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• Fault-Tolerant Last Level Cache for CMPs Operating at Ultra-Low Voltage.
• Mechanism that exploits redundancy and reuse to enhance block disabling performance.
• Fault-aware LLC management that maps critical blocks to operative cache entries.
• Detailed evaluation of block disabling techniques in a shared-memory coherent CMP.
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a b s t r a c t

Voltage scaling to values near the threshold voltage is a promising technique to hold off the many-
core power wall. However, as voltage decreases, some SRAM cells are unable to operate reliably and
show a behavior consistent with a hard fault. Block disabling is a micro-architectural technique that
allows low-voltage operation by deactivating faulty cache entries, at the expense of reducing the effective
cache capacity. In the case of the last-level cache, this capacity reduction leads to an increase in off-
chip memory accesses, diminishing the overall energy benefit of reducing the voltage supply. In this
work, we exploit the reuse locality and the intrinsic redundancy of multi-level inclusive hierarchies
to enhance the performance of block disabling with negligible cost. The proposed fault-aware last-
level cache management policy maps critical blocks, those not present in private caches and with a
higher probability of being reused, to active cache entries. Our evaluation shows that this fault-aware
management results in up to 37.3 and 54.2% fewermisses per kilo instruction (MPKI) than block disabling
formultiprogrammed and parallel workloads, respectively. This translates to performance enhancements
of up to 13% and 34.6% for multiprogrammed and parallel workloads, respectively. Q3

© 2018 Elsevier Inc. All rights reserved.

1. Introduction1

For recent CMOS technologies, power density is the main per-2

formance limiting factor acrossmost computing segments.Moore’s3

law continues to hold, with a doubling of the number of transis-4

tors and integration density in each new process generation, but5

Dennard scaling no longer applies, and we are not able to keep6

a constant power density across technology generations. Power7

budgets prevent us from utilizing all the available transistors,8

leading to dark silicon [44].9
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1 Now at Google.

For years, industry has relied on scaling the supply voltage 10

(Vdd) to reduce power consumption, but this trend has dramatically 11

slowed since the 90 nm generation because of leakage. Reducing 12

operating voltages to values near the threshold voltage (Vth) would 13

minimize leakage and switching power consumption. The result- 14

ing power reduction could be used to activate more chip resources 15

and potentially achieve performance improvements [14]. 16

Unfortunately, Vdd scaling is limited by the tight margins of the 17

on-chip cache SRAM transistors. Excessive parameter variations 18

in SRAM cells limit the voltage scaling of memory structures to a 19

minimum voltage, Vddmin , belowwhich SRAM cellsmay not operate 20

reliably. Vddmin usually determines the minimum voltage of the 21

whole processor, and in current technologies is typically of the 22

order of 0.7–1.0 V, when regular 6T SRAM cells are employed. 23

In the literature, various solutions have beenproposed to enable 24

reliable cache operation at low voltages. At the circuit level, the use 25
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of larger transistors or more transistors (assist circuitry) improves1

SRAM cell resilience [29,47]. The main drawbacks of this approach2

are the associated increases in area and power consumption. First-3

level caches in chip multiprocessors (CMPs) occupy little area, and4

their access time often determines the processor cycle time. Com-5

mercial processors, such as the Intel Nehalem family, use robust 8T6

SRAM cells to build reliable first-level caches, since this represents7

an affordable overhead [30]. In contrast, last-level caches (LLCs) are8

usually shared and have larger sizes and associativity, accounting9

for much of the die area [9]. Hence, for LLCs, minimum-geometry10

6T cells are preferred to achieve higher densities.11

At the architectural level, fault-tolerant cache designs rely on12

disabling faulty resources at different granularities [32], or correct-13

ing defective bits through either error correction codes (ECCs) [13]14

or a distributed duplication of blocks [5,45]. Block Disabling (BD)15

is a simple technique that disables a cache entry when a defective16

bit is found [42]. It is already implemented in modern processors17

to protect against hard faults [9]. However, due to the random18

distribution of defective cells, the capacity of the cache is rapidly19

compromised. Complex techniques based on ECCs or the combi-20

nation of faulty resources are able to rescue more cache capacity,21

but incur large storage overheads and sometimes require complex22

remapping that penalizes the cache access latency.23

In our work, we have developed a new approach tomitigate the24

impact of SRAM failures in LLCs due to parameter variations, based25

on BD but also relying on the underlying structures already present26

in CMPs. We identify a natural source of on-chip data redundancy27

that arises because of the replication of blocks in inclusive multi-28

level cache hierarchies and exploit this redundancy through a29

smart fault-aware cache management policy.30

In this paper, we make the following contributions. First, we31

provide an evaluation of BD techniques in a shared-memory co-32

herent CMP running parallel and multiprogrammed workloads33

with a complete and detailed memory model, exploring SRAM34

cells with different probabilities of failure. Second, we introduce a35

technique that keeps the tags of the LLC and, therefore, the tracking36

capabilities of the coherence directory operational. This way, a37

block not physically stored in the LLC can reside in the private38

level and be made available to other cores. As an alternative to39

main memory supply, we set up a cache-to-cache copy service to40

support code or data sharing (thread migration, operating system,41

or parallel workloads). Finally, we propose a fault-aware cache42

management policy that predicts the usefulness of a block based43

on its use pattern, and guides the allocation of blocks to faulty44

and non-faulty cache entries, adding no overhead to the original45

replacement policy.46

Our fault-aware cache management policy is able to decrease47

the LLC misses per kilo instruction (MPKI) by up to 37.3%, with48

respect to BD, which translates to speedup improvements of 249

to 13% for multiprogrammed workloads. For parallel workloads,50

the MPKI values decrease by 5 to 54.2%, with respect to BD, for51

the different SRAM cells considered, improving performance up to52

34.6%.53

This paper extends our previous work [16] in several significant54

ways: (i) a new fault-aware cache management policy aiming at55

caches operating at low voltages, (ii) a detailed implementation of56

block disablingwith operational tags (BDOT) technique, (iii) amore57

realistic SRAM fault model, improving the accuracy of the results,58

and (iv) a more detailed evaluation including multi-programmed59

workloads and cache capacity/energy analysis.60

The rest of the paper is organized as follows. Section 2 intro-61

duces the problem of process variations and its effect on SRAM cell62

reliability. Section 3 comments on BD and its impact on large cache63

structures. In Section 4, we describe how to take advantage of the64

coherence infrastructure to operate at lowVdd. Section 5 introduces65

a fault-aware cache management policy for LLC operating at low66

Table 1
Area relative to cell C1 and percentage of non-faulty 64-byte entries in a cache
operating at 0.5 V, for the 6 bit cells introduced in [47].
Cell type C1 C2 C3 C4 C5 C6

