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Abstract

In discrete event systems, a given task can start executing when all the required
input data are available. The required input data for a given task may change
along the evolution of the system. A way of modeling this changing requirement
is through multi-guarded tasks. This paper studies the performance evaluation of
the class of marked graphs extended with multi-guarded transitions (or tasks). Al-
though the throughput of such systems can be computed through Markov chain
analysis, two alternative methods are proposed to avoid the state explosion prob-
lem. The first one obtains throughput bounds in polynomial time through linear
programming. The second one yields a small subsystem that estimates the through-
put of the whole system.

Keywords: Early evaluation, throughput bounds, Petri nets, marked graphs.

1 Introduction

The modeling of discrete event systems often relies on a producer/consumer pattern.
According to this pattern, a given consumer action cannot start until all the required
input items have been produced by some previous producer actions. For example, in
a digital circuit an adder that computes the sum of two integer numbers cannot start
operating until both numbers are available at the input of the adder. Nonetheless, there
are actions that do not always require all its input data to be available to start operating.
A typical component exhibiting this behavior is a multiplexer. A multiplexer is a device
that selects one of many input channels and outputs the value of that channel. The
values of the rest of the channels are useless. Hence, a multiplexer could start operating
as soon as the value of the selected channel is available without waiting for the rest
of the values. The availability of the selected channel is the precondition, orguard,
required by the multiplexer to start working. Given that different input channels may
be selected along time, the multiplexer guard is not constant but changes along time.

Consider a computer program that processes the data records of a given file stored
in a hard disk. In order to speed up the program execution, some fields of the records
are stored in memory. Let us assume that with probabilityγ the program just requires
the fields stored in memory to process a record, and with probability 1− γ it requires
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all the fields of the record. Once a data record is processed, the program requests a new
record. Such request activates two actions in parallel: onesearches the record in the
memory and the other one in the hard disk. If the fields stored in memory are sufficient
to continue processing, the data provided by hard disk will be discarded. The behavior
of this system can be modeled by a Petri net, see the netS1 in Figure 1.

The transitions (bars) of the system represent actions thatconsume the tokens
(black dots) stored in the input places (circles), and aftercompletion, store new to-
kens in the output places (see [Mur89, Sil93] for a tutorial on Petri nets). The token
in placep1 describes the situation in which a record has just been processed and that
a new record is to be requested. Once the request is issued, the token fromp1 is re-
moved, a token is placed inp2, and a token is placed inp4: accessing memory and
hard disk is being done in parallel. Getting record fields from memory just needs one
task,Memory, after which memory fields are ready to be processed. Gettingthe whole
record from hard disk needs three tasks:Access, SearchandDeliver. With probability
γ, memory fields are enough to continue processing, and therefore, the data provided
by disk will be ignored. Hence, theProcessaction not only processes data, but acts
as a multiplexor by selecting either the memory fields or the whole record. It will be
assumed that all tasks last the same amount of time.

S1

S2

S4

S5

S6

γ

S3
1−γ

−1

Access Search

Memory

Deliver
Process

Request
p1p2

p3

p4 p5 p6 p7

Figure 1: Reachable states of an early evaluated system thatprocesses data records of
a file stored in a hard disk..

The graph in Figure 1 depicts the set of reachable states. A directed arc connects
a given state to a successor state. Arcs are labeled with the probability of being taken.
If the probability of taking the arc is 1, the label is omitted. Let us focus on state S3
at which memory fields are already available but the hard diskhas not provided yet all
fields. With probability 1−γ it is necessary to wait for the hard disk to deliver the data,
i.e., the path(S3, S5, S6) is taken. At S6 all data is available and can be processed.
When moving from S6 to S1 the tokens inp3 andp7 are consumed (although only the
one isp7 is required) and a new token inp1 is put meaning that a new request must be
done. On the other hand, from S3 there is a probabilityγ of not having to wait for the
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disk, i.e., the arc from S3 to S4 is taken. In such case, the memory fields are processed
(the token inp3 is consumed) and a new record request is issued (a token inp1 is put).
Notice that in parallel to this processing, the disk is working in order to get the whole
record which must not be processed. A simple way of discarding the token that will be
delivered by theDeliver task is by putting a negative token inp7 at S4. This way, the
token that will produce theDeliver task atp7 will vanish when meeting the negative
token, state S2.

The main new feature of the model in Figure 1, with respect to conventional Petri
nets, is that it is not strictly necessary to finish every previous task before starting
theProcesstask. This fact provides more flexibility to the modeling of discrete event
systems and usually increases the system performance (ifProcessis executed only after
MemoryandDeliver, the system state will loop on S1, S2, S3, S5 and S6, ignoring the
short cut provided by S4).

A natural consequence of performing a task, likeProcess, without having fin-
ished some previous tasks,Deliver, is that negative tokens appear after the completion
of the task, state S4. Negative tokens are necessary to be consistent with the pro-
ducer/consumer pattern, in which a token is consumed from every input place. More-
over, they have the responsibility of getting rid of non required tokens, like the token
in placep7 at S4.

Negative tokens have been considered in several works for different purposes.
In [MY90], Petri nets with negative tokens are used to study automated reasoning
programs. Negative event graphs are introduced in [LP05] toanalyze time window
constraints. In [OM05], a negative token represents a temporary buffer overflow in a
manufacturing system. Differential places of differential Petri nets [DK98] are allowed
to store real quantities (positive or negative) of tokens inorder to model hybrid systems.

1.1 Framework and Contribution

This paper focuses on the class of Multi-Guarded Marked Graphs (GMG). The un-
derlying structure of aGMG is that of a conventional marked graph (MG), a Petri net
subclass that offers an interesting trade-off between modeling power and analysis ca-
pability [Mur89]. In contrast to conventionalMGs, a transition of aGMG can have
several guards, i.e., it is multi-guarded, which are randomly selected. With respect to
the preliminary results obtained in [JCK06], the present paper discusses the bound-
edness property ofGMGs, analyzes the resulting throughput bounds, and proposes a
heuristics to improve the obtained throughput bounds.

The main goals of the paper are the following:

• Provide an efficient method to compute steady state throughput bounds.

• Describe a heuristics to obtain a small subsystem that estimates the steady state
throughput.

Before focusing on these goals, essential system properties as liveness and bound-
edness ofGMGs are studied to ensure the well-behavior of the system. The approach
suggested in this paper to compute steady state throughput bounds is based on Lin-
ear Programming (LP). Such an approach allows us to naturally manage structural and
steady state constraints ofGMG.

LP techniques have been intensively used to compute throughput bounds in the
framework of queueing networks and Petri nets. In the queueing network setting, some
representative works in the literature are the following: [KK94] establishes a set of lin-
ear equality constraints on the mean values of some variables and conservation laws
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allow to bound the performance of the system. A similar approach is taken in [BC99],
where the region of achievable performance vectors is characterized in order to for-
mulate a linear programming problem to obtain bounds. In [YCT84], performance
bounds for bulk arrival queues are computed by making use of the bounds for single
arrival queues.

In the Petri nets framework (notice that with respect to queueing networks, Petri
nets include a synchronization primitive), two main approaches that make use of
LP techniques can be distinguished. In [Liu98], the uniformization technique is
used to derive linear equalities and then LP is applied to obtain throughput bounds.
In [CAC+95,CS92], the use of operational laws allows one to obtain linear constraints
that are included in a LP problem whose solution is an upper bound for the throughput.

Similarly to [KK94, BC99], the approach presented here establishes some linear
constraints related to conservation laws and mean values ofthroughput and average
markings [CS92] to design a Linear Programming Problem (LPP). The solution of the
LPP is an upper bound for the throughput in the steady state. In contrast to previous
approaches, in order to handle multi-guarded transitions,a new expression relating the
throughput and average marking of multi-guarded transitions has been developed and
included in the mentioned LPP.

With respect to the second goal, the heuristics is based on obtaining a small subsys-
tem whose throughput is similar to the throughput of the whole system. The subsystem
is built from the solution obtained by a LPP and an iterative process. As far as we
know, no similar approach has been proposed before in the literature.

The rest of the paper is organized as follows: Section 2 defines the class of Multi-
Guarded Marked Graphs (GMG) and presents some basic properties. Section 3 shows
how to compute the throughput of aGMG by using Markov chains. Section 4 presents a
linear programming problem to compute upper bounds for the throughput. A procedure
to obtain a small bottleneck subsystem of aGMG is explained in section 5. Section 6
shows the obtained experimental results. Conclusions are drawn in section 7.

