
Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Q1 ReD: A reuse detector for content selection in exclusive shared
last-level caches
Javier Díaz a, Teresa Monreal b, Pablo Ibáñez a,∗, José M. Llabería b, Víctor Viñals a

Q2
a Aragón Institute of Engineering Research (I3A), University of Zaragoza, and Hipeac, Spain
b Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya and Hipeac, Spain

h i g h l i g h t s

• A new content selection mechanism for Shared Last-Level Caches (SLLC) in chip multiprocessor systems is proposed.
• The mechanism leverages the reuse locality embedded in the SLLC request stream.
• By the addition of a Reuse Detector (ReD), located in between each L2 cache and the SLLC, themechanism discovers useless L2 evicted blocks, bypassing

them.
• The ReD mechanism is designed to overcome as much as possible problems affecting previous state-of-the-art proposals as low accuracy, reduced

visibility window and detector thrashing.

a r t i c l e i n f o

Article history:
Received 25 July 2017
Received in revised form 8 April 2018
Accepted 13 November 2018
Available online xxxx

Keywords:
Chip multiprocessor
Shared last-level cache
Exclusion
Reuse
Content selection
Bypass

a b s t r a c t

The reference stream reaching a chip multiprocessor Shared Last-Level Cache (SLLC) shows poor
temporal locality,making conventional cachemanagement policies inefficient. Fewproposals address this
problem for exclusive caches. In this paper, we propose the Reuse Detector (ReD), a new content selection
mechanism for exclusive hierarchies that leverages reuse locality at the SLLC, a property that states that
blocks referencedmore than once are more likely to be accessed in the near future. Being placed between
each L2 private cache and the SLLC, ReD prevents the insertion of blocks without reuse into the SLLC. It
is designed to overcome problems affecting similar recent mechanisms (low accuracy, reduced visibility
window and detector thrashing). ReD improves performance over other state-of-the-art proposals (CHAR,
Reuse Cache and EAF cache). Comparedwith the baseline systemwith no content selection, it reduces the
SLLC miss rate (MPI) by 10.1% and increases harmonic IPC by 9.5%. Q3

© 2018 Elsevier Inc. All rights reserved.

1. Introduction1

Nowadays, chip multiprocessor (CMP) systems dominate the2

market in high-performance servers, desktop or embedded sys-3

tems, and mobile devices. Their most common design includes4

a multilevel memory hierarchy, ending with a shared last-level5

cache (SLLC). This cache is critical in terms of cost and performance.6

In cost, because it occupies nearly 50% of the chip area. In perfor-7

mance, because it is the last resource before accessing the DRAM8

memory, located outside the chip, which is much slower.9

Several studies show that conventional SLLC designs are inef-10

ficient because they waste a large portion of the cache. This is11

because they hold many dead blocks, i.e., blocks that are never re-12

accessed before their eviction. Frequently, those blocks are already13

deadwhen they enter the SLLC [10,18,28]. This occurs inmultilevel14

hierarchies because private caches, often encompassing two levels15

∗ Corresponding author.
E-mail address: imarin@unizar.es (P. Ibáñez).

(L1 and L2), exploit most of the temporal locality, which is effec- 16

tively filtered out before reaching the SLLC [13,15]. To address this 17

drawback and increase the SLLC hit rate, several proposals suggest 18

new SLLC insertion and replacement policies. Most of the work 19

refers to inclusive or non-inclusive caches, and only a small group 20

[3,10] focuses on exclusive SLLCs [16]. 21

An exclusive SLLC acts as a victim cache of the private caches, 22

storing their evicted blocks. Some recent AMD and Intel CMPs use 23

exclusive or partially exclusive SLLCs [4,5,17]. The aggregate on- 24

chip capacity of private caches increases with the number of cores, 25

thus making exclusive hierarchies more appealing than inclusive 26

ones. Over the next few years, we can expect many-core designs 27

with more cores within the chip, and SLLCs not much larger than 28

the current ones [23]. Therefore, using an inclusive cache will be 29

even more inefficient and, unless there are drastic changes in the 30

basic design of the memory hierarchy, the usefulness of exclusive 31

SLLCs will grow in the future [14]. 32

This work focuses on enhancing the efficiency and performance 33

of an exclusive SLLC in a chipmultiprocessor. Exclusive caches offer 34

https://doi.org/10.1016/j.jpdc.2018.11.005
0743-7315/© 2018 Elsevier Inc. All rights reserved.

© 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

2 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 1. Fraction of blocks evicted from the SLLC cache, in an example mix, according to the number of accesses received before its eviction: (U) one access, (R) two accesses,
and (M) three or more accesses. Figures on top of each bar show the average number of reuses for an M block.