Relative area 1.00 1.12 1.23 1.35 1.46 1.58
% non-faulty 0.0 9.9 27.8 35.8 50.6 59.9

voltages. Section 6 describes the methodology. Section 7 presents 67

our evaluation. Section 8 discusses the system impact. In Section 68

9, we comment on related work, and in Section 10, we outline our 69

conclusions. 70

2. Process variations in SRAM cells 71

SRAM structures are especially vulnerable to failures due to 72

process variations, as they are aggressively sized to meet high 73

density requirements, and because of the vast number of cells 74

that comprise on-chip SRAM structures [7]. In particular, intra-die 75

randomdopant fluctuations (RDFs) are themain cause of threshold 76

voltage variation [43]. The stochastic nature of the ion implan- 77

tation process leads to a distribution of Vth values across a chip, 78

which reduces the already tight transistor margins. Hence, SRAM 79

structures have a minimum voltage, Vddmin , to guarantee reliable 80

operation, which is typically of the order of 0.7–1.0 V in current 81

process generations, when 6T cells are used. 82

The robustness of SRAM cells under the Vddmin range has been 83

extensively analyzed in the literature [5,13,29,31,45]. Zhou et al. 84

studied six different sizes of 6T SRAM cells in 32 nm technology, 85

and their probabilities of failure as Vdd decreases [47]. According 86

to that study, at 0.5 V, the probability of failure of an SRAM cell 87

(Pfail) is between 10-3 and 10-2. The use of larger cells reduces the 88

probability of failure, as non-uniformities average out, increasing 89

read and write margins and resulting in more robust devices. 90

However, large cells reduce the density and increase power and 91

energy consumption. 92

Table 1 describes the six SRAM cells of Zhou’s study (C1, C2, C3, 93

C4, C5, and C6) in terms of their area relative to the smallest cell 94

(C1), and lists the percentage of non-faulty entries in caches built 95

from these cells operating at 0.5 V, assuming 64-byte cache entries. 96

An entry is considered faulty if it contains at least one defective bit. 97

As Table 1 shows, less than 10% of the cache entries are non- 98

faulty for the small cells C1 and C2 at 0.5 V. If the cache is imple- 99

mented with the more robust C6 cells, however, the percentage 100

of non-faulty cache entries rises to 60%, but at the cost of a 58% 101

increase in area (relative to C1), and the consequent increase in 102

leakage, which is not a suitable option for a large structure such 103

as an on-chip LLC. 104

In this work, we take Zhou’s reliability study as a reference to 105

test our proposals on a wide range of failure probabilities. We will 106

only consider C2 to C6 operating at 0.5 V (our target near-threshold 107

Vdd), as at this voltage, a cache built with C1 cells would have all its 108

capacity compromised. 109

3. Impact of block disabling on large shared caches at ultra-low 110

voltages 111

A simple approach to handling hard faults is the disabling of 112

faulty elements. BD deactivates resources at block (cache entry2) 113

granularity: when a fault is detected at a given cache entry, that 114

entry is marked as defective and it can no longer store a cache 115

2 In this work, we differentiate between cache block and cache entry: block
refers to the transfer unit, the content per se, while entry refers to the physical group
of cells that store a block.
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Fig. 1. Available associativity of a 16-way set associative block disabling cache (64-byte block) made up of cells ∧C6–C1 operating at 0.5 V.

block [42]. This technique is implemented in modern processors1

to enable them to tolerate hard faults [9].2

BD has also been studied for operation at low voltages because3

of its easy implementation and low overhead [31]. From the im-4

plementation perspective, only one bit per entry suffices to mark5

the entry as faulty. The main drawback of this approach is that6

the amount of capacity dramatically falls when the probability7

of failure increases, as shown in Table 1. Even if the total count8

of faulty cells in the cache is less than 1%, the effective cache9

capacity is strongly affected because of the random distribution of10

faulty cells. BD results in caches with variable associativity per set,11

determined by the number and distribution of faults in the cache.12

The interaction between BD and a system’s cache organization13

also plays an important role. Modern commercial processors, such14

as the Intel Core i7, implement inclusive hierarchies to facilitate15

coherence management. Inclusive hierarchies require that all the16

blocks cached in a private cache are also stored in the shared LLC.17

The coherence information is embedded in the LLC; i.e., the sharing18

state and a bit vector to represent the current sharers are added to19

each block. To force inclusion, when a block is evicted from the LLC,20

explicit back invalidations are required to remove the copies of the21

private cache blocks, if present (inclusion victims) [6].22

Inclusive hierarchies perform poorly when the aggregated size23

of the private caches is similar to the size of the LLC [23], and BD24

exacerbates the problem because of the substantial associativity25

and capacity degradation in the LLC. Fig. 1 shows the available26

associativity in a 16-way set associative cache bank with 64-byte27

blocks, when built with cells ∧C1–C6 (Table 1) operating at 0.5 V.28

The number of faulty ways per set follows a binomial distribution29

B(n, p), where n is the associativity, and pdenotes the probability of30

failure of a cache entry. Fig. 1 shows how the associativity degrades31

as more faulty cells appear on the cache structure. On average,32

50% of the ways are faulty if the cache is built with C5 cells, and33

this percentage rises to 90% when using C2 cells. The associativity34

loss directly translates to a significant increase in the number35

of inclusion victims. For instance, the number of invalidations in 36

a cache built with C3 cells is 10 times larger than in a cache 37

implemented with fault-free SRAM cells. 38

This finding suggests that inclusive hierarchies are not partic- 39

ularly suitable for systems that implement BD in the presence of 40

a significant number of faults. From the coherence management 41

perspective, however, only directory inclusion is required: blocks 42

present in the private levels have to be tracked only in the shared 43

level tag array, without the need for a replica in the data array [6]. 44

This observation is the basis for the techniques we propose in this 45

paper. 46

Our proposal has been designed for inclusive memory hierar- 47

chies, but most of the proposed ideas could benefit non-inclusive 48

and exclusive hierarchies as well. The objectives of our replace- 49

ment and promotion algorithms are to assign the non-faulty en- 50

tries to blocks with reuse and to blocks that are not present in the 51

private caches. On the one hand, these objectives are still valid in 52

a non-inclusive hierarchy; however, their relative importance is 53

different, and our algorithms should consider different priorities 54

for allocation and promotion decisions. On the other hand, our 55

proposal alleviates a specific problem of inclusive hierarchies, such 56

as the need to invalidate a block in a private cachewhen it is evicted 57

from the shared cache. This problemdoes not exist in non-inclusive 58

hierarchies, and therefore our proposal is not applicable in this 59

specific aspect. 60

Note on Fig. 1 that, when using cell types C3 and C2, 0.6% and 61

18.9% of the sets have no operative ways, respectively. To be able 62

to offer a complete comparison with BD, we assume that at least 63

one of the ways in each set is non-faulty, although this is not a 64

requirement for the techniques we present in this paper, and the 65

LLC is able to operate even when all the ways of a set are faulty. 66

4. Exploiting inclusive hierarchies to enable ultra-low voltage 67

operation: Block Disabling with Operational Tags 68

The BD scheme simply assumes one extra bit per entry to 69

identify faulty cache entries in the data array (one or more faulty 70
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Table 2
Main characteristics of the CMP system.
Cores 8, Ultrasparc III Plus, in-order, 1 instr./cycle, single-threaded, 1 GHz at

Vdd 0.5 V

Coherence protocol MESI, directory-based (full-map) distributed among LLC cache banks

Consistency model Sequential

L1 cache Private, 64 KB data and instr. caches, 4-way, 64 B block size, LRU, 2-cycle
hit access time

LLC cache Shared, inclusive, interleaved by line address, 1 bank/tile, 1 MB/bank,
16-way, 64 B block size, NRU replacement
8-cycle hit access time (4-cycle tag access + 4-cycle data access)

Memory 2 memory controllers, located at the edges of the chip; 1333 MHz DDR3
2 channels, 8 Gb/channel, 8 banks, 8 KB page size, open page policy; raw
access time 50 cycles