2 Multi-Guarded Marked Graphs

2.1 Definition and Semantics

In the following, the reader is assumed to be familiar with Petri nets (PN s)
(see [Mur89,Sil93] for a tutorial on Petri nets).

Definition 1 (GMG) A Multi-Guarded Marked Graph (GMG) is a tuple
N = 〈P,T,Pre,Post,G,m0〉 where:

• P is a finite set of places, and T is a finite set of transitions. The presetand
postsetof a node x∈ P∪T are denoted as•x and x•. The following condition
holds:∀p∈ P, |•p| = |p•| = 1.

• Pre : P × T → N ∪ {0} and Post: P×T → N∪{0} are the pre- and
post-incidence functions that specify the arc weights. The incidence matrix of
the net isC = Post−Pre.

• G : T → 22P
assigns a set of guards to every transition. The following conditions

must be satisfied: a)∀ g∈ G(t) it holds g⊆ •t; b) ∪
g∈G(t)

g = •t.

• m0 : P→ N∪{0} is the initial marking.
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A conventional Marked Graph (MG) is simply aGMG in whichG(t) = {{•t}} for
everyt ∈ T. In a GMG, the transitions can also satisfy the conditionG(t) = {{•t}}.
Such transitions will be calledsimpletransitions, the rest of transitions will be called
multi-guarded transitions. Simple transitions will be represented graphically as empty
rectangles; multi-guarded transitions will be represented as rectangles with oblique
lines inside (see Figure 2 for a multi-guarded transition).

Definition 2 (Firing semantics) The dynamic behavior of aGMG system is deter-
mined by its firing rules. The execution of a transition t can be described as follows:

• Guard selection.A guard g(t) ∈ G(t) for the next firing is selected nondetermin-
istically. The guard selection is trivial for simple transitions, since they only have
one guard. For multi-guarded transitions any guard in G(t) can be selected. The
selected guard of a transition t ispersistent, i.e., it does not change until t fires.

• Enabling. If the guard g(t) ∈ G(t) has been selected for the next firing of t, then
the transition t becomes enabled when every place p∈ g(t) is positively marked,
i.e.,m(p) > 0.

• Firing. A transition t enabled at markingm can fire leading to markingm′ such
thatm′ = m+C(P, t) whereC(P,t) is the column ofC corresponding to t.

Notice thatGMGs can reach markings with negative values. Ifm(p) ≥ 0 one says
that placep hasm(p) positive tokens. Otherwise, placep has|m(p)| negative tokens.
Negative tokens account for the data that must be discarded when arriving at the input
of the transition.

As in conventionalMGs the state equationm = m0 + C ·σ provides a necessary
condition for the reachability ofm, whereσ is the firing count vector of the transitions
andm can contain negative elements. Then, vectorsy ≥ 0, y ·C = 0 (x ≥ 0, C ·x = 0)
represent P-semiflows or conservative components (T-semiflows or consistent compo-
nents). A semiflowv is said to beminimal when its support,‖v‖, is not a proper
superset of the support of any other, and the greatest commondivisor of its elements
is one. As in conventionalMGs [Mur89], every minimal P-semiflow of aGMG corre-
sponds to a simple cycle, i.e., a cycle with no repeated vertices except for the start and
end vertex.

Example 1 Let us assume that the transition in Figure 2 has two guards
G(t) = {{pa, pb},{pa, pc}}, and that initially the places pa and pc have a token.

−1

g = {pa, pc}

papa pbpb pc pc

(a)

g = {pa, pb}

pa papb pbpc pc

(b)

Figure 2: Multi-guarded transition: (a) early firing with guard {pa, pc}; (b) guard
{pa, pb} is selected, the transition will not fire until placepb contains a token.

If the guard{pa, pc} is selected (Figure 2(a)), the transition is enabled (pa and
pc are marked) and can fire. The firing removes the tokens from pa and pc, puts one
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positive token in the output place, and produces a negative token in pb. If the guard
{pa, pb} is selected (Figure 2(b)), the transition is not enabled, and will not become
enabled until a token is put in place pb.

The persistence of the guards is an accurate abstraction of the conditions to model
early evaluations. For instance, once a multiplexer selects an input channel, it must
wait for the selected channel to provide data before yielding its output and selecting
another channel for the next firing.

In order to allow the system exhibit a cyclic and bounded behavior, we assume
that the net is strongly connected. The subclass ofGMG is sufficient for modeling a
wide variety of systems, e.g., queueing networks, parallelprocessing systems, resource
allocation schemes, etc. It also satisfies some properties that simplify their analysis.

2.2 Properties ofGMGs

Two basic properties ofGMGs are considered in this subsection: boundedness and
liveness.

2.2.1 Boundedness

Definition 3 (Boundedness)

• A place,p, of aGMG is upper-boundedif there existsu∈ N such thatm(p) ≤ u
for every reachable markingm. Placep can also be saidu-upperbounded.

• A place,p, of aGMG is lower-boundedif there existsl ∈ N such thatm(p) ≥ l
for every reachable markingm. Placep can also be saidl-lowerbounded.

• A place isboundedif it is upper-bounded and lower-bounded.

These definitions are trivially extended for nets: A net is said to beupper-bounded
(lower-bounded, bounded) if every place isupper-bounded(lower-bounded, bounded).
Since non-bounded systems cannot be implemented, boundedness is often a required
system property. AGMG can be upper-bounded by adding complementary places in
the same way it is done for conventional Petri nets. Moreover, the addition of places
can also be used to lower-bound aGMG.

pa pa

pb pb

p′a
p′b

t1t1
t2 t2

t3 t3t4 t4ka

kb

Figure 3: Transformation of aGMG with G(t3) = {{pa},{p′b}} to lower-boundpa and
pb. In the transformed netG(t3) = {{pa, p′a, p′b},{pb, p′a, p′b}} and for every reachable
marking it holds that:m(pa) ≥−ka, m(pb) ≥−kb.

Assume that the guards oft3 in Figure 3(left) areG(t3) = {{pa},{pb}}. If the
guard{pa} is selected indefinitely andt2 is not fired, i.e., only transitionst1, t3 andt4
are fired, then the marking ofpb tends to minus infinity. This can be avoided by adding
placesp′a andp′b and redefining the guards oft3 asG(t3) = {{pa, p′a, p′b},{pb, p′a, p′b}}.
This transformation still allows some flexibility, i.e., negative markings inpa and pb,
but for every reachable marking it holds that:m(pa) ≥−ka, m(pb) ≥−kb.

6



2.2.2 Liveness

Definition 4 (Liveness) A GMG is live if for every transition t and every reachable
markingm, there exists a markingm′ reachable fromm such that t is enabled atm′.

A conventionalMG is live iff every cycle has a positive number of tokens. The
same necessary and sufficient conditions applies toGMGs [Jul09].

Theorem 1 A GMG is deadlock-free iff the sum of tokens in each cycle is positive.

Thus, liveness of aGMG can be decided in polynomial time by checking that every
cycle has a positive number of tokens [Sil93].

2.3 Timed Multi-Guarded Marked Graphs

In Petri nets, transitions usually represent the events or actions of the system. To model
latencies or delays of the system events, a nonnegative realnumberδ(t) is associated
with every transitiont of theGMG. We will assume that delays are deterministic, i.e.,
a transitiont that becomes enabled at timeτ will fire at time τ + δ(t). More general
delay models are possible forGMGs, most notably it is possible to have probabilistic
distributions of delays associated with every transition to model variable latency units
or delay variations. This however goes beyond the scope of this paper.

The performance evaluation of the model requires some a priori information about
probabilities for selecting guards. Such probabilities are usually known prior to system
design or can be obtained after simulation by monitoring events and counting them. It
is assumed here that selection of guards for different transitions are independent events
and hence probabilities of the guards of different transitions are uncorrelated.

Definition 5 (TGMG) A Timed Multi-Guarded Marked Graph(TGMG) is a tuple
N = 〈P,T,F,G,m0,δ,α〉 where:

• 〈P,T,F,G,m0〉 is a GMG.

• δ : T → R+ ∪{0} assigns a nonnegative real delay to every transition.

• α : G → R+ assigns a strictly positive probability to each guard such that for
every multi-guarded transition t: ∑

g∈G(t)
α(g) = 1.