the opportunity to implement a cache bypassmechanismwith low1

complexity, in contrast to inclusive hierarchies. Bypassing a block2

evicted from a private cachemeanswriting it directly intomemory3

if dirty or discarding it if clean. Bypassed blocks do not affect the4

state of the SLLC.5

Our proposal is a content selectionmechanism that implements6

a new policy to select which blocks enter the SLLC and which ones7

bypass it. Specifically, we propose to take advantage of the reuse8

locality existing in the stream of requests to the SLLC. A block is9

said to have reuse locality if it has been referenced at least twice.10

A block with reuse locality is more likely to be accessed in the near11

future [2]. Our mechanism prevents the insertion of many useless12

blocks in the SLLC. It is also an efficient solution to reduce traffic13

from private caches to the SLLC, one of the drawbacks of exclusive14

designs.15

After an in-depth analysis of previous proposals that exploit16

reuse locality, we have identified three aspects where there is still17

room for improvement:18

• Most of them predict reuse by linking it with a cache block19

feature, such as the instruction that brought the block into the20

SLLC or the memory area the block belongs to. The accuracy21

of these predictors is usually low.22

• Most proposals detect reuse by keeping track of past accesses23

in a store embedded into the SLLC. In such proposals, the24

size of the SLLC restricts the number of detected blocks. They25

effectively lengthen the life of the blocks flagged as reused in26

the SLLC, but they are not able to detect further blocks.27

• As far as we know, global thrashing may appear in all of28

them, since the reuse detection mechanism is shared among29

all the threads running on the CMP. A thread bringing too30

many blocks in the on-chip hierarchy can prematurely re-31

place existing data from other applications, worsening their32

reuse detection.33

The aim of our proposal is to fill up these gaps. To achieve this,34

we monitor blocks evicted from private L2 caches, by means of a35

specialized store that remembers addresses of the recently evicted36

blocks. That address store, called hereafter the Reuse Detector or37

ReD, detects which blocks of those evicted from L2 do not have38

reuse, and avoids inserting them into the SLLC. Clean blocks are39

discarded, while dirty blocks are sent directly to main memory.40

ReD is a separate private store near each L2 cache, sized and41

organized regardless of the SLLC configuration.42

We evaluate ReD using a set of multiprogrammed workloads43

running on a chipmultiprocessorwith eight cores and a three-level44

cache hierarchy. Results show that the Reuse Detector enhances45

performance, above other recent proposals such as CHAR [3], Reuse46

Cache [1], and EAF cache [30].47

Thework is structured as follows. Section 2 explains themotiva-48

tion for this work. Section 3 describes in detail the proposed Reuse49

Detector. Section 4 gives insight into the ReD operation. Section 550

details themethodology used, including the experimental environ-51

ment and the configuration of the simulated systems. Section 652

presents and analyzes results, and compares them against other 53

relevant proposals. Section 7 explores the trade-offs in the design 54

of ReD. Section 8 reviews the state of the art in the matter. Finally, 55

in Section 9 we summarize our conclusions. 56

2. Motivation 57

2.1. Problem analysis 58

Several studies have shown that, in a memory hierarchy, most 59

of the blocks have already received all accesses when they are 60

evicted from the caches close to the processor. Caches that are 61

further away from the processor are used inefficiently because the 62

stream of references that reaches them has very little temporal 63

locality. Instead, these references show reuse locality. The reuse 64

locality property has been empirically proved in several works [1– 65

3,10]. It can be stated as follows: lines accessed at least twice tend 66

to be reused many times in the near future. 67

An experiment is conducted to quantify the number of blocks 68

with reuse and the amount of reuse. Fig. 1 plots a classification of 69

the blocks evicted by an exclusive SLLC depending on the number 70

of SLLC accesses that each block registered during their stay in the 71

on-chip caches. Each block is classified according to whether it has 72

received a single access (U), two accesses (R, reuse), or more than 73

two accesses (M, multiple reuse). The average number of reuses 74

for each M block is shown on top of the bars. The figure shows the 75

distribution for eight applications running together in an example 76

mix. 77

On average, 85% of the blocks do not receive any hit in the 78

SLLC (U). These blocks could bypass the SLLC without loss of per- 79

formance. Blocks with only one reuse (R) are 4% of the total, and 80

those with more reuses (M) are 11%. For each block classified as 81

M, there are 13.0 reuses on average. A content selection policy that 82

only stored blocks with reuse (at least two accesses, R + M) would 83

keep the small set of blocks that produces most hits. Furthermore, 84

this policy would prevent the storage in the SLLC of the large set of 85

U blocks, reducing the likelihood of M blocks being replaced. Our 86

proposal is a mechanism that detects the second use of a block to 87

classify it as reused, and only stores these reused blocks in the SLLC. 88

2.2. Reuse detector design 89

We have analyzed previous mechanisms designed to classify 90

blocks as reused for an SLLC and have identified three aspects 91

where they could be improved: 92

Prediction accuracy. Most works predict reuse by linking it 93

with some cache block feature, such as the instruction that brought 94

the block into the SLLC or the memory area the block belongs to 95

[3,10,15,22,28,33]. The accuracy of these predictors is limited. As 96

an example, a mechanism that associates SLLC reuse with PC will 97

only be accurate if most blocks brought by each PC present the 98

same behavior, whether having reuse in the SLLC or not. However, 99

accuracy will drop if some blocks brought by a PC have reuse 100



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 3

in SLLC, but others have not. Our proposal relies on detection1

instead of prediction of the reuse locality. Our mechanism keeps2

the addresses of all blocks evicted from the private caches during a3

certain time window (reuse detection window). The eviction from4

private caches of a block whose address is already stored is a true5

indicator of reuse locality, and thus the block is tagged as such. In6

Section 6 we provide results to test the accuracy of our proposal7

against CHAR, a state of the art predictor [3].8

Thread-global reuse detection. All the previous proposals have9

in common an important constraint: their reuse detector is shared10

among all threads running on the CMP. A thread delivering lots11

of misses will cause premature evictions of addresses previously12

inserted into the detector by other threads, restricting the de-13

tector’s ability to discover more reuse for those other threads. In14

other words, a thread missing a lot in its private caches shrinks15

the reuse detection window of the remainder applications. In fact,16

these mechanisms reproduce in the reuse detector the thrashing17

problem they try to avoid in the SLLC. To overcome this,wepropose18

implementing reuse detectors that are private to each core. Each19

detector is placed next to the private L2 cache, and remembers20

the addresses of all blocks evicted only by its associated L2 cache.21

In Section 6 we provide results to compare the amount of reuse22

detected by our proposal versus a global detector.23

Size of the reuse detector. A larger detector size allows it to24

remember more blocks for longer, thereby increasing the oppor-25

tunity to classify more blocks as reused. Most previously proposed26

techniques track reuse patterns using the SLLC [2,3,9,10,19,22,33].27

In these proposals, the SLLC size defines the size of the reuse28

detector and, consequently, this detector is not able to discover29

more reuse than an LRU-managed SLLC of the same size would do30

[27]. In otherwords, blocks categorized as reused donot increase in31

number. In fact, increasing the lifespan of reused blocks indirectly32

shortens the life for those blocks that have not yet shown reuse,33

due to the capacity limit. This leads to a reduction in the detection34

window size relative to a cache with an LRU replacement pol-35

icy. Our proposal aims to increase the number of blocks detected36

as reused. This requires a larger detection window. To achieve37

this, we include an additional store that is able to remember more38

block addresses than the SLLC can keep. In Section 6 we provide39

results that show the amount of reuse detected by our proposal40

with detection windows of different sizes.41

Our ReD proposal is an efficient content selection mechanism42

that detects with high accuracy when a block has been reused,43

and only stores these reused blocks in the SLLC. This removal of44

unused blocks enables a SLLC keeping more blocks with reuse and45

for longer time. Compared with previous proposals that also ex-46

ploit reuse locality, ReD is more accurate detecting reused blocks,47

permits a greater visibility window, and does not suffers from48

global thrashing. In fact, among all those proposals,Q4 ReD is the49

only one that manages to have on average more alive than dead50

blocks in the SLLC. The use of a private and separate store makes51

the SLLC replacement policy not adversely affect the detector effi-52

ciency, so ReD can be implemented in an SLLC managed with any53

replacement policy. ReD is designed for exclusive SLLCs and chip54

multiprocessor systems, turning out to be a bypassmechanism that55

has low complexity, is simple and easy to implement.56

3. Design and implementation of the reuse detector57

3.1. Baseline58

The baseline system is a three-level cache hierarchy consisting59

of an SLLC whose contents are managed in exclusion with respect60

to the contents of two-level private caches, which are inclusive.61

Coherence is kept bymeans of a directory that holds, for each block62

Fig. 2. Placement of the Reuse Detector. Every private L2 cache has one ReD.

in the hierarchy, both its status and precise location, which can be 63

one or several private caches or the SLLC. 64

Blocks coming from main memory are sent directly to the 65

requesting L2 cache. Eventually, when a block is evicted from L2 66

it is sent to SLLC. From here on, either the block is requested again 67

from any L2 cache, then being sent and invalidated in SLLC, or it 68

is replaced by another block that needs room for insertion. If a 69

block placed in an L2 cache is requested by another L2 cache, the 70

directory detects this situation and the block is retrieved from the 71

former to be delivered to the latter. Shared blocks are inserted in 72

the SLLC only when the last copy is evicted from the L2 caches. 73

It is possible to implement ReD with any SLLC replacement 74

policy. We select TC-AGE for our baseline design because this 75

policy has proved to be very efficient in exclusive SLLCs [10]. It is 76

equivalent to SRRIP for inclusive caches. It uses two bits to store 77

the age of each cache line. The age is assigned when the block is 78

inserted into the SLLC: if the block has previously received a hit in 79

the SLLC, it is inserted with age 3, otherwise it is tagged with age 1. 80

Each block in the private L2 cache stores one additional trip count 81

bit to remember if it has had a hit in SLLC (the TC bit). This bit is 82

also sent to the SLLC with the block when it is evicted from the L2 83

cache. TC-AGE selects a random victim among those blocks in the 84

younger group (age 0). If there is no block with age 0 in the cache 85

set, the age of all blocks is decremented, and the victim selection 86

restarts. In summary, TC-AGE assigns older age, and therefore less 87

likelihood of replacement, to blocks that have been reused. 88

3.2. The reuse detector 89

We propose placing our Reuse Detector next to every L2 cache, 90

in the path from each L2 cache to SLLC. ReD receives the addresses 91

of every block evicted from the corresponding L2 cache, see Fig. 2. 92

Being located outside the critical path from SLLC to L2 caches, ReD 93

does not affect the SLLC read latency. Instead, it slightly increases 94

the time that a block evicted from the L2 cache takes to be sent to 95

SLLC or main memory. 96

When a block is evicted from the L2 cache, ReD decides between 97

sending the block to the SLLC and bypassing it. The decision is 98

driven by the block reuse history: if a block has a single use, it is 99

bypassed. If it has one or more reuses, it is stored in the SLLC. 100

A block is classified as reused if it satisfies one of these condi- 101

tions: 102

- The Reuse Detector remembers the address of the block. ReD 103

is a buffer storing block addresses coming from L2 evictions. 104

It detects whether it is the first time the block is evicted from 105

L2 or it has already experienced a previous eviction. A first 106

eviction means no reuse detected, while following evictions 107

mean reuse. 108

- The block was provided to the private cache by the SLLC. 109

We add one bit to each L2 cache block, the Reuse bit, which 110

rememberswhether the block came from SLLC ormainmem- 111

ory. 112

ReD is structured as a set associative buffer, and its capacity, 113

associativity, and replacement policy are design parameters. We 114

define ReD capacity as the number of tracked evicted blocks times 115

block size. For instance, a ReD able to track 1024 blocks of 64B has 116

a capacity of 64 KB. The ReD capacity is a metric that allows us to 117

measure its tracking potential relative to the SLLC size. Capacity is a 118



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

4 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 3. Reuse Detector operation.

Fig. 4. Detail of the algorithms in operation. Left: Block eviction from L2 cache (non-shared block). Right: Request from a core to its L2 cache.

key parameter, since an effective reuse detection requires storing a1

significant number of addresses between consecutive L2 evictions2

of a given block.3

Neither the SLLC nor the directory require structural changes to4

be adapted to the new mechanism. In order to take into account5

a possible bypass action, the coherence protocol and control logic6

will need to be adapted. In addition, our mechanism requires to7

add the Reuse bit to each L2 cache block.8

3.3. Reuse detector operation9

Fig. 3 shows a diagram illustrating the operation of ReD. On L210

evictions the Reuse bit is first checked. If the evicted block came11

from SLLC or another private cache, it is stored again in the SLLC,12

without looking up ReD (1). Otherwise, if the evicted block came13

from main memory, its address is looked up in ReD (2). A miss14

means no reuse, so the block is bypassed, but the address is added15

to ReD (3). A hit means reuse, so the block is sent to SLLC (4).16

Bypassed blocks send a control message to update the directory17

(6). Then, clean blocks are discarded and dirty blocks are written18

to main memory (7).19

As an exception, a small fraction of bypassed blocks are sent20

to SLLC with ‘‘low insertion priority’’ (5). This means the SLLC21

will store them only if there are free ways in the corresponding 22

set; moreover, those blocks will be inserted with the highest re- 23

placement priority. This exceptional filling policy comes from the 24

observation that exclusive SLLCs experiencing at the same time 25

many hits and bypasses may present many empty ways. Exper- 26

imentation has shown us that diverting to SLLC one of every 32 27

bypassed blocks takes advantage of the free space and increases 28

performance. 29

Fig. 4 shows two block diagrams with the algorithms in opera- 30

tion. On the leftwe show the steps followedwhen a block is evicted 31

from an L2 cache, and on the right those followed when a core 32

requests a block, detailing the management of the Reuse bit. 33

3.4. Implementation details 34

We implement the ReD buffer as a set associative cache, with 35

entries containing tags for addresses, valid bits, and some bits for 36

the replacement policy. We will use a 16-way ReD buffer; higher 37

associativities lead to hardly any performance improvements. 38

Our experiments point out that using a FIFO replacement policy 39

tomanage the ReD buffer works fine. FIFO replacementmeans that 40

the age of an address relates to its insertion (first use) and not to 41



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 5

Fig. 5. Fraction of blocks evicted from L2 caches, in an example mix, categorized from the ReD standpoint according to the type of reuse in: (U) first use, (R) first reuse, (MD)
multiple reuse detected only by ReD, (MC) multiple reuse detected only because the block comes from SLLC or another private cache, and (MA) multiple reuse detected by
any of them.

