequality

µ(G) ≤ R(G)−
[√

n− 1− 2

(
1− 1

n

)]
. (2)

Since then, some sufficient conditions have been given for these conjec-
tures to hold. For instance, Li and Shi [7] proved that, for any ε ∈ (0, 1), if
G has minimum degree δ ≥ εn, then (1) holds for order n large enough. In
fact, we show that this result is a consequence of our main theorem and the
following bound for µ(G) in terms of δ (see Beezer, Riegsecker, and Smith
[1]).

µ(G) ≤ n

δ + 1
+ 2. (3)

2 Bounds of the Randić index for graphs with
given degree mean rate

Before giving our main result, we introduce the following concept. Given
a graph G = (V,E), the degree mean rate γ(e) of an edge e = uv ∈ E is
a half of the quotient between the geometric and arithmetic means of its
end-vertex degrees d(u) and d(v), that is,

γ(uv) =

√
d(u)d(v)

d(u) + d(v)
=

√
d(v)
d(u)

1 + d(v)
d(u)

.

Moreover, the maximum and minimum of this parameter over all the edges
of G are denoted by

∆E = max
uv∈E

γ(uv) and δE = min
uv∈E

γ(uv).
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Notice that √
n− 1

n
≤ δE ≤ ∆E ≤

1

2
, (4)

with lower and upper bounds attained, respectively, by (any edge of) the
star Sn(= K1,n−1) and a regular graph.

Theorem 2.1. Let G = (V,E) be a graph on n vertices, with given ∆E and
δE. Then, its Randić index R(G) satisfies the following bounds:

nδE ≤ R(G) ≤ n∆E . (5)

Proof. Notice first that, as

∑
uv∈E

(
1

d(u)
+

1

d(v)

)
=

1

2

(∑
u∈V

1 +
∑
v∈V

1

)
= n,

for any given constant, say ρ > 0, the Randić index can be written as

R(G) = ρ+
∑
uv∈E

[
1√

d(u)d(v)
− ρ

n

(
1

d(u)
+

1

d(v)

)]
. (6)

Moreover, the function

z = f(x, y) =
1
√
xy
− ρ

n

(
1

x
+

1

y

)
takes zero value at the straight lines with equations y = αx and y = βx,
where

α =
n
2 (n−

√
n2 − 4ρ2)− ρ2

ρ2
;

β =
n
2 (n+

√
n2 − 4ρ2)− ρ2

ρ2
= α−1.

Figure 1 (left) shows the function z = f(x, y), when n = 20 and ρ = 8, for
the region of interest 1 ≤ x, y ≤ n− 1. Besides, it happens that f(x, y) ≥ 0
insides the region where α ≤ y

x ≤ β (corresponding to the regions (II) and
(III) in Figure 1 (right)), and f(x, y) ≤ 0 otherwise.

Now, let us go back to (6) by taking x = d(u) and y = d(v) and,
without loss of generality (because of the symmetry of f(x, y)), assume that
d(u) ≥ d(v). If, for some ρ > 0, we have

(1 ≥) a = min
uv∈E

d(v)

d(u)
= α, (7)
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Figure 1: Left: The function z = f(x, y), when n = 20 and ρ = 8, for the
region of interest 1 ≤ x, y ≤ n−1. Right: The different regions of z = f(x, y)
in the plane xy.

then all the other values of d(v)
d(u) are inside of the cone, in the region (II) in

Figure 1. Hence, R(G) ≥ ρ. Otherwise, if, for some ρ > 0, we have

( 1
n−1 ≤) b = max

uv∈E

d(v)

d(u)
= α, (8)

then all the other values of d(v)
d(u) are outside of the cone, in the region (I) in

Figure 1. Hence, R(G) ≤ ρ. Then, solving for ρ (positive), we see that the
conditions (7) and (8) are equivalent, respectively, to

ρ =
n
√
a

a+ 1
= nδE ; (9)

ρ =
n
√
b

b+ 1
= n∆E . (10)

The above equalities are due to the fact that the function φ(x) =
√
x

x+1 is
increasing for x ∈ (0, 1). Thus, the best lower and upper bounds in (5) are
given, respectively, by (9) and (10). This completes the proof.

Note that the graphs G that satisfy nδE = R(G) = n∆E are those whose
ratio d(v)/d(u) is constant for every edge. In this case, a = b (see (7) and
(8)), and then δE = ∆E =

√
a/(1+a) and R(G) = n

√
a/(1+a). An example

is given by the complete bipartite graphs Kn1,n2 having R(Kn1,n2) =
√
n1n2.

Another example is provided by the trees Tp, for p = 1, 2, . . ., with sets of
vertices V0, V1, . . . , Vp, such that V0 is a singleton with degree 2p, and every
vertex of Vi (with degree 2p−i) is adjacent to one vertex of Vi−1 and 2p−i−1
vertices of Vi+1. Thus, every edge of Tp, say uv with u ∈ Vi and v ∈ Vi+1,

has d(v)
d(u) = 2p−i−1

2p−i
= 1

2 , so δE = ∆E =
√

2/3 and R(Tp) = n
√

2/3. See the

example of T3 in Figure 2 (f).
See Table 1 for the values of the Randić index and the given bounds for

the graphs of Figure 2 (a)–(e).
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Graph nδE R(G) n∆E

(a) 5.629 5.974 6.128
(b) 2.828 2.914 3
(c) 2.449 2.710 3.5
(d) 2.904 2.957 3
(e) 2.710 2.834 2.981

Table 1: Values of nδE , R(G) and n∆E for the graphs of Figure 2 (a)–(e).