It will be assumed that there exists at least one transitiont such thatδ(t) > 0. For the
firing of the transitions, thesingle-server semanticswill be adopted. According to this
semantics, no multiple-instances of the same transition can fire simultaneously. The
single-server semantics is an abstraction for those systems that communicate through
channels using FIFOs. The time evolution of aTGMG is derived from the previously
described semantics of theGMG:

• After the firing of a multi-guarded transitiont, a new guard fort is selected.

• Guard selection for every transition is still non-deterministic, but respects prob-
abilities in the infinite executions.

• Firing of transitiont takesδ(t) time units, from the time it becomes enabled until
the firing is completed.
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Definition 6 (Steady state throughput) The steady state throughput of transition t,
Th(t), of aTGMG is defined as:

Th(t) = lim
τ→∞

σ(t,τ)
τ

(1)

whereτ represents the time andσ(t,τ) is the firing count vector of t at timeτ.

Given that the unique minimal T-semiflow of strongly connectedMGs is a vector
of ones, the following proposition holds:

Proposition 2 Let N be aTGMG. For every couple of transitions ti ,t j ∈ T it holds
that: Th(ti) = Th(t j)

Definition 7 (Average marking) The average marking of place p,m(p), of aTGMG
is defined as:

m(p) = lim
τ→∞

1
τ

Z τ

0
m(ξ)dξ (2)

wherem(p,ξ) is the marking of p at timeξ.

Both limits, (1) for the steady state throughput and (2) for the average marking,
exist for everyTGMG [JCK06].

2.3.1 Reduction to singleton form

This subsection presents a technique to transform the guards of multi-guarded transi-
tions into singleton guards. This transformation will veryuseful for the computation
of upper bounds for the throughput.

Figure 4 shows a fragment of aTGMG with a multi-guarded transitiont whose
guardsG(t) = {{pa, pb},{pb, pc}} are not singletons. An equivalentTGMG has a
multi-guarded transition with singleton guards. Two new simple transitions,t1 and
t2, with zero delay are introduced. They combine together the guards{pa, pb} and
{pb, pc} of the original transitiont. Note that placepb is duplicated. This technique
transforms anyTGMG to a singleton form without changing its throughput. In general,
for a given multi-guarded transitiont with non-singleton guards, this technique creates
|g(t)| new transitions and|g(t)|+ ∑p∈•t |{g(t) ∈ G(t) | p ∈ g(t)}|− |•t| new places.
Notice that the number of new elements, i.e., places and transitions, is bounded by a
polynomial in|T|, |P|, |G|.

δ=0 δ=0
1−αα

α 1−α
t

t

ta
ta

tb
tb

tc
tc

t1 t2

pa

pa

pb

pb

pb pc

pc

p1 p2

Figure 4: Reduction to singleton form.

In the rest of the paper, it is assumed that all non-simple transitions are transformed
to the singleton form. Moreover, it is assume that everyTGMG is bounded and live.
These assumptions do not reduce in practice the generality of the results, since both
properties are required for an adequate behavior of real systems.
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3 TGMG as a semi-Markov process

This section shows how the exact throughput of aTGMG can be computed. The evolu-
tion of the state of aTGMG can be expressed as a graph in which each node represents
a reachable state, and each arc represents a transition between two states (see Figure 1).
A real number is associated to each arc indicating the probability of taking such arc.
This way, the behavior of aTGMG is described as a semi-Markov [Wol89] process.
Once the average sojourn time of each state is computed, the throughput of a transition,
t, can be obtained by dividing the probability of being enabled, prob(enab(t)), by its
delay,δ(t) [CAC+95]:

Th(t) =
prob(enab(t))

δ(t)
(3)

In the following example we will describe the state of aTGMG at a given instant
as a tuple{m,g,cks}, wherem is the marking of the net,g : T → G is the set of guards
selected for each multi-guarded transition, andcksis a function,cks: T → R+ where
cks(t) is the remaining time to fire transitiont (if t is not enabled atm thencks(t) = ∞).

Example 2 Let us consider the system in Figure 5(a) with initial marking
m0 = (1;0;1;0;1), delaysδ = (3;1;1;3), andα({p1}) = γ, α({p3}) = 1− γ. Assume
that initially the guard selected for t1 is {p1}. At that initial state t1 and t4 are enabled,
and will fire after 3 time units. Then, the initial state of theassociated semi-Markov
process is S1 = {(1;0;1;0;1),{p1},(3;∞;∞;3)}. After three time units t1 and t4 fire
reaching marking(0;1;1;1;0). Since the multi-guarded transition t1 has fired, a new
guard, either{p1} or {p3}, must be selected. The new state of the systems depends on
the selected guard.

The set of reachable states for the system in Figure 5(a) is:
S1 = {(1; 0; 1; 0; 1), {p1}, (3;∞;∞;3)}, S2 = {(0; 1; 1; 1; 0), {p1}, (∞;1;1;∞)},
S3 = {(0; 1; 1; 1; 0), {p3}, (3;1;1;∞)}, S4 = {(1; 0; 1; 0; 1), {p3}, (2;∞;∞;3)},
S5 = {(0; 1; 0; 1; 1), {p1}, (∞;1;1;1)}, S6 = {(0; 1; 0; 1; 1), {p3}, (∞;1;1;1)},
S7 = {(1; 0; 1; 0; 1), {p3}, (3;∞;∞;3)}. The graph in Figure 5(b) shows the
transition probability among states.

1−γ

γp1 p2

p3 p4

p5

t1

t2

t3t4
(a)

S1

S2

S3 S4 S5

S6

S7

γ

γ

γ1−γ
1−γ

1−γ

(b)

Figure 5: ATGMG (a) and its associated Markov process (b).

From the graph in Figure 5(b), one can obtain the transition probability matrix P,
where P(i, j) equals the probability of taking the arc from Si to Sj . As for discrete
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time Markov chains, one can solve the linear system:Π = Π ·P; Π ·1 = 1, to obtain
the stationary distribution,Π, of the corresponding embedded Markov chain. Letρ(s)
denote the sojourn time in state s, e.g.,ρ(S1) = 3. If the embedded Markov chain of the
semi-Markov process is irreducible and recurrent then the fraction of time,ψ(s), that
the process spends in s is given by [Wol89]:

ψ(s) =
ρ(s) ·Π(s)

Σsi∈Θρ(si) ·Π(si)

whereΘ is the set of all states. For the system in Figure 5(a), we have:

ψ =
1

7−3 · γ
(6 · γ−3 · γ2; γ; 1− γ; 2−2 · γ; γ− γ2; 1−2 · γ+ γ2; 3−6 · γ+3 · γ2)

The throughput of a transition t is the probability of being enabled in the steady
state divided by its delayδ(t). Let us compute the throughput of t4. Since t4 is en-
abled at S1, S4, S5, S6, and S7, the probability of being enabled is prob(enab(t4)) =
ψ(S1) + ψ(S4) + ψ(S5) + ψ(S6) + ψ(S7). According to the enabling operational
law [CAC+95](see Equation(3)) we obtain:

Th(t4) =
prob(enab(t4))

δ(t4)
=

1
3
·
6−3 · γ
7−3 · γ

=
2− γ

7−3 · γ

which by Proposition 2 is the throughput of all transitions.

4 Throughput bounds
This section shows how to formulate a linear programming problem to compute an
upper bound for the steady state throughput of aTGMG.

4.1 Linear relationships
As stated in Section 2, it is assumed that every transition either is simple, i.e., it has
only one guard, or has singleton guards, i.e., each guard contains only one place. We
will discuss two kind of linear relationships: one for multi-guarded transitions, one for
simple transitions.

Let t be a multi-guarded transition of aTGMG, δ(t) its delay, andprob(enab(t))
the probability oft to be enabled during the steady state. In other words,prob(enab(t))
is the time ratio during whicht is enabled. Since transitions have deterministic delays
and operate under the single server semantics, the enablingoperational law [CAC+95]
for t is:

δ(t) ·Th(t) = prob(enab(t)) for anyt ∈ T (4)

After a number of algebraic manipulations, the valueprob(enab(t)) can be ex-
pressed in terms of the marking of the input places oft. In particular, a useful expres-
sion is given by Theorem 3, which provides a linear relationship between the through-
put of a multi-guarded transition and the average marking ofits input places.