its last access. This is in line with the buffer goal of finding out the1

first reuse of a block.2

When ReD is implemented on an SLLC with TC-AGE replace-3

ment, only one bit is needed in the L2 cache to map the Reuse4

bit and the TC bit. So, in this case, our mechanism does not have5

any overhead in the L2 caches. From the TC-AGE perspective, this6

bit maintains the same meaning: it remembers whether the block7

came from SLLC or main memory. That is, when blocks are sent to8

the SLLC, it is reset when ReD discovers a first reuse (second time a9

block is evicted from L2); it is set in the subsequent L2 evictions (a10

block has already received at least three accesses). Therefore, TC-11

AGE is driven to give higher replacement priority in the SLLC to the12

blocks having one reuse, and less to those having multiple reuses.13

3.5. Hardware costs14

In this section, we calculate the total number of bits required to15

implement the ReD buffer we attach to each L2 cache.16

The hardware cost of ReD depends primarily on its capacity. By17

increasing capacity, ReD can track blocks that have been evicted18

from the L2 cache longer ago, that is, it can detect more distant19

reuses. This is beneficial until it gets to a point where it detects20

more blocks with reuse than those the SLLC can effectively store,21

andperformance starts to decline. The optimal performance for our22

baseline system with eight cores and an 8 MB SLLC (see details in23

Section 5.2) is obtained with a ReD capacity of 2 MB (see study in24

Section 7.1).25

For a given capacity, the cost depends on how block addresses26

are stored in the buffer. A naive implementation that stores all in-27

dividual block addresses and includes the whole tag would require28

a significant area. For example, for a ReD capacity of 2 MB, and29

assuming a physical address width of 40 bits, it would require 2 K30

16-way sets, with 24 bits (23 tag bits and 1 valid bit) per entry, and31

four FIFO bits per set. The total size for the eight cores would be32

776 KB, a 9.5% of an 8 MB SLLC.33

In order to reduce the ReD area, we propose storing sector34

tags and compressing them. A sector is a set of consecutive blocks35

aligned to the sector size, a power of two. As our design requires36

per-block reuse tracking, every sector tag needs as many valid bits37

as the number of blocks a sector has. For example, a ReD sector size38

of four blocks, requires entries with four valid bits. As some blocks39

of a sectormay not be referenced at all, the performance for a given40

ReD capacity decreases when the sector size increases. Therefore,41

the right sector size is a tradeoff between area and performance.42

Compression aims to shorten the tag size while maintaining43

good ability to distinguish between sectors. To compress we pro-44

pose the following bit folding: let t and c be the number of bits of45

the entire and compressed tags, respectively. The t bits are split46

into consecutive pieces of size c, filling with ∧zeros if the last piece47

does not consist of c bits. Then, the compressed tag results from an48

XOR operation to all pieces. False positives may appear by using 49

compression, as several sectors share the same compressed tag. 50

Therefore, it might happen that blocks without reuse get inserted 51

into the SLLC. Such wrong insertion is not a functional error, but 52

can hurt performance. So, the right number of bits is also a tradeoff 53

between area and performance. 54

After trading off performance and cost (see details in Section 7), 55

the chosen configuration has a capacity of 2MB, sector size of two 56

blocks and 10 bit tags. This balanced configuration is the one used 57

in our experiments unless stated otherwise. It requires 12 bits (10 58

tag bits and 2 valid bits) per entry, and four FIFO bits per set. The 59

number of entries for each ReD is 16 K, which means 24.5 KB per 60

core. The total size for the eight cores is 196 KB, a 2.3% of an 8 MB 61

SLLC. This is a 74.7% reduction compared to the initial size without 62

cost optimizations. 63

The Reuse bits in the L2 caches do not require additional area 64

if ReD is implemented on top of our baseline design, because they 65

are the same TC bits used by TC-AGE. If ReD is implemented using 66

an alternative replacement policy, 4 KB should be added (1 bit for 67

each of the 4 K entries in our eight 256 KB L2 caches). 68

4. ReD operation insight 69

In this section we use an example workload to analyze in depth 70

the ReD operation, and how it is able to reduce the SLLC miss rate. 71

We plot how ReD classifies the blocks it receives, into five 72

classes: first use (U), first reuse (R), multiple reuse detected only 73

by ReD (MD),1 multiple reuse detected only because the block 74

comes from SLLC or another private cache (MC), andmultiple reuse 75

detected by both mechanisms (MA). Fig. 5 shows the distribution 76

for the eight applications of an example mix. 77

A L2 eviction of a block classified as U causes an SLLC bypass, 78

while an eviction of a block classified as any other class causes the 79

insertion of the block into the SLLC. Evictions of blocks classified 80

as U, R or MD denote that the block comes originally from main 81

memory, while blocks classified as MC and MA denote a previous 82

hit in the SLLC or in another private cache. 83

As shown, the amount of bypass varies from one program to 84

another. In bwaves andmilc, more than 91% of blocks evicted from 85

L2 show a single use, and are bypassed. This is consistent with 86

the measurements presented later in Table 1, which show that the 87

SLLC miss rates for these programs are very high. At the opposite 88

extreme, in astar, omnetpp and wrf less than 2% of the blocks 89

evicted from the private caches do not show reuse, so there is 90

almost no bypass for these applications. The rest of the programs 91

1 Although the proposed ReD hardware cannot distinguish between the R and
MD classes, they were separated in the figure to illustrate that both reuse detection
mechanisms are complementary.



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

6 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 6. Left: fraction of the SLLC occupied by blocks of each program in the example mix. We take data every million cycles and show the average. Right: SLLC MPI reduction
of ReD with respect to the base system.

Table 1
L1, L2 and LLC: Average MPKI at each cache level of the base system (exclusive SLLC with 8 MB and TC-AGE replacement
policy). IPC: average multi-processor IPC.
Benchmark L1 L2 LLC IPC Benchmark L1 L2 LLC IPC

astar 7.5 1.1 0.7 1.17 libquantum 45.8 33.2 32.2 0.28
bwaves 24.5 21.1 20.1 0.66 mcf 64.9 36.0 18.9 0.18
bzip2 8.4 3.9 0.9 1.30 milc 24.6 23.5 22.0 0.23
cactusADM 20.8 11.4 4.9 0.64 namd 1.7 0.2 0.2 3.16
calculix 8.5 4.3 1.5 1.61 omnetpp 12.6 9.2 2.2 0.63
dealII 1.6 0.5 0.3 2.69 perlbench 10.2 1.8 0.8 1.37
gamess 6.7 1.0 0.6 2.60 povray 11.5 0.2 0.1 2.65
gcc 22 6.4 2.1 0.78 sjeng 6.9 0.8 0.5 1.28
gemsFDTD 42.7 29.7 22.8 0.45 soplex 8.9 7.1 3.1 0.63
gobmk 13.2 1.1 0.3 1.23 sphinx3 18.8 14.3 11.7 0.26
gromacs 11.7 3.0 1.2 1.60 tonto 6.7 1.3 0.5 2.18
hmmer 3.3 2.4 0.2 2.50 wrf 14.3 8.9 1.5 2.26
h264ref 4.2 1.4 0.7 1.36 xalancbmk 15.1 8.7 2.8 0.68
lbm 65.4 38.6 36.7 0.21 zeusmp 32.3 8.7 7.2 0.87
leslie3d 40.4 23.2 17.9 0.58

present intermediate figures: dealII, gobmk and soplex, with bypass1

levels of 13%, 7% and 40%, respectively.2

The number of blocks that are sent to the SLLC after detecting3

their first reuse (R class) varies between 0.2% and 5.5% for omnetpp4

and dealII, respectively, with an average of 1.0%. These few blocks5

showing a first reuse are accessed later multiple times (MD, MC,6

and MA classes). On average, for each block classified as R (first7

reuse), ReD detects 61 additional reuses.8

Blocks classified as MD have been previously detected by ReD,9

classified as reused and stored in the SLLC, but they have been10

prematurely evicted from there. As ReD has a detection window11

that is larger than the SLLC, it can detect this situation and re-12

insert them into the SLLC. This occurs on average 13% of the times13

a multiple reuse is detected.14

The bypass of blocks without reuse in bwaves, milc, dealII and15

soplex allows the SLLC to better preserve the useful blocks from16

these programs, because they will not be evicted as often. More-17

over, other programs of the mix will also benefit from this.18

Fig. 6 shows the average fraction of the SLLC occupied by each19

program, for the baseline system and for ReD (left). It also shows20

the SLLCmisses per instruction (MPI) reduction of each application21

with respect to the baseline (right). Bwaves and milc take much22

less SLLC space with ReD. However, the block selection done by23

ReD does not harm their performance, since both maintain a miss24

rate similar to that of the baseline (0.9% worse in bwaves). For the25

rest of the programs, having more space in the SLLC and a better26

block selection mechanism allows them to keep more blocks with27

reuse and for a longer time, resulting in reductions in the SLLCMPI28

between 30.4% and 97.3% for soplex and omnetpp, respectively. The29

MPI reduction for thewholemix2 is 24.0%, and the normalized hIPC30

is 1.28.31

2 If we order our 100 workloads, described in Section 5, from higher to lower
normalized hIPC, this example mix is in position number 8.