NoC Mesh, 2 virtual networks (VNs): requests and replies; 2 virtual channels
per VN; 16-byte flit size
1-cycle latency hop, 2-stage routing

cells). Faulty data entries are excluded from tag search and replace-1

ment, involving a net reduction in associativity, and a consequent2

increase in inclusion victims. From the coherence management3

perspective, however, tracking blocks in the shared level tag array4

suffices to ensure directory inclusion. This is the basis of our pre-5

vious work, [16], and the starting point of the first technique we6

propose: Block Disabling with Operational Tags (BDOT).7

Assuming a two-level inclusive hierarchy, to force directory8

inclusion, we turn on the tags of faulty entries in the LLC, including9

them in the conventional operations of search and replacement.10

The tag of a faulty entry, if valid, tracks a cache block that might11

be present in the private caches, but that cannot be stored in the12

shared cache. Enabling the tags of the faulty entries restores the13

associativity of the shared cache as seen by the first-level private14

caches, eliminating the problem of the increase in the number of15

inclusion victims caused by the loss in associativity.16

In this situation, two kinds of LLC entries have to be distin-17

guished: tag-only (T ), where the associated data entry is faulty18

and only the tag is stored, and tag-data (D), where the associated19

data entry is non-faulty and both tag and data are stored. From20

the implementation perspective, one resilient bit still suffices to21

indicate whether the entry is faulty or not. The coherence protocol22

needs to be adapted to this new situation, where a T entry only23

stores the block tag and directory state. Whenever a request to a24

block stored in a T entry arrives to the LLC bank, the request needs25

to be sent to the next level (in this case, the off-chip memory) to26

recover the block, and the same occurs with dirty blocks, which27

need to be written back to memory after being evicted from a28

private cache.29

To fully exploit this scheme, no failures should occur in the cells30

of the tag array. This can be accomplished, for example, by using31

robust cells (e.g., increasing the number of transistors per cell) or32

increasing the strength of the ECC. Tags occupy very little area in33

comparison to the data array (around 6% for our configuration,34

see Table 2 in Section 6), and increasing the cell size by 33%35

(assuming 8T SRAM cells [10]) will only increase the total area of36

a cache bank by 2%. Since using sophisticated ECCs could increase37

the access latency of the tag array, while using resilient tag cells38

involves little overhead, we opt for the latter. This approach is also39

consistent with prior work [5,45]. Moreover, many of today’s CPUs40

use different cell types for tag and data arrays [26]. Contrary to41

other proposals, our mechanism works even when all entries of a42

set are faulty. Contrary to other proposals, our mechanism works43

even when all entries of a set are faulty. The LLC saves the tags44

for both faulty and non-faulty entries, maintaining the coherence45

status of all the blocks, and allowing blocks to be stored in the46

private levels without the need of a data replica in the shared level.47

Hence, it is possible to store a block in the private caches even if all48

the data ways of the corresponding LLC set are faulty.49

4.1. BDOT limitations 50

BDOT, as described above, has two potential limitations, both 51

related to the allocation of blocks to faulty entries. 52

First, BDOT always forwards requests to blocks allocated to 53

faulty entries to the off-chip memory. However, a block allocated 54

to a faulty entry might be present on-chip, if it is being used by a 55

private cache (L1). This situation is common in parallel workloads, 56

which share data and instructions. In this case, the directory infor- 57

mation can be used to orchestrate cooperation among L1 caches. 58

When the directory protocol receives an L1 request to a shared 59

block mapped to a T entry, it forwards the request to one of the 60

sharers of the block, namely, the L1 cache closest to the requester in 61

terms of Manhattan distance. That L1 will serve the block through 62

a cache-to-cache transfer. 63

Cache-to-cache transfers are already implemented in the base- 64

line coherence protocol for exclusively owned blocks. Hence, no 65

additional hardware is required and a slight modification of the 66

directory protocol suffices to trigger a shared block transfer. So 67

from now on, we assume that BDOT includes this feature. 68

The second limitation comes from allocating blocks to LLC en- 69

trieswithout taking into account their T orDnature. Unfortunately, 70

this blind allocation can result in heavily reused blocks being 71

attached to faulty entries. Indeed, if a particular block of the LLC is 72

required repeatedly from an L1 cache (i.e., the block shows reuse), 73

any replacement algorithm will tend to protect it, reducing its 74

eviction chances. Thus, if a block with reuse is initially allocated 75

to a T entry, unless replicated in other cores, all L1 cache misses 76

will be forwarded off-chip by the LLC. 77

In the next section, we introduce a specific allocation and real- 78

location policy for BDOT caches that differentiates between T and 79

D entries. 80

5. Fault-aware cache management policy for BDOT caches 81

Conventional cache management policies assume that every 82

cache entry can store a block, while BDOT breaks this assumption: 83

each set in an N-way set associative cache contains T entries that 84

store only tags, and D entries that store tags and data. Keeping in 85

mind the main goal of improving the overall LLC performance un- 86

der BDOT, this section introduces a fault-aware cachemanagement 87

policy that takes into account the distinct nature of T andD entries, 88

and the reuse pattern of the reference stream. In particular,we seek 89

to achieve the following two goals: 90

1. To allocate blocks that aremost likely to be used in the future 91

to D entries. 92

2. To maximize the amount of on-chip data by giving greater 93

priority (higher chances of being allocated to D entries) to 94

blocks that are not present in private cache levels. 95



YJPDC: 3966

Please cite this article as: A. Ferrerón, J. Alastruey-Benedé, D. Suárez Gracia et al., A fault-tolerant last level cache for CMPs operating at ultra-low voltage, Journal of Parallel
and Distributed Computing (2018), https://doi.org/10.1016/j.jpdc.2018.10.010.

A. Ferrerón, J. Alastruey-Benedé, D. Suárez Gracia et al. / Journal of Parallel and Distributed Computing xxx (xxxx) xxx 5

Fig. 2. Reuse and inclusion states for a block in LLC. NR, R, C, andNC represent: Non-
Reused, Reused, Cached (in L1), and Non-Cached (in L1), respectively. Replacement
and coherence transitions are not shown.