Theorem 3 Let t be a transition with singleton guards, then:

δ(t) ·Th(t) = ∑
p∈•t

α({p}) ·

(
m(p)−

∞

∑
i=2

(i −1) · prob(m(p) = i)

)

Proof: See Appendix. 2
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Corollary 4 Let t be a transition with singleton guards, then:

δ(t) ·Th(t) ≤ ∑
p∈•t

α({p}) ·m(p) (5)

Moreover, if the input places of t are 1-upperbounded then:

δ(t) ·Th(t) = ∑
p∈•t

α({p}) ·m(p) (6)

Notice that neither Theorem 3 nor Corollary 4 require the input places oft to be
lowerbounded. Moreover, the conditions required to apply these results are purely
local: It does not matter whether the rest of the places are bounded or not.

On the other hand, each pair{p,t} where p• = t is a simple transition can be
seen as a simple queuing system for which Little’s formula [Lit61] can be directly
applied [CS92]:

R(p) ·Th(t) = m(p) (7)

whereR(p) is the average residence time at placep, i.e., the average time spent by a
token inp. The average residence time is the sum of the average waitingtime due to a
possible synchronization delay and the average service time which in our case isδ(t).
Therefore the service timeδ(t) is a lower bound for the average residence time. This
leads to the inequality:

δ(t) ·Th(t) ≤ m(p) for every input placep of a simple transition (8)

4.2 Linear programming and throughput bounds

One can combine the above constraints on the throughput and on the average mark-
ing, (5) and (8), to build a Linear Programming Problem (LPP)that maximizes a pa-
rameterφ, corresponding to theTGMG throughput [JCK06]. One scalar variable suf-
fices since the throughput of all transitions is the same (Proposition 2). LetT1 be the
set of multi-guarded transitions, andT2 the set of simple transitions. Transitions with
only one input place can be included either inT1 or in T2. The resulting LPP can be
expressed as:

Maximize φ :

δ(t) ·φ ≤ ∑
p∈•t

α({p}) · m̂(p) for everyt ∈ T1

δ(t) ·φ ≤ m̂(p) for everyp∈ •T2

m̂ = m0 +C ·σ
φ ≥ 0, σ ≥ 0

(9)

whereσ represents the firing count vector that drives the system from the initial mark-
ing, m0, to the estimated average markingm̂.

We will now perform some manipulations on (9) in order to obtain a more intuitive
LPP. Let•t j = {p1, . . . , pn} for a givent j ∈ T1. The term∑p∈•t α({p}) · m̂(p) in (9) can
be substituted by a single variablêmt j such thatm̂t j = ∑p∈•t α({p}) · m̂(p). This is
equivalent to substituting the rows ofm0, Pre andPostcorresponding to{p1, . . . , pn}
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by a single row that is a linear combination of them (in such a linear combination
the weight of the row corresponding topi is α({pi})). Let m0r , Prer , Postr and
Cr = Postr −Prer be the arrays obtained after performing such a substitutionon the
set of input places of every multi-guarded transition.

At net level such a substitution can be seen as a net transformation that produces
“real weighted arcs”: Figure 6 shows the graphical interpretation of the transformation.
Notice that the obtained net is not aMG any more. We will just focus on the algebraic
consequences of the transformation.

t1

p4

p2

t2

p3

p1

p5
t3t4

γ

1−γ

t1

p3

p2

t2

p4
t3t4

p1

γ

1−γ

Figure 6: Transformation rule for the system in Figure 5. Themulti-guarded transition
t1 has two guards with probabilitiesγ and 1− γ. The weight of the arcs(t2, p1) and
(t4, p1) of the transformed net are:γ and 1− γ.

The LPP (9) can be expressed as:

max{ φ | φ ·D ≤ m0r +Cr ·σ, φ ≥ 0, σ ≥ 0 } (10)

whereD(p) = δ(p•). Let us defineρ =
1
φ

, andσ′ =
σ
φ

, then (10) becomes:

min{ ρ | D ≤ ρ ·m0r +Cr ·σ′, ρ ≥ 0, σ′ ≥ 0 } (11)

The dual of (11) is:

max{ y ·D | y ·Cr ≤ 0, y ·m0r ≤ 1, y ≥ 0 } (12)

One theorem of the alternatives [Mur83] states that∃ x > 0 such thatCr · x ≥ 0
iff ∀ y ≥ 0 such thaty ·Cr ≤ 0 theny ·Cr = 0. Since we are dealing with consistent
systems, there existsx > 0 such thatCr ·x ≥ 0, thereforey ·Cr ≤ 0 can be replaced by
y ·Cr = 0. Furthermore, since the objective functiony ·D is maximized, the solution
must satisfyy ·m0r = 1 (otherwise a “more optimal” solution is possible withβ · y,
β = 1/(y ·m0r)).

Theorem 5 Let N be aTGMG. Let Cr , D(1) andm0r be the matrices obtained after
performing the above transformation rule. LetΓ be the solution of:

Γ = max{ y ·D | y ·Cr = 0, y ·m0r = 1, y ≥ 0 } (13)

Then, Th(t) ≤
1
Γ

for any t∈ T.

Proof: Let us first show that the LPP is feasible and bounded.
(Feasible) In [Sil93] it is shown that every place of a strongly connectedMG be-

longs to a P-semiflow. The described net transformation substitutes sets of rows ofC
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by a linear combination of them, then after the transformation every place still belongs
to a P-semiflow. Let us take any P-semiflow,y, of the transformed net and normalize
it to satisfyy ·m0r = 1. Then,y satisfies all constraints of the LPP. Hence, the LPP is
feasible.

(Bounded) Given that we are considering liveGMGs, every cycle, i.e., P-semiflow,
contains at least one token (Theorem 1). Then, the normalization,y ·m0r = 1, prevents
any P-semiflowy from tending to infinity.

Given that at least one transition has strictly positive delay (see assumption below
Definition 5), the value ofΓ will be always strictly positive, that is 1/Γ is never infinity.
The constraints in the LPP have been obtained from expressions that upper bound the
throughput for each transition. Hence, the solution of the LPP produces an upper bound
for the throughput. 2

This way, the computation of an upper bound for the throughput can be computed
in polynomial time by solving the LPP (13), which actually represents a search for the
bottleneck P-semiflow of the transformed net.

Although, in general, the solution of (13) gives an upper bound for the throughput,
there are two particular cases for which it gives the exact throughput.

Corollary 6 LetN be aTGMG such that for every t∈ T, t is simple and|•t| = 1 or t
is multi-guarded and has singleton guards. IfN is 1-upperbounded then1/Γ, whereΓ
is the solution of(13), is the exact throughput of theTGMG.

Proof: Assume that for everyt ∈ T, t is simple and|•t| = 1 or t is multi-guarded and
has singleton guards. Then the transformed net (see above transformation rule) has no
synchronizations, i.e., for everyt ∈ T it holds that|•t| = 1. Then, the net has only
one P-semiflow. In other words, there is a unique vectory that satisfies the constraints
in the LPP. Given that those constraints must be satisfied by the system, the solution
associated to such a vector must be the real throughput of thesystem. 2

Corollary 7 Let N be a 1-upperboundedTGMG with simple transitions only. Then,
1/Γ, whereΓ is the solution of(13), is the exact throughput ofTGMG.

Proof: This is a well known result in marked graph theory [Ram74,RH80]. 2

Example 3 Let us consider again the 1-boundedTGMG in Figure 5 where the delays
areδ = (3;1;1;3). The values ofm0r andCr for the transformed net (see Figure 6) are:
m0r = (1; 0; 0; 1) and Cr = (-1 γ 0 1-γ; 1 -1 0 0; 1 0 -1 0; 0 0 1 -1).
Then, the value of1/Γ of the solution of the LPP(13) associated to thisTGMG is:
1
Γ

=
2− γ

7−3 · γ
, which corresponds exactly to the solution obtained with the Markov

chain analysis. The solution obtained by the LPP is necessarily the exact throughput
since the condition of Corollary 6 is fulfilled.