5. Experimental setup 32

This section details the experimental framework and the con- 33

figuration of the baseline system we use to evaluate the proposal. 34

5.1. The experimental framework 35

As a simulation engine we use the Simics full-system simulator 36

[25], and the plugins Ruby and Opal from the GEMS Multifacet 37

toolset [26] and DRAMSim2 from the University of Maryland Col- 38

lege Park [29]. Ruby is used to accurately model the memory 39

hierarchy of the CMP system: caches, directory, coherence proto- 40

col, on-chip network, buffering, and blocking of components. Opal 41

(also known as TFSim) is used to model in detail a superscalar out- 42

of-order processor. DRAMSim2 is used to model a cycle-accurate 43

DDR3 memory system. 44

Our Simics platform simulates SPARC cores managed by Solaris 45

10, and runs a multiprogrammed workload made of applications 46

from the SPEC CPU 2006 suite [12]. For our system with 8 proces- 47

sors we have generated a set of 100 mixes, composed by random 48

combinations of 8 benchmarks each, taken from among all the 29 49

included in the SPEC CPU 2006 benchmark suite. Each program 50

appears between 18 and 41 times, this representing an average of 51

27.6 times with a standard deviation of 6.1. 52

In order to identify initialization phases, we run until comple- 53

tion all the SPARC binaries, with the reference inputs, on a real 54

machine. During the executionwe use hardware counters to detect 55

the end of the initialization phase of each benchmark. For every 56

mix, we ensure that no application was in its initialization phase 57

by fast-forwarding the simulation until all the initialization phases 58

are finished. Starting at this point, we first run 300 million cycles 59

to warm up thememory system, and then collect data statistics for 60

the next 700 million cycles. 61

The first three columns in Table 1 show the average number 62

of misses per kilo-instruction (MPKI) in all three levels of the 63



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 7

Table 2
Processor parameters.
Base architecture SPARC v9

Cores 8, 4-way superscalar, 4 GHz
Pipeline 18 stages: 4 fetch, 4 decode, 4 dispatch/read, 1 (>4) execute, 3 memory, 2 commit
ROB size 128 entries
Register Files int: 160 (logical) + 128 (rename)FP: 64 (logical) + 128 (rename)
Functional units 4 int, 4 FP, 2 load/store
Branch prediction YAGS cache structure with a PHT of 4.096 entries

Table 3
Memory hierarchy parameters.
Private cache L1 I/D 32 KB, 4-way, LRU replacement, block size of 64 B,

3 cycles access latency
Private cache L2 unified 256 KB in inclusion with L1, 8-way, replacement LRU, block size of 64 B, 7 cycles access latency
Network Crossbar, 80 bits bus width, 5 cycles latency
Shared cache L3 (SLLC) 8 MB exclusive (4 banks of 2 MB each), block interleaving, block size of 64 B. Each bank: 16-way,

TC-AGE replacement with 2 bits, 10 cycles access latency, 32 demand MSHR
DRAM Device Micron 32M 8B x8, 2 channels, 2 ranks per channel, 8 devices per rank, 8 GB total.
DRAM bus 2 channels at 667 MHz, Double Data Rate (DDR3-1333), 8 B bus width,

4 DRAM cycles/line, 24 processor cycles/line

memory hierarchy. These figures are averages for each benchmark1

in all mixes in which appears, and when the eight benchmarks in2

each mix run together on the base system. The last column shows3

average multi-processor instructions per cycle (IPC).4

5.2. Configuration of the baseline system5

We model a base system of eight superscalar processors with6

speculative out-of-order execution. Each processor has a 4-wide7

pipeline of 18 stages and 10 functional units. Branch prediction8

uses a YAGS cache structure [6] with a direction pattern history9

table (PHT) of 4 K entries. Table 2 summarizes all the parameters10

of the simulated processor.11

Each processor core has a two-level private cache hierarchy,12

being the exclusive third and last level cache shared among all the13

cores. The SLLC has a total size of 8MB, and is split into four banks14

that are cache line interleaved (64B).15

A crossbar network connects the eight processors to the four16

SLLC banks. The DDR3 memory system is accessed through two17

memory channels running at a frequency of 667 MHz (DDR3-18

1333). Table 3 shows all the details of the cache hierarchy we19

simulate.20

5.3. Performance metrics21

Two performance metrics are mainly used: the harmonic mean22

of weighted IPCs [7,24]Q5 normalized to that of the base system23

(normalized harmonic IPC or normalized hIPC) and the reduction24

in misses per instruction against the base system (MPI reduction).25

Unless stated otherwise, figures show the average of the results26

obtained for each of the 100 workloads.27

For each mix, the normalized harmonic IPC for a proposal28

‘‘PROP’’ is calculated as29

normalized hIPCPROP =
Ht

(
IPCPROP MP

t
IPCBASE SP

t

)

Ht

(
IPCBASE MP

t
IPCBASE SP

t

)30

where IPCPROP MP
t is the IPC obtained using PROP for processor t31

when run in the multiprogrammed experiment, IPCBASE MP
t is the32

IPC obtained using the base system for processor t when run in the33

multiprogrammed experiment, IPCBASE SP
t is the IPC obtained using34

the base system for processor t when run alone on the system, and35

function H is the harmonic mean, defined as36

Ht (x) = t∑
t

1
xt

37

The harmonic IPC metric is used because it incorporates a 38

notion of fairness, in addition to performance. This is because the 39

harmonic mean tends to be lower when there is much variance 40

among the different weighted IPCs of each processor. 41

The reduction in misses per instruction is calculated as 42

1 −
∑

t M
PROP
t∑

t M
BASE
t

·
∑

t I
BASE
t∑

t I
PROP
t

43

whereMT is the number of SLLCmisses counted during simulation 44

for processor t, and IT is the number of instructions executed by 45

processor t. 46

6. Performance analysis of ReD 47

In this section we first present our performance results and 48

compare ReDwith state of the art proposals. Next, we present data 49

on the fraction of alive blocks in SLLC achieved by each proposal. 50

In Section 6.3 we analyze the IPC results of our proposal broken 51

down by application and mix. In Section 6.4 we present results on 52

single-processor workloads. Next, we analyze the efficiency of our 53

detector and compare it to the other mechanisms. In Section 6.6 54

we analyze ReD performance using different SLLC sizes, and using 55

an alternative replacement policy. Finally, we provide additional 56

performance metrics. 57

6.1. Results and comparison with other proposals 58

Fig. 7 plots normalized hIPC and MPI reduction against the 59

baseline obtained by ReD. Compared to the baseline, it reducesMPI 60

by 10.1% and increases harmonic IPC by 9.5%. 61

Hereunder we compare the performance of our mechanism 62

with three other recent proposals: cache hierarchy-aware replace- 63

ment (CHAR) [3], Reuse Cache [1] and Evicted-Address Filter cache 64

[30]. We also compare it with a base system with double the SLLC 65

size, that is, 16 MB. 66

Comparison with CHAR: CHAR is a content selection proposal 67

that bases the bypass decision on the access pattern that a block has 68

at all levels of the memory hierarchy. CHAR was proposed both for 69

inclusive and exclusive SLLCs. We use here the exclusive version. 70

Fig. 7 plots normalized hIPC and MPI reduction against the 71

baseline obtainedbyReDandCHARwith an8MBSLLC. ReDoutper- 72

forms CHAR both inMPI reduction (10.1% vs. 4.3%) and normalized 73

hIPC (1.095 vs. 1.070). 74



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

8 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 7. Normalized hIPC (left) and MPI reduction (right) compared to the base system with 8 MB, for five systems: ReD (with the balanced configuration), CHAR, Evicted
Address Filter, Reuse Cache (with RC-32/8 and NRR in tag array), and a base systemwith double the SLLC size (16MB). All are implemented on an exclusive SLLCwith TC-AGE
in the data array.