Prior work has shown that reuse is a very effective predictor of1

the usefulness of a given block in the LLC [4,11]. Reuse locality can2

be described as follows: lines accessed at least twice tend to be3

reused many times in the near future, and recently reused lines4

are more useful than those reused earlier [4]. Therefore, seeking5

to achieve our first goal, we exploit reuse locality to predict which6

blocks should be allocated to D entries. With respect to our second7

goal, a request to a block allocated to a T entry and present in L18

can be serviced through a cache-to-cache transaction, whilst if the9

block is not present in L1, the request will always be forwarded10

to the off-chip memory, incurring a penalty in access time and11

energy. Therefore, it is preferable to dedicate D entries to blocks12

not available on the L1 caches.13

These goals may be added to any management policy. In this14

work, we will build on top of a state-of-the-art reuse-based re-15

placement algorithm: Not-Recently Reused (NRR) [4]. Next, we16

describe the baseline replacement in some depth and then we add17

awareness of the existence of faulty entries.18

5.1. Baseline NRR replacement algorithm19

The NRR algorithm requires four states per LLC block, as de-20

picted in Fig. 2. When a block not present in the LLC is requested21

by the processor (1st use: L1 request), it is stored in the L1 and22

the LLC (to force inclusion), its state being in the LLC NR-C (Non-23

Reused, Cached). When the block is evicted from the private cache24

(L1 eviction), its LLC state changes to NR-NC (Non-Reused, Non-25

Cached). On a new request (2nd use: L1 request), a copy of the block26

is stored again in L1, and its LLC state is R-C (Reused, Cached). At27

this point, the block has shown reuse in the LLC and, very likely,28

it will be reused many times in the near future. Finally, when the29

block is evicted again from the L1, the state becomes R-NC (Reused,30

Non-Cached). Subsequent requests and evictions switch between31

the R-NC and R-C states.32

Having LLC blocks classified this way, the replacement policy33

can exploit L1 temporal locality and LLC reuse. In an inclusive hier-34

archy, the replacement of a block in the LLC forces the invalidation35

of its copies in the private caches, if any, and this usually implies 36

performance degradation, assuming that blocks in L1 are being 37

actively used [23]. Therefore, the highest priority (protection) is 38

given to blocks stored in private caches. As a secondary objective, 39

the highest priority is given to blocks that have shown reuse in 40

the LLC. Hence, NRR selects victims in the following order: NR-NC, 41

R-NC, NR-C, R-C. Reuse recency is taken into account by resetting 42

the reuse bit when all the non-cached blocks are marked as reused 43

(transition from R-NC to NR-NC). This way, more recently reused 44

blocks become more protected. 45

The implementation of NRR only requires one reuse bit per 46

block. The protection of private copies can be implemented in 47

various different ways [23], but one simple solution is to use the 48

presence bit-vector of the coherence directory, assuming non- 49

silent tag evictions of clean blocks. 50

5.2. Reused-based and fault-aware management for BDOT caches 51

Seeking to guarantee that valuable blocks remain in the LLC, 52

we devise a fault-aware management policy by distinguishing 53

between T and D entries. One option is to promote blocks by 54

reallocating them from T to D entries, if needed, to improve the 55

overall cache performance. The design choices include where the 56

promoted data comes from and which victim is chosen as a target 57

of the consequent demotion. At the same time, wewant to continue 58

exploiting reuse in the simple and efficient way offered by an NRR- 59

like replacement algorithm, which is unaware of faulty entries. 60

Thus, our goal is to design a comprehensive cache management 61

policy, merging reuse exploitation and faulty entry management. 62

Below,we elaborate on the twomechanisms that are key to achiev- 63

ing this, namely block insertion/replacement and block promo- 64

tion/demotion. 65

5.2.1. Insertion and replacement of blocks 66

On a first insertion (LLCmiss), an incoming block has not shown 67

reuse, and hence allocating it to a T entry seems a reasonable idea. 68

Fig. 3(a) shows an example of a cache block to be inserted in a 69

4-way cache set with two T entries (those storing q and r tags) and 70

two D entries (those storing p and s tags and the corresponding P 71

and S data). A victim is selected among the blocks allocated to T 72

entries. The baseline replacement policy dictates which of those 73

blocks (Q and R) is selected for replacement. This is equivalent to 74

predicting that the incoming block X is not going to be reused. 75

If the reuse pattern of the block is mispredicted, block X should 76

be reallocated to a D entry, to reduce its access time and transfer 77

energy in future L1 misses. This reallocation will be performed 78

using the promotion mechanism we detail in the next subsection. 79

Dealing with first insertions this way is very simple but has a 80

clear disadvantage, related to the distribution of T and D entries, 81

with respect to the percentage of reused and non-reused blocks. 82

For example, if the number of T entries is small, the insertion 83

policy would place considerable pressure on these scarce entries. 84

Fig. 3. Insertion and promotion actions for a fault-aware cache management policy example in a cache set with two faulty cache entries. Lowercase and capital letters
indicate tag and data, respectively.
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Blocks would be unavoidably forced to leave the LLC before having1

had enough time to show a reuse pattern, even though there2

are many available D entries. In an extreme case, when all the3

entries in a set are D type, this cache management policy could4

not be implemented. Solving this problem is not easy.We explored5

various adaptive mechanisms in which some D entries are used6

as T . However, it is difficult to determine the optimal number7

of T entries, this being highly dependent on the workload. After8

carrying out several experiments (data not shown in Section 7, for9

the sake of brevity), the performance returns were disappointing10

given the required complexity.11

Given that our promotionmechanism reallocates reused blocks12

to D entries and non-reused ones to T entries (as we will see in the13

following subsection), we realized that the baseline NRR replace-14

ment policy itself suffices to achieve our initial goals because it pro-15

tects reused blocks. Since NRR gives lower priority to non-reused16

blocks, blocks allocated to T entries will have more chances to be17

evicted. This implies that, with a balanced distribution between T18

and D entries, an incoming block will have a higher probability of19

being inserted in a T entry than in a D entry. If the number of T20

entries in a set is very low, and even if there are no T entries in21

a set, the mechanism still works correctly. NRR periodically resets22

the reuse bit of those blocks not present in private caches, so some23

D entries become replacement candidates with the same priority24

as T entries. Hence, the initial insertion does not necessarily have25

to consider the nature of the entry, and our implementation relies26

only on the baseline replacement policy to select the victim block.27

5.2.2. Promotion and demotion of blocks28

A blind allocation of blocks to cache entries may result in29

valuable blocks (i.e., those with reuse) being initially allocated to30

T entries, and vice versa. However, this undesirable situation can31

be tracked on the fly through the reuse footprint, and reversed by32

swapping a T entry with a D entry: when a block allocated to a33

T entry shows reuse, we will promote it to a D entry. Promotion34

involves a complementary demotion of the block stored in the35

selected D entry.36

To select which block is demoted, we also rely on reuse and L137

presence information. Reused blocks should be kept in the LLC, but38

unlike in the baseline replacement policy, block demotion does not39

involve an LLC tag eviction. Furthermore, if the block is present in L1,40

losing the contents of the LLC is not critical, because there is at least41

one on-chip copy of the block,which can be supplied by a cache-to-42

cache transaction. Thus, to maximize the amount of on-chip data,43

the demotion algorithm will select the victim block among those44

present in L1. Among the blocks in L1, non-reused ones should have45

more chances of being demoted.46

Note that the promotion of a block can be performed at two47

different times: at reuse detection (i.e., on a second L1 request48

to a block stored in a T entry) or after the second eviction from49

L1 (i.e., on eviction after reuse). Performing the promotion after50

the second request from L1 duplicates the content, as a copy of51

the block is also stored in a private cache, whilst performing the52

promotion after the L1 eviction meets the goal of maximizing the53

amount of on-chip data. Therefore, we opt for the latter and trigger54

promotions only after L1 evictions, non-silent block data evictions55

being necessary.56

The promotion/demotion process is illustrated in Fig. 3(b).57

When block R, which is stored in a T entry, is evicted from the L158

cache and selected for promotion (i.e., its reuse bit is set), we select59

a victim among the demotion candidates (P and S in Fig. 3(b)).60

Once the victim is selected (P in our example), we swap the cache61

contents in three steps: 1⃝ discard the data entry P, writing back62

the data to memory, if dirty; 2⃝ swap p and r tags; and 3⃝ copy63

the data (R) to the available D entry, which was occupied by the64

demoted block (P).65

Fig. 4. Reuse and inclusion states for a block in LLC with BDOT.