5 System bottlenecks

It has been shown that linear programming can be used to efficiently bound the steady
state throughput of aTGMG. This section presents a method to estimate more accu-
rately such throughput. The main idea of the method is to obtain a small subsystem,
i.e., a system bottleneck, from a givenTGMG that approximates the throughput of the
TGMG. The method takes a subnet obtained from the solution of LPP (9) as the ini-
tial system bottleneck. Then an iterative process enlargessuch initial bottleneck. The
iterative process makes use of the concepts of basic behavior and tight marking. Sub-
section 5.1 introduces the concepts of basic behavior and tight marking. The iterative
method to compute a system bottleneck is discussed in Subsection 5.2.
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5.1 Basic behaviors and tight marking

Informally, a basic behavior of aTGMG is the behavior exhibited by the system when
the probabilities of all the guards are set either to 0 or to 1 (in this section the proba-
bilities of the guards are allowed to be 0). For instance, thesystem in Figure 5 has two
basic behaviors: whenγ = 1 the system behavior is equivalent to the loopl1 = {t1,t2},
whenγ = 0 it is equivalent to the loopl2 = {t1,t3,t4}. For our purposes, it is useful to
consider basic behaviors of subnets. In these basic behaviors only the multi-guarded
transitions in the subnet have probabilities 0 or 1 in their guards, the rest of multi-
guarded transitions are taken as simple transitions.

Definition 8 (Ω(Ns)) Let Ns be a subnet of a givenTGMG N. Ω(Ns) is the set of
probability functions that assign to each guard in Ns either0 or 1.

t1

t2

t3

t4

t5

t6

t7

t8

p1

p2

p3

p4

p5p6

p7p8

p9

p10

p11

Figure 7: ATGMG with two basic behaviors.

In other words, eachω ∈ Ω(Ns) represents a basic behavior ofNs. Consider the system
in Figure 7 with all delays equal to 1. Let us assume thatNs is defined by the places
{p4, p5, p6, p7, p8, p9}. Then,Ω(Ns) contains two elements,ω1 andω2, such that
ω1({p5}) = 0, ω1({p6}) = 1, ω2({p5}) = 1 andω2({p6}) = 0.

Definition 9 (N(Ns,ω)) Let Ns be a subnet of a givenTGMG N. For a given
ω ∈ Ω(Ns), N(Ns,ω) is theTGMG N in whichα({p}) = ω({p}) for every p∈ Ns,
and every transition t not in Ns is taken as non guarded, i.e., t is a simple transition.

Consider again the system in Figure 7 withω1 andω2 as defined above. Then,
N(Ns,ω1) is the whole net in Figure 7 withα({p5}) = 0 andα({p6}) = 1 (N(Ns,ω2)
is also the whole net withα({p5}) = 1 andα({p6}) = 0).

Given a basic behaviorω ∈ Ω(Ns) of subnetNs, the throughput ofN(Ns,ω) is
denoted asThω. We say that the cycleQ of a N(Ns,ω) is critical if it fulfills the
following equality:

Thω =

∑
p∈Q

m0(p)

∑
t∈Q

δ(t)
(14)

SinceN(Ns,ω) evolves as a conventional timedMG, critical cycles andThω can be
computed in an efficient way [Kar78,DG98]. The throughput for the system in Figure 7
for ω1 is Thω1 = 0.25.

Notice that ifα({p}) = 0, p never constraints the firing ofp•. In other words, ifp
is removed the evolution of the system keeps the same. If several places are removed,
i.e.,α({p}) = 0, the resulting net might consists of several non-connected components
that would evolve independently. To avoid this phenomenon,it will be assumed that
those places not reachable from the critical cycle are removed fromN(Ns,ω), i.e., for
every placep in N(Ns,ω) there is a directed path from the critical cycle top.
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Definition 10 (Tight marking) A markingm̃ such that̃m∈R|P| is called atightmark-
ing of a given N(Ns,ω) if it satisfies:

• m̃ = m0 +C ·σ

• δ(p•) ·Thω ≤ α({p}) · m̃(p) for every p

• for each t there exists p∈ •t such thatm̃(p) = δ(p•) ·Thω

For instance, a tight marking forN(Ns,ω1) (where N is the net depicted
in Figure 7 and the values forω1 are ω1({p5}) = 0 and ω1({p6}) = 1) is
m̃ = (0.5; 0.25; 0.25; 0.25; 0.75; 0.25; 0.25; 0.25; 0.25; 0.25; 0.75).

Notice that the average marking,m, of N(Ns,ω) fulfills the first two constraints
of Definition 10. Hence, it makes sense to take the tight marking as an estimate for
the average marking. The places satisfying the last equation, m̃(p) = δ(p•) ·T hω, are
calledtight places, and can be seen as the actual throughput constraints. Tight places
will be used by an iterative process to build a system bottleneck.

A tight marking of a givenN(Ns,ω) can be obtained by means of a linear program-
ming problem.

Proposition 8 A tight marking,m̃, of a given N(Ns,ω) can be computed by solving the
following LPP:

MaximizeΣσ :

m̃ = m0 +C ·σ
δ(p•) ·Thω ≤ α({p}) · m̃(p) for every p

σ(ta) = k

(15)

where ta is a transition that belongs to a critical cycle and k is any real constant number.

Proof: a) proves that the LPP is feasible and bounded. b) proves thatthe solution is a
tight marking.

a) The set of solutions that satisfy the first two constraintsis not empty, e.g., the
average marking satisfies them. Since inN(Ns,ω) the vector1 is a right annuller of
C, a markingm̃ = m0 + C ·σ can be obtained with any firing sequenceσ′ = σ + j ·1
where j is a real number. Hence, the third constraintσ(ta) = k can also be satisfied by
the average marking. Therefore, the LPP is feasible.

The third constraint forcesσ(ta) = k. Let p ∈ t•a and p• is a simple transition or
α({p}) > 0. Thenσ(p•) cannot tend to infinity, otherwisẽm(p) would tend to mi-
nus infinity and the second constraintδ(p•) ·Thω ≤ α({p}) · m̃(p) would be violated.
Since we assumed that inN(Ns,ω) every place is reachable from the critical cycle this
reasoning can be extended to the rest of places inN(Ns,ω).

b) Sinceta is in a critical cycle, there exists a placep ∈ •ta such thatp is in the
same critical cycle. Hence, in order to satisfy (14) and the second constraint in (15),
the solution of the LPP will fulfill that̃m(p) = δ(p•) ·Thω. Given that the objective
function Σσ is maximized, for every transitiont in N(Ns,ω) there will necessarily
exist p∈ •t such that̃m(p) = δ(t) ·Thω (otherwiseσ(t) could be greater). Hence, the
obtained marking̃m is a tight marking. 2

5.2 Computing a system bottleneck

Subsection 4.2 showed that solving LPP (13) can be interpreted as a search for the bot-
tleneck P-semiflow in the transformed net. Once the LPP is solved, the places of such
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bottleneck are given by the components ofy that are positive. That is, a placep belongs
to the bottleneck iff in the solution of the LPP it holds thaty(p) > 0; consequently a
transitiont belongs to the bottleneck iff the place•t belongs to the bottleneck.

Recall that in the transformed net the input places of each multi-guarded transition
were merged into a single one, see Figure 6. Hence, the bottleneck of the original
net must include every place that after the transformation,resulted in a single place
included in the bottleneck. For instance, ifp1 in Figure 6(right) is included in the
bottleneck, thenp1 andp3 of the original net, i.e., Figure 6(left), must be included in
the bottleneck.

The subnet composed of the places and transitions in the bottleneck computed by
LPP (13) will be denoted asNb. We will now present a fix point algorithm in whichNb
is taken as the initial bottleneck net of the system, and is enlarged in order to obtain a
subnet,Nz, that approximates the throughput of the whole system.

The algorithm starts by exploring the different basic behaviors of Nb. For each
basic behaviorω, a tight marking is computed. The tight placesp, i.e., places fulfilling
m̃(p) = δ(p•) · thω, are considered as constraints for the throughput ofω and therefore
they are included in the new bottleneckNz. After exploring the basic behaviors, the
strongly connected component (SCC) ofNz is taken as the seed for the next iteration.

Algorithm 9 (Computing a system bottleneck)
Input: Nb

Output: Nz

Nz = Nb

Repeat
Nz0 = Nz

for each ω ∈ Ω(Nz0) of Nz0

Compute m̃ω and Thω of N(Nz0,ω)

Nz = Nz∪{p|p is a tight place in m̃ω}

end for
Nz = SCC(Nz)

until Nz = Nz0

Example 4 Let α({p5}) = 0.25 for the system in Fig. 7, then the set of places in Nb is
{p4, p5, p6, p7, p8, p9}. The first inner iteration of the algorithm computes the tight
marking forω1 (ω1({p5}) = 0, ω1({p6}) = 1), whose tight places are{p2, p3, p4, p6,
p7, p8, p9, p10}.