CHAR uses a predictor to foresee which blocks will show or not1

reuse. In Section 6.5 we will show that the accuracy of predictor-2

based CHAR is lower than the accuracy of our detector-based ReD.3

Comparison with Reuse Cache: The Reuse Cache is a content4

selection proposal for an SLLC whose tag and data arrays are5

decoupled, and that stores data only of those lines that have shown6

reuse. To be fair in the comparison,wehave∧modeled a Reuse Cache7

in which the data array works in exclusion with the private L28

caches. Our exclusive Reuse Cache works as follows: each block in9

the L2 private caches includes a bit indicating whether it should10

be inserted into the SLLC when evicted from L2 (bypass/no by-11

pass). On an SLLC miss (first block access), the block is sent from12

main memory to the L2 cache indicating ‘‘bypass’’, and the tag is13

inserted into the SLLC tag array. This allows subsequent reuse to be14

detected. On a hit in the tag array of the SLLC thatmisses in the data15

array (second block access) the block is sent frommain memory to16

L2 cache indicating ‘‘no bypass’’. When the block is evicted again17

from L2, it is stored in the SLLC data array. In subsequent accesses,18

that hit both in tag and data arrays, the block is sent to the private19

L2 indicating ‘‘no bypass’’, and is evicted from the SLLC data array.20

There are no changes in the SLLC tag and data arrays.21

Weuse an exclusive Reuse Cachewith a data array of 8MB and a22

tag array equivalent to 32MB. Among those with 8MB of data, this23

relationship between tags and data is the best we have found in24

our simulations. TC-AGE is used as replacement policy in the data25

array.26

As shown in Fig. 7, ReD outperforms the Exclusive Reuse Cache27

both in MPI reduction (10.1% vs. 4.5%) and normalized hIPC (1.09528

vs. 1.038).29

The Reuse Cache uses a global reuse detector, suffering as a re-30

sult of interference between the distinct applications. We analyze31

this effect in Section 6.5. In addition, the Reuse Cache embeds the32

reuse detector into the SLLC tag array. This increases the detector33

complexity, since each entry must keep the complete tag along34

with coherency information, limiting the design opportunities.35

Comparisonwith Evicted-Address Filter: The Evicted-Address36

Filter Cache is an SLLC that tracks the addresses of blocks that were37

recently evicted from the SLLC in a structure called the Evicted-38

Address Filter (EAF). Missed blocks whose addresses are present39

in the EAF are predicted to have high reuse, while the rest of the40

blocks are predicted to have low reuse. This prediction affects the41

insertion priority: high-reused blocks enter at the Most-Recently-42

Used (MRU) position and low-reused ones enter according to a bi-43

modal policy (MRUwith probability 1/64, otherwise LRU). The EAF44

is implemented using a Bloom filter, which is cleared periodically.45

Even though EAF is a replacement policy and not a content46

selection policy, we have included it in our comparison because47

it also attaches a reuse detectionmechanism. The information ReD48

stores and acts upon is different, because it monitors blocks sent49

from L2 caches to the SLLC whereas EAF does it from the SLLC50

to Main Memory. EAF cannot be used to implement a content51

selection policy, because it uses a Bloom filter to store the reuse52

information. The filter is periodically cleared, which produces a 53

loss of information that leads to temporarily classify all blocks as 54

not reused. This is beneficial when the detector is used to adjust 55

the replacement policy, as it is in the original publication and in 56

our setup. Conversely, it makes it unsuitable for use as a content 57

selection mechanism, as it would lead to not inserting any new 58

blocks into the SLLC after the reset, for any application, until the 59

filter is adequately refilled. 60

To be fair in the comparison, we have ∧modeled an EAF Cache in 61

which the data arrayworks in exclusionwith the private L2 caches. 62

The L2 caches are also extended to store the Reuse bit, which is 63

sent to the SLLC on eviction. At the time the block enters into the 64

SLLC, that is, when it is evicted from an L2 cache, the Reuse bit is 65

checked first. If it is set, the block is inserted at the MRU position. 66

If not, the EAF is checked, applying the described policy. We store 67

the SLLC MRU information using 2 bits per block, in line with the 2 68

bits that we use for TC-AGE in our other models. Our experimental 69

results show that for the exclusive version a larger Bloom filter is 70

required. We obtain the best results with a filter 25% larger than 71

in the original publication. This is consistent with the increase in 72

distinct blocks in thewhole cache subsystem due to themove from 73

inclusion to exclusion, from 8 to 10 MB (8 cores with 256 KB of L2 74

cache each). 75

As shown in Fig. 7, ReD outperforms the exclusive EAF Cache 76

both in MPI reduction (10.1% vs 2.7%) and normalized hIPC (1.095 77

vs. 1.032). 78

Comparison with a double-sized base system Fig. 7 plots 79

normalized hIPC and MPI reduction against the baseline obtained 80

by ReDwith an 8MB SLLC, and by a base systemwith a 16MB SLLC 81

(BASE 16MB). 82

ReDwith an 8MBSLLC achieves 87% of theMPI reduction (10.1% 83

vs 11.6%) and 81% of the increase in normalized hIPC (1.095 vs 84

1.117) of the double-sized base system, with only a 2.3% increase 85

in SLLC space. 86

6.2. Alive and dead blocks 87

In this section we present the average number of alive blocks 88

that the SLLC stores at any given time. We define a block in the 89

SLLC as alive at a given time if it receives a hit in the future before 90

its eviction. Conversely, a block is defined as dead at a given time if 91

it does not receive an additional hit before its eviction. Dead blocks 92

waste storage. 93

Fig. 8 plots these results for CHAR, exclusive EAF, exclusive 94

Reuse Cache and ReD. Additionally, we include the baseline config- 95

uration∧(labeled TC-AGE), andNRF (Not Recently Filled) as themost 96

basic replacement policy (NRF is analogous to NRU in inclusive 97

caches [32]). For each workload, we take measures every million 98

cycles and calculate the average. We show the average over all our 99

workloads. 100

As Fig. 8 shows, when using the basic 1-bit NRF policy only 101

14.0% of the blocks are alive on average. Our baseline configuration 102



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 9

Fig. 8. Average fraction of alive blocks present at any given moment in the SLLC,
for different cache management proposals, using an 8 MB SLLC.