5.2.3. Summary and implementation 66

Fig. 4 illustrates the implementation of the aforementioned 67

ideas. The states of the baseline replacement algorithm shown in 68

Fig. 2 are now superstates split into T and D states. The initial 69

allocation of blocks (1st use: L1 request in Fig. 4) does not take into 70

account the nature of the entry, and it solely depends on the victim 71

selection arising from reuse and L1 presence; i.e., it only depends 72

on the baseline replacement algorithm. After insertion, blocks will 73

move alongNR-C,NR-NC,R-C, andR-NC superstates as theywould 74

do in a cache without considering faulty entries. 75

To guarantee that high value ∧blocks – those showing ∧reuse – 76

remain in the LLC, the policy reallocates them from T to D entries 77

when they are evicted from the L1 and reside in a faulty LLC entry: 78

R-C-T state. After L1 eviction, blocks in R-C-T trigger a promotion, 79

which results in the transition to an R-NC-D state and reallocation 80

to aD entry,with the consequent demotion of another blockwithin 81

the set to a T entry. A block being demoted can be in any of the 82

superstates, and according to the victim selection algorithm, we 83

first demote blocks that are present in the private levels, in order 84

tomaximize the amount of data available in the on-chip hierarchy. 85

As a secondary objective, the policy attempts to first demote low 86

priority blocks, that is, those without reuse. In particular, it selects 87

blocks in the following order: NR-C-D, R-C-D, NR-NC-D, and R- 88

NC-D. 89

This reuse-based, fault-aware policy adds no extra storage over- 90

head to the baseline reuse-based replacement policy, as only the 91

bit indicating reuse and the presence bit vector are needed to 92

orchestrate the replacement and promotion decisions. Moreover, 93

swapping blocks only requires some extra control logic to perform 94

the following actions: first, the logic reads the demoted victim and 95

inserts the promoted block, as for conventional block insertion, 96

and, then, it writes back the tag of the demoted block. Promoting 97

blocks after L1 eviction implies non-silent eviction of data blocks. 98

This overhead does not affect latency, as L1 replacements are 99

not in the critical path, and has a negligible impact on energy 100

consumption. 101
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Fig. 5. Modeled 8-core CMP.

The fault-aware cache management technique here presented1

could be implemented on top of other replacement algorithms2

(such as LRU or NRU). We decided to rely on NRR because of its3

simple, yet efficient implementation, and because it fits the general4

principles behind our ideas. Finally, and regarding the reallocation5

from T to D entries and vice versa, other policies are also possible.6

For example, instead of relying on the reuse information of the7

blocks, a future use predictor [46] could be utilized to decidewhich8

blocks should be allocated to D entries, or a dead block predic-9

tor [27] could be used to indicate which blocks may be demoted10

to T entries, but these solutions add complexity to the cache logic11

as well as requiring more storage overhead.12

6. Methodology13

6.1. Overview of the system14

Our baseline system consists of a tiled CMP, with an inclusive15

two-level cache hierarchy, where the second level cache or LLC16

is shared and distributed among the processor cores. Tiles are17

interconnected by means of a mesh. Each tile has a processor core18

with a private first level cache (L1) split into instructions and data,19

and a bank of the shared LLC, both connected to the router (Fig. 5).20

Similarly tomost CMP, the write-policy for L1 data caches is write-21

back because other policies, such as write-through, may collapse22

the interconnection network [19]. The mesh will have to convoy23

every single store from the cores to the LLC banks to guarantee24

content inclusion. The CMP includes two memory controllers lo-25

cated at the edges of the chip. Table 2 shows the parameters of26

the baseline processor, memory hierarchy, and interconnection27

network.28

We assume it runs at a frequency of 1 GHz with an operat-29

ing voltage of 0.5 V. Note that the DRAM module voltage is not30

scaled like the rest of the system, and hence, the relative speed31

of main memory with respect to the chip increases as the voltage32

decreases. This model is consistent with prior work [5,45].33

Our baseline coherence protocol relies on a full-map directory34

with Modified, Exclusive, Shared, Invalid (MESI) states. We use35

explicit eviction notification of both shared and exclusively owned36

blocks. L1 caches are built with robust SRAM cells that can run37

reliably at low or near-threshold voltages, while LLC data banks38

are built with conventional 6T SRAM cells and, therefore, they are39

sensitive to failures [30].40

As in previous studies [5,45], we assume that the LLC tag arrays41

are hardened by using upsized cells such as 8T [10]. The baseline42

LLC replacement policy is Not-Recently Used (NRU) [37] extended43

with private copy protection [23]. We implement this protection44

by using coherence directory information updated by non-silent45

L1 block evictions.46

6.2. Experimental set-up 47

Regarding our experimental set-up, we model the CMP system 48

described in Table 2. We use Simics [34] in combination with 49

GEMS [36] to simulate the on-chip memory hierarchy and inter- 50

connection network, and DRAMSim2 [40] to simulate the DDR3 51

DRAM in detail. To obtain timing, area, and energy consumption, 52

we use the McPAT framework [33] for the on-chip components, 53

andDRAMSim2 for theDRAMmodule.Weextend theRubymodule 54

(GEMS) to simulate the cache swaps in detail in order to take into 55

account their dynamic energy overhead. 56

Weuse a set of 20multiprogrammedworkloads built as random 57

combinations of the 29 SPEC CPU 2006 applications [21], with no 58

special distinction between integer and floating point programs. 59

Each application appears on average 5.5 times with a standard 60

deviation of 2.5. Programs were run on a real machine until com- 61

pletionwith the reference inputs. Hardware counters were used to 62

locate the end of the initialization phase. Every multiprogrammed 63

mix was run for as many instructions as the longest initialization 64

phase, and a checkpoint was created at this point. We then run 65

cycle-accurate simulations including 300 million cycles to warm 66

up thememoryhierarchy and700million cycles for data collection. 67

We also include a selection of shared-memory parallel ap- 68

plications from PARSEC [8] with a significant memory footprint 69

(MPKILLC ≥ 1.0) when running the sim-large input in the baseline 70

system: canneal (MPKILLC = 4.3), ferret (1.6), streamclus- 71

ter (1.0), and vips (1.2). We proceed in a similar way to that 72

used for multiprogrammed workloads3 and run 300million cycles 73

to warm up the memory structures once the parallel phase has 74

started, and then collect statistics for 700 million cycles. 75

One challenge for analyzing fault mitigation techniques is the 76

large set of required simulations. Running all workloads and simu- 77

latedmodels combinations for a single faultmap can lead towrong 78

results, as other authors have described [20,41]. For example, if 79

all the faults affect to the most/least frequently accessed cache 80

sets, the observed speed-up would be much lower/higher than in 81

reality. 82

To address this issue, we rely on statistical sampling to generate 83

random fault maps and runMonte Carlo experiments to guarantee 84

a 5% margin of error with a confidence level of 95% [22]. In other 85

words, the number of samples is increased as necessary to reach 86

the target margin of error within the desired level of confidence. 87

For our workloads, simulated models, metrics, margin of error and 88

confidence level, each point of the design space has to be simulated 89

between 20 and 30 times, each one with a different fault map. 90

We pick the 5% margin of error and the 95% confidence level as a 91

good trade-off between simulation time and accuracy, increasing 92

both has a large impact in the required number of simulations. 93

To ensure all simulations have similar numbers of faults but at 94

different locations, we compute the faultiness of each memory 95

cell randomly and independently of other cells [2,12]. Finally, we 96

consider that the number and location of faulty cells do not change 97

during workload execution. 98

7. Evaluation 99

This section evaluates the effectiveness of the proposed BDOT 100

management technique for LLC caches in terms of MPKI, adding 101

up the misses in all LLC banks and dividing by the aggregated 102

instruction count of all cores. Later, in Section 8, we analyze the 103

impact on system performance, area, and energy. 104

3 We observed that no OS activity appearedwhen our parallel applications were
run and the ratio of CPU utilization between the different threads was practically
constant across the simulations.
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Fig. 6. Normalized MPKI (average for SPEC mixes) with respect to Robust for the
different proposals and cell types. Average MPKI for Robust: 5.09.