The second inner iteration takesω2 (ω2({p5}) = 1, ω1({p6}) = 0), and obtains
these tight places{p1, p2, p3, p5, p7, p8, p9, p10}. Hence, at the end of the inner loop,
Nz contains all places but p11. Therefore, p10 is removed from Nz when the strongly
connected component is computed. Neither p10 nor p11 will be added to Nz in the next
outer iteration, and the algorithm will finish. In fact, p11 does never constrain the
firing of its output transitions. It can be checked that the same Nz is obtained if one
takesα({p5}) > 0.5, which implies that Nb is {p1, p2, p3}.

The number of basic behaviors of aTGMG is Π
t∈T

|G(t)| where|G(t)| is the number

of guards oft. Hence, the number of basic behaviors to explore might explode as the
algorithm executes. Moreover, the subnetNz might not be very useful if it is very large.
It is, of course, possible to stop the execution of the algorithm when the size ofNz or
the number of basic behaviors to explore reach a given limit.The subnetNz can be
seen as the part of the net in which design efforts must be focused. Table 2 shows, for
a set ofTGMGs, the size of the obtained bottlenecks and their associatedsteady state
throughputs.
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6 Experimental results

This section is divided into two subsections: the first one reports the results concerning
the computation of throughput bounds via linear programming, see Section 4; the sec-
ond one refers to the throughput of the system bottlenecks computed by the algorithm
in Section 5.

The experiments have been performed on a set of circuits taken from the ISCAS-89
benchmarks [BBK89]. The largest strongly connected component of each circuit is
taken and transformed into aTGMG as follows: a) each node is taken as a transition
and each arc as a place; b) a place is initially marked with onetoken with a probability
of 0.25; b) the deterministic delay of each transition is assigned uniformly random from
the interval[0,1]; c) a transition is taken as multi-guarded, i.e., as a multiplexer, with
probability 0.25; d) each input place of a multi-guarded transition is taken as a guard;
e) the probability of each guard is assigned uniformly random from the interval(0,1);
f) theTGMG is made 1-upperbounded as discussed in Section 2. The simulations were
carried out using the independent replication method [Kob78, Law07]. The precision
of the computed throughput was set to 1% with a confidence level of 95%. All the
experiments were performed in Matlab 7.3 environment running on Linux in a 2.0
GHz processor.

6.1 Throughput bounds

Section 4 showed that an upper bound for the throughput of aTGMG can be computed
in polynomial time by solving the LPP (13). One can also obtain a lower throughput
bound for aTGMG just by considering all transitions as non-guarded, and then com-
puting the throughput of the resulting conventional markedgraph. This computation
can be efficiently carried out [DG98]. Table 1 reports the obtained throughput bounds,
the committed errors with respect to the real throughput of the system and the required
CPU times.

Circuit Throughput CPU time
Name |P| |T| LowLP UpLP MeanLP Sim Err LPcpu Simcpu
s27 136 58 0.2252 0.2847 0.2549 0.2699 5.55% 0.13 s 163.32 s
s208 66 30 0.4182 0.5714 0.4948 0.5465 9.46% 0.05 s 156.61 s
s349 442 180 0.2637 0.2637 0.2637 0.2637 0.00% 0.21 s 562.72 s
s382 172 68 0.1389 0.1523 0.1456 0.1522 4.32% 0.26 s 114.13 s
s386 778 306 0.1436 0.2518 0.1977 0.2364 16.37% 0.52 s 956.51 s
s400 180 70 0.4663 0.5224 0.4944 0.4949 0.11% 0.34 s 386.43 s
s444 204 78 0.4125 0.4337 0.4231 0.4274 1.02% 0.39 s 378.15 s
s510 2416 904 0.2335 0.3004 0.2670 0.2691 0.79% 8.03 s 4664.03 s
s526 278 118 0.2001 0.3500 0.2751 0.3429 19.78% 0.13 s 447.40 s
s713 654 264 0.3292 0.3476 0.3384 0.3379 0.15% 0.42 s 1129.42 s
s820 2740 1056 0.2489 0.3510 0.3000 0.3105 3.40% 9.32 s 6640.29 s
s832 3062 1186 0.1329 0.1329 0.1329 0.1329 0.00% 9.78 s 3411.44 s
s953 982 388 0.3202 0.3412 0.3307 0.3246 1.88% 0.84 s 1751.89 s
s1423 2582 976 0.1842 0.2106 0.1974 0.2085 5.34% 1.81 s 4063.12 s
s1488 3718 1420 0.2340 0.2759 0.2549 0.2615 2.49% 20.28 s 8818.12 s
s1494 3712 1420 0.1420 0.2632 0.2026 0.2168 6.55% 15.28 s 7341.48 s

Table 1: Throughput bounds obtained by linear programming.

The columns|P| and|T| are the number of places and transitions of theTGMGs.
The value of the obtained lower and upper bounds are shown in columns LowLP and
UpLP. The column MeanLP stands for the average(LowLP+U pLP)/2 which is taken
as the estimation for the system throughput. The column Sim is the throughput of the
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system obtained by simulation. The relative error yielded by MeanLP with respect to
the middle point of the confidence interval given by Sim is reported in Err. The columns
LPcpu and Simcpu express CPU times, in seconds, required to compute MeanLP and
Sim.

One of the main advantages of using an LPP to obtain a throughput bound is that its
complexity is polynomial, and, in general, provides a good approximation to the real
throughput. Thus, it is a suitable method for fast system evaluation.

6.2 System bottlenecks

Table 2 illustrates the results obtained after applying Algorithm 9 on the circuits of
the previous subsection. The following heuristics has beenfollowed: The maximum
number of basic behaviors considered is limited to the exploration of 5 multiplexers in
Nz. When there are more than 5 multiplexers inNb only those with probabilities closer
to 0.5 are explored, the rest are handled in the same way as in LPP (9).

Circuit System bottleneck Throughput CPU time
Name |sbP| |sbT| Reduc sbcpu sbSim Err sbSim Sim
s27 30 23 27.3% 2.4 s 0.2762 2.33% 33.8 s 163.3 s
s208 31 22 55.2% 0.9 s 0.5491 0.46% 66.7 s 156.6 s
s349 6 6 1.9% 0.8 s 0.2637 0.00% 7.1 s 562.7 s
s382 12 11 9.6% 0.7 s 0.1522 0.00% 8.0 s 114.1 s
s386 66 48 10.5% 54.2 s 0.2377 0.54% 63.1 s 956.5 s
s400 61 43 41.6% 9.9 s 0.4953 0.08% 120.0 s 386.4 s
s444 41 30 25.2% 5.5 s 0.4292 0.40% 70.0 s 378.1 s
s510 122 102 6.7% 593.2 s 0.2647 1.66% 147.8 s 4767.5 s
s526 13 11 6.1% 0.7 s 0.3456 0.78% 19.0 s 447.4 s
s713 194 134 35.7% 308.9 s 0.3476 2.87% 287.1 s 1129.4 s
s820 133 112 6.5% 506.8 s 0.3058 1.54% 174.1 s 6640.2 s
s832 12 12 0.6% 19.3 s 0.1329 0.00% 7.2 s 3411.4 s
s953 113 85 14.5% 56.0 s 0.3246 0.01% 155.8 s 1751.8 s
s1423 120 89 5.9% 1128.1 s 0.2062 1.10% 104.8 s 4063.1 s
s1488 190 167 6.9% 765.6 s 0.2507 4.30% 228.5 s 8818.1 s
s1494 368 293 12.9% 916.5 s 0.2167 0.04% 398.3 s 7341.4 s

Table 2: Throughput approximations obtained with system bottlenecks.

The columns|sbP| and|sbT| are the number of places and transitions of the sys-
tem bottleneck. The column Reduc expresses the reduction ratio, it is computed as
100· (|sbP|+ |sbT|)/(|P|+ |T|). The column sbcpu stands for the CPU time spent to
compute the system bottleneck. The throughputs, computed by simulation, of the sys-
tem bottlenecks are presented in sbSim (the throughputs of the original systems are
shown in Table 1). The column Err is the relative error of the sbSim with respect to
Sim in Table 1. The CPU times to simulate the system bottleneck and the original sys-
tem are shown under the title ’CPU time’ (sbSim for the bottleneck system, Sim for the
original one). All CPU times are expressed in seconds.