(a) (b) (c) (d) (e) (f)

Figure 2: The graphs (a)–(e) correspond to Table 1, and (f) is the tree T3

satisfying nδE = R(G) = n∆E .

As a corollary of Theorem 2.1, we obtain the following known result (see
Bollobás and Erdős [3], or Pavlović and Gutman [8], or Caporossi, Gutman,
Hansen, and Pavlović [4]).

Corollary 2.2. The Randić index of any graph G satisfies

√
n− 1 ≤ R(G) ≤ n

2
.

Moreover, the lower bound is attained if and only if G = K1,n (or star
graph), and the upper bound is attained if and only if all components of G
are regular (not necessarily with equal degree of regularity).

Proof. The lower and upper bounds come from (4). Besides, G = K1,n

if and only if, in the proof of Theorem 2.1, a = b = 1/(n − 1), that is,
R(G) = nδE = n∆E =

√
n− 1. Analogously, all components of G are

regular if and only a = b = 1, that is, R(G) = nδE = n∆E = n
2 .

Another consequence of Theorem 2.1 is a sufficient condition for the
conjecture µ(G) ≤ R(G) to hold.

Corollary 2.3. Let G be a graph with minimum degree δ satisfying

δ ≥ n

nδE − 2
− 1. (11)
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Then, its Randić index satisfies µ(G) ≤ R(G).

Proof. Apply Theorem 2.1 by using the bound for µ(G) in (3).

In particular, if
n
√
δ/∆

1+δ/∆ ≥
n
δ+1 + 2, as δE ≥

√
δ/∆

1+δ/∆ , then we have

µ(G) ≤ n

δ + 1
+ 2 ≤

n
√
δ/∆

1 + δ/∆
≤ nδE ≤ R(G). (12)

So, one see that the conjecture µ(G) ≤ R(G) holds, for n large enough,

when δ is greater than (approximately) ∆
1
3 . Indeed, dividing by n the

second inequality in (12), we only need to show that

1

δ + 1
<

√
δ/∆

1 + δ/∆

or, equivalently,
√

∆/δ +
√
δ/∆ − 1 < δ, which holds when ∆ < δ3 since

δ/∆ ≤ 1.
Moreover, Corollary 2.3 implies the result of Li and Shi [7]:

Corollary 2.4. For any given ε ∈ (0, 1), if G is a (connected) graph with
order n and minimum degree δ ≥ εn, then its Randić index satisfies µ(G) ≤
R(G) for sufficiently large n.

Proof. Since δ ≥ εn and ∆ ≤ n− 1, we have that δE ≥
√
n(n−1)ε

n(ε+1)−1 . Then, for

n large enough (for the second inequality to hold), we have

δ ≥ nε ≥ n

n

√
n(n−1)ε

n(ε+1)−1 − 2
− 1 ≥ n

nδE − 2
− 1 (13)

and Corollary 2.3 gives the result.

To have an idea about the lower bound for n, notice that the second
inequality in (13) gives (approximately) n ≥ ε−3/2. Indeed, for large n, such
inequality holds if nε > n√

n(n−1)ε

ε+1

, that is, ε > ε+1
n
√
ε

or n > ε−1/2 + ε−3/2 that,

for small values of ε, can be approximated by n > ε−3/2, as claimed.
In Table 2 we have listed, for ε = 1/r and r = 2, . . . , 20, the bound on

n given by the second inequality in (13) considering the equality, and its
approximation ε−3/2. Notice that, for ε ≤ 1/13, the latter always applies.

Now we consider a random graph G from the standard Erdős-Rényi
model G(n, p). That is, G has n vertices and each edge appears indepen-

dently with probability p. Then, the condition δ > ∆
1
3 implies the following

result.
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ε bound on n from (13) ε−3/2

1/2 7.4 2.8
1/3 9.6 5.2
1/4 12.2 8
1/5 15.1 11.2
1/6 18.2 14.7
1/7 21.7 18.5
1/8 25.3 22.6
1/9 29.2 27
1/10 33.3 31.6
1/11 37.6 36.5
1/12 42.1 41.6
1/13 46.8 46.9
1/14 51.7 52.4
1/15 56.8 58.1
1/16 62.1 64
1/17 67.6 70.1
1/18 73.2 76.4
1/19 79 82.8
1/20 84.9 89.4

Table 2: Comparison between the bounds for n required by the second in-
equality in (13) when considering the equality, and its approximation ε−3/2.

Corollary 2.5. Given any p > 0 almost every graph G in G(n, p) satisfies
µ(G) ≤ R(G).

Proof. It is known that, in the Erdős-Rényi model, almost all graphs G have
maximum degree

∆(G) = p(n− 1) + (2pqn log n)
1
2 + o((n log n)

1
2 )

where q = 1− p. (See Bollobás [2]).
Since the minimum degree of G is n − 1 minus the maximum degree of

the complement of G, this implies that almost all graphs G in G(n, p) have
minimum degree

δ(G) = n− 1− p(n− 1)− (2pqn log n)
1
2 + o((n log n)

1
2 )

= q(n− 1)− (2pqn log n)
1
2 + o((n log n)

1
2 ).

Now, the result follows from the fact that

∆(G)

δ(G)3

n→∞−→ 0.
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In a similar way as done for the Randić index, we could find lower and
upper bounds for the generalized Randić index

Rα(G) =
∑
uv∈E

(d(u)d(v))α,

where now α is an arbitrary real number (the standard Randić index cor-
responds to α = −1/2). More precisely, the same method applies from the
following equality:

Rα(G) = ρ+
∑
uv∈E

[
(d(u)d(v))α − ρ

n

(
1

d(u)
+

1

d(v)

)]
.
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