(2-bit TC-AGE), increases that figure up to 20.4%. All other propos-1

als, implemented on top of TC-AGE, improve the management of2

the SLLC, increasing the fraction of alive blocks. ReD achieves the3

best results with 51.5% of alive blocks, being the only proposal that4

manages to have on average more alive than dead blocks.5

Comparing Fig. 8 with previous Fig. 7 (right), we realize that6

increasing fractions of alive blocks correlates to a higher reduction7

in misses per instruction, albeit it is not proportional. As ReD8

prioritizes multiple-reused blocks in the SLLC (see Section 3.4), it9

takes more advantage of the alive fraction, thus leading to a higher10

miss rate reduction.11

6.3. Per-application and per-mix performance12

As explained previously, application performance depends both13

on the application itself and on the other applications running in14

the workload. Fig. 9 shows box-and-whisker plots with the distri-15

bution of speed-ups (normalized IPC) by application, with respect16

to the baseline system, for all instances of the applications that17

are running in our 100 workloads. Five values are plotted, namely18

minimum, first quartile, median, third quartile, and maximum.19

Out of all 29 applications, 5 show improved performance in all20

workloads they appear in (astar, bzip2, hmmer, tonto and21

xalancbmk), with medians as high as 1.41 for xalancbmk. Another22

11 show improved performance starting with the first quartile23

(bwaves, gamess, gobmk, gromacs, h264ref, mcf, omnetpp, sjeng,24

soplex, sphinx3,wrf ), although in somemixes they show reduction.25

In 8 of them (cactusADM, dealII, gcc, libquantum, milc, namd, perl-26

bench, povray), the median shows improvement but the first quar-27

tile shows reduction. The 5 remaining applications (GemsFDTD,28

calculix, lbm, leslie3d, and zeusmp) show less performance in the29

median.30

Performance results also vary by workload, depending on the31

applications it includes. Fig. 10 plots the normalized harmonic IPC32

for all the workloads, relative to the baseline. Out of the 100mixes,33

94 show speed-up improvements of up to 1.70, the worst having a34

value of 0.98.35

6.4. Single-processor performance36

In this section we show the performance of ReD for single-37

processor workloads. For these experiments we use a 1 MB LLC,38

the same per-processor amount as in our multiprocessor simula-39

tions. All other parameters are the same. We show results for all40

benchmarks that have MPKI > 2 at the LLC.41

Fig. 11 plots normalized IPC obtained by ReD compared to the42

base system. Although ReD is specifically designed for chip mul-43

tiprocessor systems, it still provides performance enhancements44

for 9 of these 14 sequential workloads, up to 12.8% speedup for45

xalancbmk. It decreases the performance of the other 5, up to 1.8%46

for omnetpp.47

It is interesting to compare these results with those shown48

in Fig. 9 for multi-processor workloads.Q6 Omnetpp shows there49

positive normalized IPC in most of the workloads it is present in50

(starting with the first quartile). As shown in Fig. 6, the content 51

selection made by ReD changes the distribution of space in the 52

SLLC, and is often able to assign more space to the alive blocks of 53

omnetpp, surpassing the 1 MB that we use in this section. With 54

increasing space, the reused working set fits in the SLLC, and 55

omnetpp turns to show IPC improvements in most multiprocessor 56

benchmarks. 57

6.5. Detector efficiency 58

In this section we analyze ReD efficiency in terms of the num- 59

ber of blocks selected for SLLC insertion, and their usefulness. 60

We show figures about the amount of blocks selected by the 61

distinct detectors/predictors, and the subsequent reuse of these 62

blocks. 63

Fig. 12 plots the number of blocks in our example workload 64

that, after coming from main memory to L2, are selected for SLLC 65

insertion (‘‘new blocks’’). We show figures for ReD, CHAR, and a 66

detector named ‘‘Shared ReD’’. This detector is similar to ReD, but 67

it uses a single address buffer that is shared among all cores instead 68

ofmultiple private ones. Fig. 13 shows the accuracy of each content 69

selection mechanism. This is defined as the percentage of new 70

blocks that are accessed at least once after being sent to the SLLC. 71

Fig. 14 plots the MPI reduction of each mechanism versus our base 72

system. 73

As shown in Figs. 12 and 13, predictor-based CHAR is less 74

selective than our detector-based ReD. CHAR inserts many more 75

blocks into the SLLC but its accuracy is low. For example, for bwaves 76

CHAR inserts into the SLLC about 18 times the blocks inserted by 77

ReD. However, both have similar SLLC miss ratio because only 2% 78

of the blocks inserted by CHAR are used before being evicted. The 79

behavior is similar formilc (12x and 0.1%). To store blocks for these 80

two applications, CHAR evicts useful blocks from other cores. As a 81

consequence, ReD is much better than CHAR at reducing MPI for 82

two other applications of this mix (astar and dealII). For the whole 83

mix theMPI reduction for CHAR is 20% vs 24% for ReD 16M (Fig. 14). 84

These differences, or even larger ones, appear consistently across 85

our workloads, leading to the average 6% difference shown in 86

Fig. 7. 87

Shared ReD with a capacity of 16M overall inserts 32% more 88

blocks than Shared ReD with 8 MB. Additionally, the accuracy 89

increases by 2%. This does not directly translate into a much 90

higher MPI reduction in this particular workload (only 0.3%), but 91

on average (across our 100 workloads) it leads to a 1% reduction 92

in MPI. 93

ReD 16M outperforms Shared-ReD 16M in 5 applications of the 94

mix, and obtains similar performance in bwaves,milc and omnetpp. 95

Fig. 15 plots the average fraction of the reuse detector occupied 96

by each program using these two mechanisms. Only two applica- 97

tions, bwaves andmilc, occupy 76% of the shared detector, stealing 98

capacity from the other six applications. The private detector in 99

ReD protects all applications from this thrashing, which leads to 100

a fair distribution of the detection window, and ultimately better 101

performance of the workload. 102

6.6. Additional cache sizes 103

In this section we show the performance of ReD using dis- 104

tinct SLLC cache sizes, and compare it with the selected three 105

proposals. 106

Fig. 16 plots normalized hIPC and MPI reduction against the 107

base system obtained by CHAR, exclusive EAF, exclusive Reuse 108

Cache and ReD for varying SLLC sizes. ReD outperforms all of the 109

other proposals in both metrics, at all SLLC sizes considered. 110



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

10 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 9. Distribution of normalized IPC, compared to the base system, for all applications in all workloads.

Fig. 10. Normalized harmonic IPC, compared to the base system, for all 100 workloads.

Fig. 11. Normalized IPC obtained by ReD, compared to the base system, for single-processor workloads that have LLC MPKI >2, on an exclusive LLC with 1 MB in the data
array.

Fig. 12. Number of blocks selected for SLLC insertion after coming frommain memory, for all applications in the example workload. From left to right: CHAR, shared ReD (8
MB and 16 MB) and ReD (16 MB, 2 MB per core).

6.7. Alternative cache replacement policy: Least Recently Filled (LRF)1

Content selection and replacement policies are usually aligned,2

as they share the same objectives. Therefore, we use TC-AGE as3

replacement policy: ReD selects reused blocks to be stored in the 4

SLLC, and TC-AGE aims to retain the most reused blocks as long 5

as possible. However, content selection and replacement policies 6

are orthogonal. The former chooses which blocks enter the SLLC 7



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 11

Fig. 13. Accuracy of content selection mechanisms: percentage of new blocks used at least once after being sent to the SLLC, in the example workload. From left to right:
CHAR, shared ReD (8 MB and 16 MB) and ReD (16 MB, 2 MB per core).

Fig. 14. SLLC MPI reduction with respect to the base system. From left to right: CHAR, shared ReD (8 MB and 16 MB) and ReD (16 MB, 2 MB per core).

and the latter which blocks are evicted to make room for others.1

Therefore, ReD can be implemented on an SLLC managed with any2

replacement policy.3

As ReD has the detector store decoupled from the cache, the4

replacement policy is not able to adversely affect the detector5

efficiency. In other mechanisms where the SLLC itself is used as6

detector store, there is a clear dependence between detection and7

replacement. A poor replacement algorithm can adversely affect8

the detector.9

Next, we analyze the impact of our proposal on an exclusive10

SLLC with a 4-bit Least-Recently-Filled (LRF) replacement policy,11

similar to LRU in inclusive caches. Fig. 17 plots normalized hIPC12

and MPI reduction obtained by ReD when using LRF and TC-AGE,13

compared to a base system with the same replacement policy but14

without ReD. Adding ReD leads to betterMPI reductions and higher15

normalizedhIPCwith LRF thanwith TC-AGE. This is not a surprising16

result, as the former is not as efficient as the latter and leavesmore17

room for improvement.18

6.8. Additional performance metrics19

In this section we show our results using two alternative per-20

formance metrics. Fig. 18 plots normalized IPC (speedup) and nor-21

malized weighted speedup [31] for CHAR, exclusive EAF, exclusive22

Reuse Cache and ReD.23

7. Design space exploration24

The following three subsections evaluate the performance-cost25

trade-offs of ReD capacity, sector size and tag compression, search-26

ing for a balanced configuration.27

7.1. ReD capacity28

Here we study how the results vary depending on the ReD29

capacity (see Section 3.2). Fig. 19 shows normalized hIPC and30

reduction in MPI, with respect to the baseline, as a function of the31

ReD capacity per core. For this experiment, the ReD sector size is32

one block and it stores the entire tag. We show average values33

across the 100 mixes described in Section 5.34

By increasing capacity, ReD can track blocks that have been35

evicted from the L2 cache longer ago, that is, it can detect more36

Fig. 15. Fraction of overall detector space occupied by each application on the
example mix, for ReD (16 MB, 2MB per core) and Shared ReD 16MB.

distant reuses. The optimal configuration is achieved with a capac- 37

ity of 2 MB per core, which presents a hIPC increase of 9.9%, and 38

reducesMPI by 10.4%. A ReDwith capacity larger than 2MBdetects 39

more blocks with reuse than those the SLLC can effectively store, 40

leading to a performance decrease compared to the 2 MB ReD. 41

7.2. ReD sector size 42

Increasing sector size decreases the ReD hardware cost (see 43

Section 3.5). We call ReD size the hardware cost of a given ReD 44

configuration measured in bytes. Fig. 20 shows ReD size as a 45

function of capacity and sector size, when using tags with 10 bits. 46

For a given ReD capacity, doubling the sector size allows to 47

halve the number of ReD sets. Therefore, a ReD with bigger sector 48

size requires less ReD size. This is because the storage saved by 49

reducing the number of entries is greater than the storage needed 50

to add valid bits for each block of a sector. 51

On the other hand, Fig. 21 shows how performance varies when 52

the ReD sector size increases. 53

We have defined the reuse detection window as the set of 54

block addresses that ReD remembers of an executing thread (ReD 55

window for short). Note that it could be different from the ReD 56

capacity because some threads may not use the full capacity of 57

the detector. If we increase the sector size while maintaining the 58

ReD capacity, the ReD window decreases because sometimes the 59

thread will not reference all the blocks of a sector. Therefore, ReD 60

will detect less reuse, leading to a performance degradation for all 61

the ReD capacities except for 8 MB, where ReD already detected 62

more blocks with reuse than those the SLLC is able to store. 63



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

12 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Fig. 16. Normalized harmonic IPC (left) and MPI reduction (right) compared to the base system, for different SLLC data sizes, for four systems: ReD (with a balanced
configuration for each size), CHAR, Evicted Address Filter Cache and Reuse Cache (RC-16/4, RC-32/8 and RC-64/16). All are implemented on an exclusive SLLC with TC-AGE
in the data array.

Fig. 17. Normalized hIPC (left) andMPI reduction (right) obtained when adding the ReD content selectionmechanism to base systemswith 4-bit LRF (Least-Recently-Filled)
and 2-bit TC-AGE as replacement policies. Both are implemented on an exclusive SLLC with 8 MB in the data array.

Fig. 18. Normalized IPC (left) and normalized weighted speedup (right) compared to the base system with 8 MB, for four systems: ReD (with the balanced configuration),
CHAR, Evicted Address Filter and Reuse Cache (with RC-32/8 and NRR in tag array). All are implemented on an exclusive SLLC with TC-AGE in the data array.

Fig. 19. Normalized hIPC (left) and reduction of SLLC misses per instruction (right) with respect to the base system, as a function of the ReD capacity per core.

Fig. 20. ReD size per core in KB, as a function of capacity and sector size. The sector size is the number of blocks associated with each ReD tag. We consider tags of 10 bits.



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 13

Fig. 21. Normalized hIPC with respect to the base system, as a function of the ReD capacity per core, and for different sector sizes.

Fig. 22. Left: average rate of detection errors in ReD due to tag compression. Center: normalized hIPCwith respect to the base system. Right: SLLCMPI reductionwith respect
to the base system. The NC bar represents the tag with no compression.