The exploration of at most 5 multiplexers limits the time execution of the algorithm
and the size of the system bottleneckNz. This way, some “relevant” places might not
be included inNz, causingNz to have a similar, not equal, throughput to the original
system throughput. However, from a practical point of view,it can be worth dealing
with a much smaller, yet representative, net at the cost of losing some precision.
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7 Conclusions

In conventional marked graphs a transition cannot fire untilall its input places are
marked. This constraint turns out to be excessively restrictive when modeling the be-
havior of actions that only require a subset of input elements to start performing. Typ-
ical examples of this behavior are found in electronic circuits, e.g., a multiplexer can
yield an output as soon as the selected input arrives. The class of multi-guarded marked
graphs extends the modeling power of marked graphs to capture these behaviors.

A timed multi-guarded marked graph evolves as a semi-Markovprocess. Thus,
it is theoretically possible to compute the exact throughput of a system by solving
its embedded Markov chain. Unfortunately, the state explosion problem prevents, in
practice, the use of this approach. Two different methods have been developed that
avoid the state explosion problem and estimate the system throughput. The first method
makes use of an algebraic expression that relates the throughput of a transition and the
average marking of its input places. This expression allowsone to easily establish a
linear programming problem whose solution is an upper boundfor the throughput.

The second method is a heuristics that extracts from a timed multi-guarded marked
graph a bottleneck with similar throughput. The heuristicsis inspired by conventional
marked graphs, in which the throughput of a critical cycle isequal to the throughput
of the whole system. The method is based on the solution of thelinear programming
problem to compute throughput bounds and on the concept of tight marking.
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8 Appendix (proof of Theorem 3)

The proof of Theorem 3 is structured in four parts: first, someauxiliary definitions are
presented; then, some technical lemmas are introduced; afterwards, an expression for
the enabling degree is developed; finally, the result is proved. As stated in Section 2,
everyTGMG is assumed to be bounded and live, and every guard is assumed to be a
singleton.

8.1 Auxiliary Definitions

Each input placep of a multi-guarded transitiont can be seen as a queue where tokens
are arranged in cells. At a given marking each cell is either empty or stores a positive
token or stores a negative token. Figure 8(b) shows the distribution in cells of the
tokens in placesp1 andp2 of Figure 8(a).
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Figure 8: Each place can be seen as a queue where tokens are arranged in cells.

Cells are indexed according to their proximity to the multi-guarded transition, see
Figure 8(b). When a token arrives into a place, it is stored inthe cell with lowest index
that is empty or has a negative token. Each cell corresponds to a firing instance of the
transition. When the transition fires, one token is removed from the corresponding cell
of every input place, and a new guard is selected for the next cell, i.e., for the next fire.
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Figure 9: Each pair of cells with the same index corresponds to a firing instance.

Consider the net in queue-like form in Figure 9 withG(t) = {{p1},{p2}} to show
how the marking of the different cells evolves. Assume that the guard for the first
firing of t is {p1} (see above each cell in Figure 9). Thus, the first firing requires one
token in p1. Hence,t is enabled in Figure 9(a), and will fire afterδ(t) time units.
The firing of t removes one token fromp1 and one token fromp2. After the firing
of t, the first cell of each place becomes empty, and hence we can shift every cell to
the right (this is equivalent to remove the first cell and decrease the index of the rest),
see Figure 9(b). Assume that the guard for the second firing oft is again{p1}, then,
t is enabled in Figure 9(b). The second firing oft produces a negative token inp2,
Figure 9(c). Assume that the guard for the third firing oft is again{p2}, then,t is not
enabled in Figure 9(c), and will not be enabled until a positive token is stored in the
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corresponding cell ofp2. If t2 fires from the marking in Figure 9(c) it will cancel out
the existing negative token and the cells can be shifted to the right again.

The marking of thel th cell of pi is denoted asm(pi , l), and the guard for thel th cell
is denoted asg(t, l). The fact that a guard for a given celll has not been selected yet is
denoted byg(t, l) = {}.

For each input placepi of a multi-guarded transition and each celll , we define three
boolean functions,p+

i,l , p0
i,l , andp−i,l , that take a markingm as input argument:

• p+
i,l (m) ↔ (m(pi , l) = 1∧g(t, l) 6= {})

• p0
i,l (m) ↔ (m(pi , l) = 0∧g(t, l) 6= {})

• p−i,l (m) ↔ (m(pi , l) = −1∧g(t, l) 6= {})

For clarity, the argumentm of the above functions will not be shown if it is evident
from the context. We will use the shorthandαi to denoteα({pi}), and the boolean
variablegi,l that is true iff g(t, l) = {pi}. The fact thatg(t, l) 6= {pi} is denoted as
not(gi,l). Consider the next statement to illustrate the use of the introduced notation:
transitiont is enabled atm′ iff there existspi ∈

•t and a celll such that(p+
i,l (m

′)∧gi,l )

(or simply(p+
i,l ∧gi,l ) given that the argument ofp+

i,l is clearlym′).
By prob(statement) we denote the fraction of timestatementholds in the steady

state. For instance,prob(p+
j ,l ∧ p0

k,l ∧gk,l ) is the fraction of time at which the system
marking satisfies thatm(p j , l) = 1, m(pk, l) = 0, andg(t, l) = {pk}.

8.2 Preliminary Lemmas

The developments in this section focus on cells that have thesame indexl . Then, for
clarity, p+

i,l , p0
i,l , p−i,l , gi,l are shortened top+

i , p0
i , p−i , gi .

Lemma 10 Let〈N,m0〉 be aTGMG system. Let t be a multi-guarded transition of the
TGMG and pj , pk, pq ∈

•t, then it holds that:

prob(p+
j ∧gq) = prob(p+

j ∧ p0
k ∧gq)+ prob(p+

j ∧ p+
k ∧gq) (16)

Proof: If p+
j holds then the transition has not fired yet. This implies thatp0

k∨ p+
k holds

for everyk∈ {1, . . . ,n}, what leads directly to the result. 2

From (16), the following equations are trivially obtained for ever couple of input
places of the multi-guarded transitiont:

prob(p+
j ∧gk) = prob(p+

j ∧ p0
k∧gk)+ prob(p+

j ∧ p+
k ∧gk) ∀p j , pk ∈

•t (17)

prob(p+
j ∧g j) = prob(p+

j ∧ p0
k ∧g j)+ prob(p+

j ∧ p+
k ∧g j) ∀p j , pk ∈

•t (18)

Lemma 11 Let〈N,m0〉 be aTGMG system. Let t be a multi-guarded transition of the
TGMG and pj , pk ∈

•t, then it holds that:

αk

α j
=

prob(p+
j ∧ p0

k ∧gk)

prob(((p+
j ∧ p0

k)∨ p−k )∧g j)
(19)
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Proof: The proof is based on the semi-Markov process associated with theTGMG
system. LetH(t) denote the set of states of the semi-Markov process from which a
guard fort is selected. For instanceH(t1) = {S1,S4,S7} in Figure 5(a). Then, among
the successors ofh∈ H(t), e.g., stateS1, there are|•t| = n states,h1, . . . ,hn that only
differ in the guard selected, e.g., statesS2 andS3, and consequently they can also differ
in the time to fire of transitions.

If the statement(p+
j ∧ p0

k) does not hold for any successor ofH(t), thenp+
j → p+

k is

true in any successor ofH(t), consequentlyprob(p−k ∧g j) = 0 and the lemma trivially
holds. Assume there existsh ∈ H(t, l), such that a successorh j of h exists at which
(p+

j ∧ p0
k ∧ g j) holds, e.g.,(p+

ae∧ p0
de∧ gae) holds inS3. Then, a successorhk, e.g.,

S2, of h that only differs fromh j in the guard must exists, namely athk the statement
(p+

j ∧ p0
k ∧gk) holds.

Given that the guard selected for celll does not affect the system evolution neither

from h to h j nor fromh to hk,
αk

α j
is the ratio of visits between stateshk andh j . The

lemma is true if the time fraction during which(p+
j ∧ p0

k ∧ gk) holds fromhk is not

less than the time fraction during which(((p+
j ∧ p0

k)∨ p−k )∧g j) holds fromh j . The

statement(p+
j ∧ p0

k) will hold from hk until one token is put in celll of pk. On the other

hand, the statement(((p+
j ∧ p0

k)∨ p−k )∧g j) will hold from h j until one token is put in
cell l of pk.