To assess the effectiveness of our proposals, we include sev-1

eral additional configurations. First, as an upper bound in per-2

formance, a robust cache built with unrealistically robust cells3

(Robust); i.e., cells that operate at ultra-low voltages with neither4

failures nor power or area overheads, which corresponds to a5

perfect unattainable solution. Then, we also include block disabling6

(BD), as our proposal emerges from it. Finally, we add results for7

word disabling (WD) [45]. Word disabling is a more complex tech-8

nique that combines consecutive faulty cache entries to recreate9

fully functional ones, at the cost of reducing the cache capacity.10

Section 9 presents a comprehensive discussion of this and other11

techniques versus our proposals.12

In summary, we consider the following configurations:13

• Robust: reference system; the LLC is built with unrealistically14

robust cells. All data are presented with respect to this sys-15

tem.16

• BD: system implementing block disabling, as presented in17

Section 3, with NRU replacement.18

• BDOT-NRU: system implementing block disablingwith oper-19

ational tags, as presented in Section 4,withNRU replacement.20

• BDOT-NRR: system implementing BDOT with NRR replace-21

ment, as presented in Section 5.1.22

• BDOT-NRR-FA: system implementingBDOTwith fault-aware23

NRR replacement, as presented in Section 5.2.24

• WD: system implementingword disablingwith NRU replace-25

ment [45].26

As in the case of NRR, the NRU implementation also includes27

private copy protection. Our detailed results include multipro-28

grammed workloads (the 20 SPEC CPU 2006 mixes) and parallel29

workloads (the 4 selected PARSEC applications), for the five cell30

types considered (C6, C5, C4, C3, and C2).31

7.1. Multiprogrammed workloads32

Fig. 6 shows the LLC MPKI results for the multiprogrammed33

workloads.34

BD is a valid solution for a cache with few defective entries,35

like one built with C6 cells, where the average MPKI penalization36

is 23.9%. However, this penalization increases rapidly with the37

number of faulty entries, reaching 136% for C2. Using the tags of the38

defective LLC entries to keep the coherence state of blocks stored39

in L1 allows BDOT-NRU to incur fewer MPKI than BD for C2, but40

it does not offer any advantage (the MPKI value increases) for the41

rest of the cells.42

To differentiate and quantify the benefit of a reuse-based re- 43

placement and our fault-aware cache management policy, we first 44

implement NRR on top of BDOT (BDOT-NRR), without taking into 45

account the nature of cache entries (faulty or non-faulty). This 46

naive implementation offers a slight improvement with respect to 47

BDOT-NRU for all cell types, but it is still worse than BD, except for 48

C2, as in the case of BDOT-NRU. The explanation for this behavior 49

is the blind allocation of blocks to entries, without taking into 50

account whether the entry can store only the tag (T ) or both the 51

tag and the data (D). Allocating a block that shows reuse to a T 52

entry implies that all the requests to that block are forwarded to 53

the next level (in this case, off-chip). Besides, due to the reused- 54

based policy, this block will remain in the defective entry of the 55

LLC, protectedby the replacement algorithm.However, blockswith 56

reuse allocated to D entries are also protected from replacement, 57

and that explains why the relative differences between BDOT-NRR 58

and BDOT-NRU are larger when using larger cells (i.e., with less 59

faults, like C6 and C5). 60

BDOT-NRR-FA addresses this issue, adding the information of 61

defective entries to the cachemanagement policy. Thepenalization 62

in terms of MPKI is 14.6%, 15.1%, 16%, 18.3%, and 37.3% lower than 63

with BD for C6, C5, C4, C3, and C2, respectively. If we compare 64

BDOT-NRR-FA with BDOT-NRR, there are 20% fewer MPKI, irre- 65

spective of the cell type, demonstrating the goodness of the design. 66

Regarding WD, although there are significant differences in 67

terms of the number of defective entries among the cell types 68

considered (Table 1), the MPKI for the different configurations is 69

almost constant. Two reasons explain this behavior: (i) a single 70

defective cell forces the entry to be classified as faulty, and (ii) 71

the number of defective cells per entry is usually small (three on 72

average for the smallest cell: C2 [15]) and, therefore, very often 73

blocks are successfully stored by combining two consecutive en- 74

tries. Thus, the average number ofways per set in our systemwhen 75

implementing WD is eight across the different cell configurations. 76

Compared to BD, WD obtains better results when the average 77

number of defective entries is greater than half, which is the case 78

of cells C4, C3, and C2, as shown in Table 1. BDOT-NRR-FA lowers 79

the MPKI with respect to WD by 20%, 16.1%, 8.5%, and 3.4%, for 80

C6, C5, C4, and C3, respectively. WD only beats BDOT-NRR-FA in 81

caches with a high number of defective cells (C2, where on average 82

90% of the entries are faulty). However, BDOT-NRR-FA requires no 83

additional overhead, whilst WD requires additional storage and 84

logic to reconstruct blocks. 85

7.2. Parallel workloads 86

Fig. 7 shows the relative LLC MPKI for the parallel workloads, 87

with respect to the baseline. Aswithmultiprogrammedworkloads, 88

BDOT-NRR-FA has a lower average MPKI than BD and non fault- 89

aware implementations of BDOT. In particular, BDOT-NRR-FA im- 90

provesMPKIwith respect to BD by 5%, 5%, 9.6%, 19.2%, and 54.2% on 91

average for C6, C5, C4, C3, and C2, respectively. Comparingwith the 92

multiprogrammedworkloads, the relativeMPKI numbers shown in 93

Fig. 7 are larger, moving away from the Robust system to a greater 94

extent for all cell types, even for the winning alternatives (WD 95

and BDOT-NRR-FA). But it is worth noting that the absolute MPKI 96

values for the parallel applications considered are low (Section 6), 97

which makes the relative increases appear more substantial. 98

Upon closer examination of the results, we can make some 99

interesting observations. Fig. 8 shows the LLC MPKI analysis per 100

application for the different cell types. BD is better than plain 101

BDOTs (BDOT-NRU, BDOT-NRR) in ∧C6–C3 cells (C3 in canneal 102

is an exception), while in cell C2 the trend clearly reverses. On 103

the contrary, BDOT-NRR-FA is better than BD in most cases, being 104

vips the only exception (cells ∧C6–C3), and giving very noticeable 105

reductions in the smallest cell C2. For vips, BDOT-NRR-FA only 106
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Fig. 7. Normalized MPKI (average for PARSEC) with respect to Robust for the
different proposals and cell types. Average MPKI for Robust: 2.01.

beats BD in C2 because its image processing algorithm shows1

very little reuse with a small working set. In such non-demanding2

environment, BD can store the vipsworking set.3

Finally, the costly WD shows a similar tendency to that ob-4

served with multiprogrammed workloads, with a relatively5

constant performance independently of the cell type. In this case, 6

BDOT-NRR-FA beats WD when using C6 or C5 (12.7% and 6.6% 7

lower MPKI values, respectively), but it cannot reach WD perfor- 8

mance for C4, C3, or C2 (5.5%, 12.4%, and 33.3% higher MPKI values, 9

respectively). 10

8. System impact 11

This section analyzes the impact of our proposals on the system 12

in terms of performance, area, and energy consumption. As in the 13

previous section, we present results relative to the Robust system 14

and compare with the BD and WDmechanisms. 15

8.1. Performance 16

Fig. 9 shows the performance relative to the robust cell for both 17

multiprogrammed and parallel workloads. 18

For multiprogrammed workloads (Fig. 9(a)), performance fol- 19

lows the same trend as MPKI, BDOT-NRR-FA being the best design 20

option except in the case of C2 cells, for which WD outperforms 21

BDOT-NRR-FA by 2.2%. In particular, BDOT-NRR-FA shows a perfor- 22

mance degradation with respect to the Robust reference system of 23

1.3%, 2%, 3.4%, 4.3%, and 6.9% for C6, C5, C4, C3, and C2, respectively, 24

or, in other words, a performance improvement with respect to BD 25

of 2%, 2.2%, 2.7%, 3.6%, and 13.1%. 26

Fig. 8. Per-application normalized MPKI (PARSEC) with respect to Robust for the different proposals and cell types. Average MPKIs for Robust: 4.26, 1.59, 1.0 and 1.19, for
canneal, ferret, streamcluster, and vips, respectively.
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Fig. 9. Normalized speedup (average) with respect to Robust for the different proposals and cell types.