The best configuration in terms of performance,with 2MBof ca-1

pacity and sectors with one block, requires a ReD size of 45 KB per2

core. However, other configurations have better performance/cost3

ratios: the one with 2 MB of capacity and sectors with 2 blocks4

shows 0.35% lower hIPC and a ReD size of 24.5 KB, 46% lower.5

7.3. ReD tag size6

As explained in Section 3.5, ReD can store compressed tags7

to reduce the amount of storage required. Fig. 22 shows on the8

left, depending on the tag size, the average error rate in reuse9

detection due to tag compression. These errors are false positives:10

a false reuse is detected because the compressed tag that is be-11

ing searched matches with that of a different sector previously12

registered. Inserting not-reused blocks into the SLLC reduces the13

effectiveness of the mechanism. The error rate is less than 1% with14

a tag of only 12 bits.15

Fig. 22 shows also, in the center and on the right, normalized16

hIPC and MPI reduction obtained for our selected configuration17

(2MB of capacity and a sector of 2 blocks) as a function of tag size.18

The performance loss is almost negligible for a tag size of 10 bits:19

normalized hIPC decreases 0.29% while MPI increases 0.26% com-20

pared to the configuration with uncompressed tags. This justifies21

compression in order to reduce the amount of storage required.22

This is the balanced configuration we have selected: 2 MB ReD23

capacity, sector size of two blocks and 10 bit tags. It has a ReD size24

of 24.5 KB.25

8. Related work26

Any cache content management mechanism is based on a27

model that forecasts whether a block is going to be used in the28

immediate future or not. We can classify state-of-the-art mecha-29

nisms for the SLLC into two groups: those that rely on the last touch30

to each block (PC based [18], PC-sequence based [21], counter31

based [20], . . . ), and those that rely on the reuse locality [1–3,9–32

11,15,19,22,28,30,33].33

In a similar way, Faldu and Grot [8] classifymanagement strate-34

gies into Dead Block Predictors (DBPs) and insertion policies. DBPs35

try to predict whether a block has reached the end of its useful36

lifetime on chip. Insertion policies try to predict when a block is37

dead on arrival (it will not see any reuse in the cache after its38

insertion). The paper concludes that DBPs are less accurate than 39

insertion policies. 40

We focus on proposals relying on the reuse locality property of 41

the SLLC blocks, which are ‘‘insertion policies’’ in Faldu andGrot [8] 42

taxonomy.We can classify them according to three characteristics: 43

• Replacement/content selection: In some proposals, the re- 44

placement algorithm gives higher priority to stay in the cache 45

to those blocks showing reuse. On the other hand, some 46

works leverage reuse locality to select for insertion only those 47

blocks classified as reused, bypassing the rest. 48

• Detection/prediction: In order to classify blocks, some au- 49

thors suggest reuse detection mechanisms, while others 50

propose mechanisms to predict a reuse behavior before it 51

appears. 52

• Address store: Both detection and prediction mechanisms 53

need to remember past block addresses in order to identify 54

the second access to a block. Detectionmechanisms associate 55

reuse to the block receiving a second access while prediction 56

mechanisms associate reuse to a signature of the block receiv- 57

ing a second access. The structure that holds past accesses can 58

be implemented in several ways, either embedded into the 59

SLLC itself or as an independent structure. 60

Table 4 contains a sample of previous work classified according 61

to this taxonomy. 62

8.1. Replacement policies 63

Both detection and prediction have been used to guide replace- 64

ment algorithms, and most of them keep the reuse window in the 65

SLLC itself. 66

Replacement mechanisms based on detection label a block as 67

not reused when it comes from main memory (its first use in the 68

reuse window that the SLLC is able to recall). Subsequent SLLC hits 69

(second and later touches to the block)will flag the block as reused. 70

Two proposals include an added store to remember these blocks. 71

Seshadri et al. [30] use a Bloom Filter and Gupta et al. [11] use a 72

Bypass Buffer. 73

Replacement mechanisms based on prediction try to figure out 74

whether a block will be reused before it really is, and flag the block 75

as reused just after its first touch. Prediction policies categorize 76



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

14 J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx

Table 4
Classification of previous work based on the reuse locality property, according to our taxonomy.

Addresses in the SLLC In a different store

Replacement

Detection

Gao and Wilkerson [9] Seshadri et al. [30]
Gaur et al. [10] (TC-AGE) Gupta et al. [11]
Khan et al. [19]
Albericio et al. [2]

Prediction
Qureshi et al. [28]
Jaleel et al. [15]
Wu et al. [33]

Content selection

Detection Albericio et al. [1] Our proposal (ReD)

Prediction
Gaur et al. [10] (Bypass + TC-AGE)
Chaudhuri et al. [3]
Li et al. [22]

blocks according to certain features (signatures in Wu et al. [33]),1

and study the reuse characteristics of any block in each category.2

Wu et al. [33] analyze distinct types of signatures: memory region,3

program counter, or instruction sequence. As an example, the PC4

signature policy acts by classifying blocks according to the PC of5

the memory instruction responsible for bringing them in the chip.6

It identifies the reuse behavior of the blocks that each instruction7

loads (mainly categorizing them as reused or not reused), and8

assigns the same category to all blocks that the same instruction9

will bring in the future.10

DIP and DRRIP mechanisms are also predictors [15,28]. Using11

set-dueling techniques, these mechanisms analyze the reuse be-12

havior of the entire application and apply it to all its blocks. All13

blocks are categorized into a single category, the one of their own14

application.15

8.2. Content selection policies16

Except the Reuse Cache proposed by Albericio et al. [1], all other17

content selection policies include some sort of prediction: Li et al.18

[22] uses the PC signature policy, Gaur et al. [10] the trip count and19

use count of blocks, and Chaudhuri et al. [3] the behavior of blocks20

during their stay in private caches and their coherence status. For21

each class, an algorithm analyzes its SLLC behavior and extends it22

to all future blocks belonging to the same category.23

Comparing our proposalwith others using prediction, they tend24

to bemore complex, and often require the transfer of data between25

cache levels or even to send the PC to the cache subsystem. Addi-26

tionally, predictors show lower accuracy than detectors.27

On the other hand, all previous content selection techniques28

track reuse (and reuse patterns) using the SLLC. Therefore, the SLLC29

size defines and limits the size of the reuse detection window.30

Finally, all these proposals have in common an important con-31

straint: their reuse detector is shared among all threads running32

on the CMP. A single thread can thrash the detector, shrinking33

the reuse detection window of the remainder applications. To34

overcome this, we propose implementing reuse detectors that are35

private to every core.36

9. Conclusions37

Previous publications reveal that the stream of references38

reaching the shared last level cache (SLLC) of amultiprocessor chip39

shows little temporal locality. However, it shows reuse locality,40

i.e., blocks referenced more than once are more likely to be ref-41

erenced in the near future. This leads to an inefficient use of the42

cache if conventional management is performed. There are several43

proposals addressing this problem for inclusive caches, but few44

that focus on exclusive ones.45

This paper proposes a novel content selection mechanism for46

exclusive SLLC that leverages the reuse locality embedded in the47

SLLC request stream. We propose adding a Reuse Detector (ReD),48

placed in between each L2 cache and the SLLC, to discover which 49

of the L2 evicted blocks have not experienced reuse and avoid 50

their insertion in the SLLC, bypassing them. We analyze problems 51

affecting similar recent mechanisms (low accuracy, reduced vis- 52

ibility window and thrashing in the detector) and design ReD to 53

overcome them as much as possible. We evaluate the proposal 54

in a multicore chip with eight processors that executes a mul- 55

tiprogrammed workload. Properly designed, the Reuse Detector 56

prevents the insertion of many useless blocks in the SLLC, and 57

helps keeping the most reused. Experimental results show that 58

this allows for enhancing SLLC performance beyond other recent 59

proposals. Specifically, ReD reduces the SLLCmisses per instruction 60

by 10.1% with respect to a base cache with TC-AGE replacement 61

and no content selection,while CHAR and exclusive-cache versions 62

of the Reuse Cache and the EAF cache reduceMPI by 4.3%, 4.5% and 63

2.7% respectively. 64

Although ReD is proposed here specifically for exclusive caches, 65

we think that the design can be expanded to also support other 66

hierarchies that are not strictly inclusive, and therefore can support 67

bypassing. Exploring such a generalized design is part of our future 68

work. We are also working on ways to increase the performance 69

of our mechanism in programs that currently benefit relatively 70

less from ReD, that is, those that have less multiple reuses of their 71

blocks. 72

Acknowledgments 73

We thank the anonymous referees for their valuable com- 74

ments to improve our paper. This work was supported in part by 75

grants TIN2016-76635-C2-1-R (AEI/FEDER, UE), TIN2015-65316- 76

P, Consolider NoE TIN2014-52608-REDC (Spanish Gov.), and gaZ: 77

T58_17R research group Q7(Aragón Gov. and European ESF). 78

References 79

[1] J. Albericio, P. Ibáñez, V. Viñals, J.M. Llabería, The reuse cache: downsizing 80

the shared last-level cache, in: Proceedings of the 46th Ann. Int. Symp. on 81

Microarchitecture, 2013, pp. 310–321. 82

[2] J. Albericio, P. Ibáñez, V. Viñals, J.M. Llabería, Exploiting reuse locality on 83

inclusive shared last-level caches, ACMTrans. Archit. CodeOptim. 9 (4) (2013) 84

38. 85

[3] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, J. Nuzman, Introducing 86

hierarchy-awareness in replacement and bypass algorithms for last-level 87

caches, in: Proceedings of the 21st Int. conference on Parallel architectures 88

and compilation techniques, 2012, 293–304. 89

[4] M. Clark, A New, high performance x86 core design from AMD. Hot Chips 90

2016, 2016. 91

[5] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, B. Hughes, Cache 92

hierarchy and memory subsystem of the amd opteron processor, IEEE Micro 93

30 (2) (2010) 16–29. 94

[6] A.N. Eden, T. Mudge, The YAGS branch prediction scheme, in: Proceedings of 95

the 31st Ann. ACM/IEEE Int. Symp. on Microarchitecture, 1998, pp. 69–77. 96

[7] S. Eyerman, L. Eeckhout, Restating the case for weighted-IPC metrics to 97

evaluate multiprogram workload performance, IEEE Comput. Archit. Lett. 13 98

(2) (2014) 93–96. 99



YJPDC: 3976

Please cite this article as: J. Díaz, T. Monreal, P. Ibáñez et al., ReD: A reuse detector for content selection in exclusive shared last-level caches, Journal of Parallel and
Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.11.005.