Statesh j , e.g.,S3, andhk, e.g.,S2, only differ in the guards, and therefore, they can
also differ in the fact thatt is enabled inh j , and will fire afterδ(t) time units, but it is
not enabled inhk. Given that everyTGMG is assumed to be live, every P-semiflow (or
cycle) has a positive number of tokens (Theorem 1). Hence, ath j andhk the overall
number of tokens in any directed path fromt to •pk is at least 1. Then, the first firing
of •pk from h j andhk do not require the token thatt will produce. In other words, the
time elapsed until one token is put in celll of pk does not depend on the guard selected
ath. Therefore,prob(p+

j ∧ p0
k∧gk) andprob(((p+

j ∧ p0
k)∨ p−k )∧g j) are just related by

the probabilities of selecting{pk} or {p j} as guard from stateh. 2

In the rest of the section we will assume, without loss of generality, that the input
places oft are indexed from 1 ton, i.e.,•t = {p1, . . . , pn}.

Lemma 12 Let〈N,m0〉 be aTGMG system. Let t be a multi-guarded transition of the
TGMG and pj ∈

•t, then it holds that:

α j · prob(p+
j ∧ not(g j)) =

n
∑

k=1
k6= j

α j · prob(p+
j ∧ p+

k ∧gk)+
n
∑

k=1
k6= j

αk · prob(p+
j ∧ p0

k ∧g j)

+
n
∑

k=1
k6= j

αk · prob(p−k ∧g j)

(20)

Proof: Equation (17) allows us to expand the termα j · prob(p+
j ∧ not(g j)) as follows:

α j · prob(p+
j ∧ not(g j)) = α j ·

n
∑

k=1
k6= j

prob(p+
j ∧gk)

= α j ·
n
∑

k=1
k6= j

(
prob(p+

j ∧ p0
k ∧gk)+ prob(p+

j ∧ p+
k ∧gk)

)
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=
n
∑

k=1
k6= j

α j · prob(p+
j ∧ p+

k ∧gk)+
n
∑

k=1
k6= j

α j · prob(p+
j ∧ p0

k ∧gk) (21)

The equality (19) provided by Lemma 11 can be written as:

α j · prob(p+
j ∧ p0

k ∧gk) ≥ αk · prob(p+
j ∧ p0

k ∧g j)+ αk · prob(p−k ∧g j) (22)

The substitution ofα j · prob(p+
j ∧ p0

k ∧gk) in (21) by the expression on the right
of (22) yields:

α j · prob(p+
j ∧ not(g j)) =

n
∑

k=1
k6= j

α j · prob(p+
j ∧ p+

k ∧gk)+
n
∑

k=1
k6= j

αk · prob(p+
j ∧ p0

k ∧g j)

+
n
∑

k=1
k6= j

αk · prob(p−k ∧g j)

2

8.3 Enabling of a Cell

In this subsection, we will obtain an expression for the probability thata cell is enabled.
A cell l of input places oft is said to be enabled ifp+

j ,l ∧ g j ,l holds for any input place,
p j , of t. The boolean functionenab(t, l) is defined to be true iff celll is enabled. Then,
the termprob(enab(t, l)) is the fraction of time that celll is enabled. More formally:

prob(enab(t, l)) = ∑
p j∈

•t
prob(p+

j ,l ∧ g j ,l )

As in the previous developments, we will focus only one celll , then for clarity the
subindexl is omitted.

Lemma 13 Let〈N,m0〉 be aTGMG system. Let t be a multi-guarded transition of the
TGMG and pj ∈

•t, then:

prob(enab(t, l)) = ∑
p j∈

•t
α j ·

(
prob(p+

j )− prob(p−j )
)

(23)

Proof: Let us developprob(enab(t, l)) as follows:

prob(enab(t, l)) = ∑
p j∈

•t
prob(p+

j ∧ g j) = ∑
p j∈

•t

(
prob(p+

j )− prob(p+
j ∧ not(g j))

)

= ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j)·prob(p+

j ∧ not(g j))+α j ·prob(p+
j ∧ not(g j))

))
(24)

By Lemma 12, Equation (24) becomes:
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prob(enab(t, l)) = ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j) · prob(p+

j ∧ not(g j))

+
n

∑
k=1
k6= j

αk · prob(p+
j ∧ p0

k ∧g j)+
n

∑
k=1
k6= j

α j · prob(p+
j ∧ p+

k ∧gk)

+
n

∑
k=1
k6= j

αk · prob(p−k ∧g j)
))

(25)

In (25) let us swapα j · prob(p+
j ∧ p+

k ∧gk) with αk · prob(p+
j ∧ p+

k ∧g j), and let us

swapαk · prob(p−k ∧g j) with α j · prob(p−j ∧gk). This rearrangement of terms allows
us to express (25) as:

prob(enab(t, l)) = ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j) · prob(p+

j ∧ not(g j))

+
n

∑
k=1
k6= j

αk · prob(p+
j ∧ p0

k ∧g j)+
n

∑
k=1
k6= j

αk · prob(p+
j ∧ p+

k ∧g j)

+
n

∑
k=1
k6= j

α j · prob(p−j ∧gk)
))

(26)

Notice that ifp j is selected as guard it cannot become negatively marked after the
firing, i.e., prob(p−j ∧g j) = 0, therefore:

n

∑
k=1
k6= j

prob(p−j ∧gk) = prob(p−j ) (27)

By (27) and (18), Equation (26) becomes:

prob(enab(t, l)) = ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j) · prob(p+

j ∧ not(g j))

+
n

∑
k=1
k6= j

αk · prob(p+
j ∧g j)+ α j · prob(p−j )

))

= ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j) · prob(p+

j ∧ not(g j))

+ (1−α j) · prob(p+
j ∧g j)+ α j · prob(p−j )

))

= ∑
p j∈

•t

(
prob(p+

j )−
(
(1−α j) · prob(p+

j )+ α j · prob(p−j )
))

= ∑
p j∈

•t
α j ·

(
prob(p+

j )− prob(p−j )
)

2
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8.4 Proof of Theorem 3

Theorem 3:Let t be a transition with singleton guards, then:

δ(t) ·Th(t) = ∑
p∈•t

α({p}) ·
(

m(p)−
∞

∑
i=2

(i −1) · prob(m(p) = i)
)

Proof: Given that transitiont is enabled when any of its input cells is enabled, the
probability thatt is enabled is:

prob(enab(t)) =
∞

∑
l=1

prob(enab(t, l))

By Lemma 13,prob(enab(t, l)) = ∑
p j∈

•t
α j ·

(
prob(p+

j ,l )− prob(p−j ,l)
)
, then:

prob(enab(t)) =
∞

∑
l=1

∑
p j∈

•t
α j ·

(
prob(p+

j ,l)− prob(p−j ,l)
)

= ∑
p j∈

•t
α j ·

( ∞

∑
l=1

prob(p+
j ,l)−

∞

∑
l=1

prob(p−j ,l)
)

Notice that if the marking ofp j is greater than 0, then at least one cell has a positive
token, moreover, a guard must be present for the cell with lowest index containing a
token. More formally,m(p j) ≥ 1 → ∃ l such thatp+

j ,l . The reverse is also true: if
a cell has one token and a guard is selected for it then, the marking of p j is neces-
sarily greater than 0, i.e.,m(p j) ≥ 1 ↔ ∃ l such thatp+

j ,l . In terms of probabilities

this can be expressed as:
∞
∑

l=1
prob(p+

j ,l) = prob(m(p j) ≥ 1). On the other hand, the

term
∞
∑

l=1
prob(p−j ,l) accounts for every negative token inp j and can be expressed as:

∞
∑

l=1
prob(p−j ,l) =

∞
∑

i=1
i · prob(m(p j) = −i). Then:

prob(enab(t)) = ∑
p j∈

•t
α j ·

(
prob(m(p j) ≥ 1)−

∞

∑
l=1

prob(p−j ,l)
)

= ∑
p j∈

•t
α j ·

( ∞

∑
i=1

prob(m(p j) = i)−
∞

∑
i=1

i · prob(m(p j) = −i)
)

= ∑
p j∈

•t
α j ·

( ∞

∑
i=1

i · prob(m(p j) = i)−
∞

∑
i=2

(i −1) · prob(m(p j) = i)

−
∞

∑
i=1

i · prob(m(p j) = −i)
)

= ∑
p j∈

•t
α j ·

(
m(p j)−

∞

∑
i=2

(i −1) · prob(m(p j) = i)
)

Thus, by Equation (4):

δ(t) ·Th(t) = ∑
p j∈

•t
α j ·

(
m(p j)−

∞

∑
i=2

(i −1) · prob(m(p j) = i)
)

2
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