As in the case of multiprogrammed workloads, speedup in1

parallel application performance (Fig. 9(b)) also follows the same2

trend as in the MPKI results, with a notable exception. For C3,3

BDOT-NRU and BDOT-NRR perform slightly better than BD on av-4

erage,while in Fig. 7, the averageMPKI valuewith these techniques5

was higher than with BD. As we already mentioned, the LLC MPKI6

for the parallel applications in the baseline system is small (Section7

6), and small MPKI increases with respect to this system appear8

relatively large in Fig. 7. Nevertheless, for C3, streamcluster9

has a dramatic speedup degradation with BD. This is due to the10

large number of back invalidations to L1 blocks to force directory11

inclusion (inclusion victims). Specifically, in this application, the12

number of invalidations to L1 blocks decreases 20 times when im-13

plementing BDOT. The MPKI numbers are similar, but the number14

of instructions executed differ considerably. For this application,15

weobserve a performance improvement of 6.1%whenusing BDOT-16

NRU (6.2% for BDOT-NRR), with respect to BD.17

On average, BDOT-NRR-FA shows a similar performance to BD18

for C6 and C5, where the performance degradation with respect to19

the reference system is 2.2% and 2.9%, respectively, and for C4, C3,20

and C2, the performance is better, by 1.8%, 7.1%, and 34.6%, respec-21

tively. BDOT-NRR-FA and WD have similar performance (within22

1%), except for in the case of C2, for which WD achieves a 3.1%23

better performance.24

In summary, BDOT-NRR-FA is an excellent choice for caches25

with different numbers of defective entries, as it achieves as good26

performance as more complex fault-tolerant techniques without27

adding any extra storage overhead to the cache.28

8.2. Area and energy29

Larger SRAM cells are less likely to fail, but at the cost of30

larger areas and higher power consumption. Even the largest cell31

considered by Zhou’s study (C6), which requires a 41.1% larger area32

than C2, is far from reaching fully functional performance: 40.1% of33

the cache entries are faulty at 0.5 V (Table 1).34

Our fault-aware mechanism has a minimal impact on area.35

Only two extra bits suffice to implement BDOT-NRR-FA: one bit36

marks entries as defective (as in BD), and the other one stores the37

replacement policy (i.e., NRR) information. Thus, no extra storage38

overhead is added compared to the BD system.39

Minimizing area helps to reduce energy in the LLC. Signals trav-40

eling smaller distances require less dynamic power for switching,41

and, most importantly, small cells consume less static power. To42

estimate the sub-threshold current, Isub, causing the static con- 43

sumption, we assume that Isub is directly proportional to the tran- 44

sistor width of the cells considered, and estimate it with respect 45

to C2 [47]. For the unrealistically robust cell, we assume that it is 46

the same size as C2, but with a null probability of failure. Energy 47

consumption also includes the dynamic overhead of LLC block 48

swaps and L1 clean data eviction required by the fault-aware BDOT 49

policy. Finally, we account for both the on-chip power and the off- 50

chip DRAM power. 51

Fig. 10 shows the energy per instruction (EPI) for all the systems 52

and cell types considered, both for multiprogrammed (Fig. 10(a)) 53

and parallel (Fig. 10(b)) workloads, with respect to a system imple- 54

mented with robust cells at 0.5 V, distinguishing between on-chip 55

and off-chip consumption. 56

For BD, the 2.4-fold higher MPKI for C2 escalates the off-chip 57

DRAM traffic, and in turn, significantly increases off-chip DRAM 58

EPI for bothmultiprogrammed and parallel workloads. On average, 59

BDOT-NRR-FA results in a 5.4%, 5.8%, 6.8%, 8.2%, and 20.4% lower 60

overall EPI than BD for C6, C5, C4, C3, and C2, respectively, for the 61

multiprogrammedworkloads. In the case of parallelworkloads, the 62

EPI of BDOT-NRR-FA is within 2% of BD for C6, C5, and C4, and 7.4% 63

and 26.8% lower for C3 and C2, respectively. 64

RegardingWD, the results show the same trend as performance, 65

namely, BDOT-NRR-FA EPI results are 7.5%, 9.8%, 7%, and 4% lower 66

for C6, C5, C4, and C3, respectively, when considering multipro- 67

grammed workloads, while for parallel workloads, the EPI values 68

of the two techniques are very similar for C6 and C5, but BDOT- 69

NRR-FA cannot achieve the efficiency of WD for the other cell 70

configurations. 71

The energy results shown above do not consider any block 72

power gating technique [39]. Assuming a more aggressive ap- 73

proach, where fine-grained block power gating is affordable [18], 74

the benefits of BD-based techniques in terms of power and energy 75

will be enhanced, as faulty entries do not consume static power 76

during operation. Applying this technique, the EPI with BDOT- 77

NRR-FA would be 6.2%, 6.7%, 7.2%, 6.3%, and 5.5% lower for the 78

multiprogrammed workloads than the EPI values in Fig. 10 with 79

C6, C5, C4, C3, and C2 cells, respectively. The same tendency is 80

observed in the parallel workload results. 81

Fig. 11 compares the EPI values with BD and BDOT-NRR-FA 82

when implementing block power gating with those obtained with 83

WD. We observe that for multiprogrammed workloads all the cell 84

configurations achieve significant improvements in terms of EPI 85

with respect to WD, and in the case of parallel workloads, only the 86

C2 configuration is not able to reach the WD efficiency. 87
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Fig. 10. Normalized EPI (average) with respect to Robust for the different proposals and cell types.

Fig. 11. Normalized EPI (average) with respect to word disabling, when implementing fine-grained block power gating.