J. Díaz, T. Monreal, P. Ibáñez et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 15

[8] P. Faldu, B. Grot, LLC dead block prediction considered not useful, in: 13th1

Workshop on Duplicating, Deconstructing and Debunking (WDDD), 2016.2

[9] H. Gao, C. Wilkerson, A dueling segmented LRU replacement algorithm with3

adaptive bypassing, in: Proceedings of the 1st JILP Workshop on Computer4

Architecture Competitions, 2010.5

[10] J. Gaur, M. Chaudhuri, S. Subramoney, Bypass and insertion algorithms for6

exclusive last-level caches, in: In Proceedings of the 38th Int. Symp. on7

Computer Architecture, 2011, pp. 81–92.8

[11] S. Gupta, H. Gao, H. Zhou, Adaptive cache bypassing for inclusive last level9

caches, in: Proceedings of the 27th Int. Symp. on Parallel & Distributed10

Processing, 2013, pp. 1243–1253.11

[12] J.L. Henning, SPEC cpu2006 benchmark descriptions, ACM SIGARCH Comput.12

Archit. News 34 (4) (2006) 1–17.13

[13] E. Jaleel, M. Borch, S.C. Bhandaru, A. Steely Jr, J. Emer, Achieving non-inclusive14

cache performance with inclusive caches. Temporal Locality Aware (TLA)15

cache management policies, in: Proceedings of the 43rd Ann. Int. Symp. on16

Microarchitecture, 2010, pp. 151–162.17

[14] A. Jaleel, J. Nuzman, A. Moga, Steely Jr. S.C., J. Emer, High performing cache18

hierarchies for server workloads. Relaxing inclusion to capture the latency19

benefits of exclusive caches, in: Proceedings of the 21st Int. Symp. on High20

Performance Computer Architecture, 2015, pp. 343–353.21

[15] K.B. Jaleel, S.C. Theobald, A. Steely Jr, J. Emer, High performance cache replace-22

ment using re-reference interval prediction (RRIP), in: Proceedings of the 37th23

Int. Symp. on Computer Architecture, 2010, pp. 60–71.24

[16] N.P. Jouppi, S.J.E. Wilton, Tradeoffs in two-level on-chip caching, in: Proceed-25

ings of the 21st Ann. Int. Symp. on Computer Architecture, pp. 34–45.26

[17] D. Kanter, Skylake-SP scales server systems, Microprocessor Report, July 17,27

2017, 2017.28

[18] S. Khan, Y. Tian, D.A. Jiménez, Sampling dead block prediction for last-level29

caches, in: Proceedings of the 43rd Ann. Int. Symp. on Microarchitecture,30

2010, pp. 175–186.31

[19] S. Khan, Z.Wang, D. Jimenez, Decoupleddynamic cache segmentation, in: Pro-32

ceedings of the IEEE 18th Int. Symp.High Performance Computer Architecture33

HPCA, 2012, pp. 1–12.34

[20] M. Kharbutli, Y. Solihin, Counter-based cache replacement and bypassing35

algorithms, IEEE Trans. Comput. 57 (4) (2008) 433–447.36

[21] An-Chow Lai, C. Fide, B. Falsafi, Dead-Block prediction & dead-block corre-37

lating prefetchers, in: Proceedings of the 28th Ann. Int. Symp. on Computer38

Architecture, 2001, pp. 144–154.39

[22] L. Li, D. Tong, Z. Xie, J. Lu, X. Cheng, Optimal bypass monitor for high perfor-40

mance last-level caches, in: Proceedings of the 21st Int. Conference on Parallel41

Architectures and Compilation Techniques, 2012, pp. 315–324.42

[23] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A.43

Adileh, D. Jevdjic, S. Idgunji, E. Ozer, B. Falsafi, Scale-Out processors, ACM44

SIGARCH Comput. Archit. News 40 (3) (2012) 500–511.45

[24] K. Luo, J. Gummaraju, M. Franklin, Balancing throughput and fairness in SMT46

processors, in: Proceedings of the IEEE Int. Symp. Performance Analysis of47

Systems and Software, ISPASS, 2001, pp. 164–171.48

[25] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-49

berg, F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation50

platform, Computer 35 (2) (2002) 50–58.51

[26] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore,52

M. Hill, D. Wood, Multifacet’s general execution-driven multiprocessor sim-53

ulator (gems) toolset, Comput. Archit. News 33 (4) (2005) 92–99.54

[27] R.L.Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger, Evaluation techniques for storage55

hierarchies, IBM Syst. J. 9 (2) (1970) 78–117.56

[28] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, J. Emer, Adaptive insertion policies for57

high performance caching, in: Proceedings of the 34th Ann. Int. Symp. on58

Computer Architecture, 2007, pp. 381–391.59

[29] P. Rosenfeld, E. Cooper-Balis, B. Jacob, DRAMSim2: a cycle accurate memory60

system simulator, Comput. Archit. Lett. 10 (1) (2011) 16–19.61

[30] V. Seshadri, O. Mutlu, M.A. Kozuch, T.C. Mowry, The evicted-address filter: a62

unified mechanism to address both cache pollution and thrashing, in: Pro-63

ceedings of the 21st Int. conference on Parallel architectures and compilation64

techniques, 2012, pp. 355–366.65

[31] A. Snavely, D.M. Tullsen, Symbiotic jobscheduling for simultaneous mul-66

tithreading processor, in: Proceedings of the International Conference on67

Architectural Support for Programming Languages and Operating Systems68

(ASPLOS), 2000, pp. 234–244.69

[32] Sun Microsystems. UltraSPARC T2 supplement to the Ultra-SPARC architec-70

ture 2007. Draft D143.71

[33] C.J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S.C. Steely Jr, J. Emer, SHiP: 72

signature-based hit predictor for high performance caching, in: Proceedings 73

of the 44th Ann. Int. Symp. on Microarchitecture, 2011, pp. 430–441. 74

75

Javier Díaz is pursuing an Ph.D. degree from the School 76

of Engineering and Architecture at the University of 77

Zaragoza. His main research topic is the management of 78

the memory hierarchy in chip multiprocessor systems. 79

He has held teaching positions as Associate Professor at 80

the University of Zaragoza, and is currently working at 81

DXC technology. His research interests include computer 82

architecture and parallel computing, with focus on cache 83

and memory management. 84

85

Teresa Monreal-Arnal received the MS degree in Math- 86

ematics and the Ph.D. degree in Computer Science from 87

the University of Zaragoza, Spain, in 1991 and 2003, re- 88

spectively. Until 2007, she was with the Informática e In- 89

geniería de Sistemas Department (DIIS) at the University 90

of Zaragoza, Spain. 91

Currently, she is anAssociate Professorwith the Com- 92

puter Architecture Department (DAC) at the Universi- 93

tat Politècnica de Catalunya (UPC), Spain. Her research 94

interests include processor microarchitecture, memory 95

hierarchy, and parallel computer architecture. She col- 96

laborates actively with the Grupo de Arquitectura de Computadores from the 97

University of Zaragoza (gaZ). 98

99

Pablo Ibáñez received the MS degree in Computer Sci- 100

ence from the Universitat Politècnica de Catalunya in 101

1989, and the Ph.D. degree in Computer Science from 102

the Universidad de Zaragoza in 1998. He is an Associate 103

Professor in theDepartamentode Informática e Ingenier a 104

de Sistemas (DIIS) ıı at theUniversidad de Zaragoza,Spain. 105

His research interests include processor microarchitec- 106

ture, memory hierarchy, parallel computer architecture, 107

and High Performance Computing (HPC) applications. He 108

is a member of the Instituto de Investigación en Ingenier 109

a de Aragón (I3A) and the ıı European HiPEAC NoE. 110

111

José María Llabería received the MS degree in telecom- 112

munication, and the MS and the Ph.D. degrees in 113

computer science from the Universitat Politècnica de 114

Catalunya (UPC) in 1980, 1982, and 1983, respectively. 115

He is a full professor in the Computer Architecture De- 116

partment atUPC (Barcelona, Spain). His research interests 117

include processor microarchitecture, memory hierarchy, 118

parallel computer architecture, vector processors, and 119

compiler technology for these processors. 120

121

Víctor Viñals-Yúfera received theMSdegree in Telecom- 122

munications, and the Ph.D. degree in Computer Science 123

from the Universitat Politècnica de Catalunya (UPC) in 124

1982 and 1987, respectively. He was associate professor 125

in the Facultat d’Informàtica de Barcelona (UPC) in the 126

1983–88 period. Currently, he is full professor in the 127

Informática e Ingeniería de Sistemas Department at the 128

University of Zaragoza, in Zaragoza (Spain). His research 129

interests include processor microarchitecture, memory 130

hierarchy and parallel computer architecture. He ismem- 131

ber of the ACM and the IEEE Computer Society. He also 132

belongs to the Juslibol Midday Runners Team and to the Computer Architecture 133

Group of the University of Zaragoza. 134