9. Related work1

Conventional 6T SRAM cells fail to operate reliably in the near-2

threshold regime, as the ratio constraints for read stability and3

writability of transistors cannot be guaranteed, especially in view4

of Vth variations. Prior proposals to mitigate the impact of SRAM5

cell failures due to parameter variation at ultra-low voltages can6

be categorized into circuit and architectural solutions.7

Circuit solutions include methods that improve the bit cell8

resilience by increasing its size [47], or by adding assist/spare cir-9

cuitry [10,29]. Increasing the cell size or the number of transistors10

per cell comes at the cost of significant increases in the SRAM area11

(lower density) and power consumption. Since the LLC accounts12

for much of the die size, increasing its area (e.g., ST SRAM cells [29]13

double the area of the SRAM structure) is not a design option.14

Architectural solutions include redundancy through ECCs, dis-15

abling techniques, and duplication mechanisms. Our proposal fits16

in this category.17

ECCs are extensively employed to protect designs against soft18

errors. Some studies have extended the use of ECCs to protect19

against hard errorswhen running at ultra-low voltages [3,13]. ECCs20

are usually optimized to minimize their storage requirements, at21

the cost of complex logic to detect and correct errors. Thus, the22

ability to detect and correct more errors comes at the cost of23

increasing the complexity of the decoding stage, or the storage24

requirements of the check bits [13]. Our proposal is orthogonal to25

the use of ECCs to provide more functional entries (or any other26

technique that increases the number of functional entries), as it 27

adapts seamlessly to the amount of functional and non-functional 28

data entries in the cache. 29

Regarding BD [42], Lee et al. examine performance degradation 30

of disabling cache lines, sets,ways, ports, or the complete cache in a 31

single processor environment [32]. Ladas et al. implement a victim 32

cache to compensate for the loss in associativity [31]. Our approach 33

also relies on BD, but does not require any additional structures. 34

Ghasemi et al. propose the use of heterogeneous cell sizes, 35

in order that when operating at low-power, ways or sets made 36

of smaller SRAM cells are deactivated if they start to fail [17]. 37

Khan et al. propose a mixed-cell memory design, where a small 38

portion of the cache is implemented with robust cells, which store 39

dirty cache blocks, and the remainder with non-robust cells [26]. 40

They modify the replacement policy to guide the allocation of 41

blocks based on the type of request (load or store). Zhou et al. 42

combine spare cells, heterogeneous cell sizes, and ECCs into a 43

hybrid design to improve on the effectiveness obtained by any 44

single technique alone [47]. In contrast to these techniques, we 45

do not rely on the existence of robust ways and we guide the 46

allocation of blocks to faulty or operational LLC entries based on 47

their reuse. 48

The granularity at which capacity is disabled could be finer, 49

though this would add complexity to cache accesses. Word dis- 50

abling tracks defects at word-level granularity, combining two 51

consecutive cache entries into a single fault-free entry, halving 52

both associativity and capacity [45]. Abella et al. propose to by- 53

pass faulty subentries rather than disable full cache lines, but this 54
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technique is suitable only for the first-level cache, where accesses1

are word wide [1]. Palframan et al. follow a similar approach,2

patching faulty words from other microprocessor structures, such3

as the store queue or the miss status holding register [38]. Fer-4

rerón et al. compress cache blocks to fit them in faulty entries,5

allowing the utilization of 100% of the cache entries [15]. More6

complex schemes couple faulty cache entries using a remapping7

mechanism [5,28,35]. They group collision-free cache entries (from8

the same or different cache banks) relying on the execution of a9

complex algorithm and structures to store all the mapping strat-10

egy. Re-mapping mechanisms add a level of indirection to the11

cache access (increasing its latency), and the combination of cache12

entries to recreate a cache block adds complexity. Besides, several13

cache accesses are needed to obtain a fault-free cache block, in-14

creasing the energy consumption and/or the block access latency.15

Unlike the aforementioned proposals,we donot add any additional16

structures or re-mapping mechanisms, only minor changes to the17

coherence protocol and replacement policy.18

In the context of ultra-low voltages, Keramidas et al. use a PC-19

indexed spatial predictor to orchestrate the replacement decisions20

among fully and partially usable entries in first-level caches [25].21

We based our allocation predictions on reuse patterns, which22

simplifies the hardware, andwe do not consider the use of partially23

faulty entries.24

Regarding the implementation of our techniques, it is worth25

referring to the work of Jaleel et al. [23]. In inclusive hierarchies,26

the private caches filter the temporal locality and hot blocks27

(i.e., blocks being actively used by the processor) are degraded in28

the replacement algorithm of the LLC, eventually being evicted.29

They address this problem by protecting blocks present in the30

private caches andpreventing their replacement in the LLC through31

several techniques, including: sending hints to the LLC, identifying32

temporal locality via early invalidation, and querying the private33

caches about the presence of blocks.We also protect private copies34

in all the replacement policies considered (including the baseline35

one), in our case by using the coherence information and assuming36

non-silent evictions of clean blocks.37

Albericio et al. base replacement decisions on block reuse lo-38

cality [4]. They propose the Not-Recently Reused (NRR) algorithm,39

which protects blocks present in the private caches and blocks that40

have shown reuse in the LLC. Their simple yet efficient implemen-41

tation achieved better performance thanmore complex techniques42

such as RRIP [24]. Our proposal uses NRR as the base replacement43

policy.44

10. Summary and conclusions45

Voltage reduction has been the primary driver to reduce power46

during recent decades, but ultra-deep-submicron technologies47

have suddenly stopped this trend because of problems with leak-48

age and stability. Manufacturing-induced parameter variations49

make SRAM cells unstable at lower voltages, meaning that they re-50

quire aminimumvoltage to operate reliably. SRAMcell failures can51

be tolerated by deactivating faulty cache entries. This technique52

is called Block Disabling (BD) and requires only one bit per tag.53

Unfortunately, as the number of defective entries increases, so does54

performance degradation, and the energy saved from decreasing55

Vdd does not compensate for the extra energy required for the56

additional main memory accesses.57

The reduction in associativity and capacity experienced by in-58

clusive LLCs extended with BD has two specific drawbacks in59

multicore systems. First, the number of inclusion victims in private60

L1 caches increases. Second, the MPKI values also grow, increasing61

LLC miss latency and main memory energy consumption.62

To copewith the first problem,we propose Block Disablingwith63

Operational Tags (BDOT), which uses robust cells to implement64

the LLC tag array. BDOT enables some cache blocks to be only 65

in private levels by simply tracking their tags (T entries), and 66

extends the existing cache-to-cache coherence service to clean 67

blocks. Thus, with regard to inclusion victims, the LLC associativity 68

is fully restored. BDOT requires a small amount of extra control, 69

and it adds no storage overhead to BD (the bit thatmarks operative 70

entries sufficing to distinguish between LLC T and D entries). Any 71

replacement algorithm may work with BDOT, and we have tested 72

NRU and NRR, two low-cost state-of-the-art proposals for LLCs. 73

After the last copy L1 eviction of a block tracked by a T entry, a 74

future reference to this block will involve an off-chip access, even 75

though we know that reuse chances are high. Hence, we tackle the 76

second problem from the key observation that we can preserve 77

the data cached on-chip by exchanging the valuable, just evicted 78

T entry block (promotion), for an L1-present D entry block (demo- 79

tion). Furthermore, if all blocks allocated toD entries lack L1 copies, 80

we can still resort to demotion, losing effective on-chip capacity, 81

assuming that an incoming L1 block showing reuse (second L1 82

replacement) is more valuable than any older block allocated to 83

a D entry. We have implemented these ideas in BDOT-NRR-FA, the 84

fault-aware version of BDOT that selects for demotion a D entry 85

victim block that has a backup copy in L1 (first criterion), and has 86

not shown reuse in the LLC (second criterion). Compared to a BDOT 87

LLC using NRR replacement, BDOT-NRR-FA improves performance 88

and energy efficiency with no area overhead, because the bits per 89

block required, namely for the presence vector, operative entry, 90

and reuse are required, respectively, by the coherencemechanism, 91

BD, and conventional replacement. 92

We tested our proposals against a wide range of multipro- 93

grammed and parallel workloads under different Pfail situations. 94

Our best proposal, BDOT-NRR-FA, beats BD, results in up to 37.3% 95

and 54.2% lower MPKI values for multiprogrammed and parallel 96

workloads, respectively. These decreases translate to performance 97

improvements of 13% and 34.6%, respectively. Regarding energy 98

use, our proposal decreases EPI by between 5.4% and 20.4% formul- 99

tiprogrammed, and between 2% and 26.8% for parallel workloads. 100

The largest savings come from LLCs with the most faulty cells, and 101

gains are consistent across programs, making our proposal very 102

suitable for the operation of multicore LLCs at low voltages for 103

current and future technology nodes. 104

Q4
105
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