-

P
brought to you by i CORE

provided by UPCommons. Portal del coneixement obert de la UPC

This is a post-peer-review, pre-copyedit version of an article published in Discrete
event dynamic systems: theory and applications. The final authenticated version is
available online at: http://dx.doi.org/10.1007/s10626-009-0079-2

View metadata, citation and similar papers at core.ac.uk

On the performance evaluation of multi-guarded
marked graphs with single-server sematritics

Jorge Julvek Jordi Cortadella Michael Kishinevsky
Universitat Politecnica de Catalunya Intel Corporation
Barcelona, Spain Hillsboro, USA

Abstract

In discrete event systems, a given task can start executing when all the required
input data are available. The required input data for a given task may change
along the evolution of the system. A way of modeling this changing requirement
is through multi-guarded tasks. This paper studies the performance evaluation of
the class of marked graphs extended with multi-guarded transitions (or tasks). Al-
though the throughput of such systems can be computed through Markov chain
analysis, two alternative methods are proposed to avoid the state explosion prob-
lem. The first one obtains throughput bounds in polynomial time through linear
programming. The second one yields a small subsystem that estimates the through-
put of the whole system.

Keywords: Early evaluation, throughput bounds, Petri nets, marked graphs.

1 Introduction

The modeling of discrete event systems often relies on a producer/consumer pattern.
According to this pattern, a given consumer action cannot start until all the required
input items have been produced by some previous producer actions. For example, in
a digital circuit an adder that computes the sum of two integer numbers cannot start
operating until both numbers are available at the input of the adder. Nonetheless, there
are actions that do not always require all its input data to be available to start operating.
A typical component exhibiting this behavior is a multiplexer. A multiplexer is a device
that selects one of many input channels and outputs the value of that channel. The
values of the rest of the channels are useless. Hence, a multiplexer could start operating
as soon as the value of the selected channel is available without waiting for the rest
of the values. The availability of the selected channel is the preconditiagyand,
required by the multiplexer to start working. Given that different input channels may
be selected along time, the multiplexer guard is not constant but changes along time.
Consider a computer program that processes the data records of a given file stored
in a hard disk. In order to speed up the program execution, some fields of the records
are stored in memory. Let us assume that with probabjlitie program just requires
the fields stored in memory to process a record, and with probability it requires

*This work has been partially supported by a gift from Intel Corp. and CICYT TIN 2004-07925.
TSupported by the Spanish Ministry of Education and Science (Juan de la Cierva fellowship) and by the

European Communitys Seventh Framework Programme under project DISC (Grant Agreement n. INFSO-
ICT-224498).

https://core.ac.uk/display/185530637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

all the fields of the record. Once a data record is procedsegyrbgram requests a new
record. Such request activates two actions in parallel: saeches the record in the
memory and the other one in the hard disk. If the fields staredémory are sufficient
to continue processing, the data provided by hard disk willliscarded. The behavior
of this system can be modeled by a Petri net, see th&lniet Figure 1.

The transitions (bars) of the system represent actionsdhisume the tokens
(black dots) stored in the input places (circles), and aftanpletion, store new to-
kens in the output places (see [Mur89, Sil93] for a tutorialRetri nets). The token
in placep; describes the situation in which a record has just been pseceand that
a new record is to be requested. Once the request is issuethkibn fromp; is re-
moved, a token is placed ip, and a token is placed ips: accessing memory and
hard disk is being done in parallel. Getting record fieldsrfrmemory just needs one
task,Memory after which memory fields are ready to be processed. Gdtimg/hole
record from hard disk needs three taskscessSearchandDeliver. With probability
y, memory fields are enough to continue processing, and tirerethe data provided
by disk will be ignored. Hence, therocessaction not only processes data, but acts
as a multiplexor by selecting either the memory fields or thele record. It will be
assumed that all tasks last the same amount of time.

g P
h (® I Request
Process

Figure 1: Reachable states of an early evaluated systemriegsses data records of
a file stored in a hard disk..

The graph in Figure 1 depicts the set of reachable statesre&tdd arc connects
a given state to a successor state. Arcs are labeled withrdibalpility of being taken.
If the probability of taking the arc is 1, the label is omittddet us focus on state S3
at which memory fields are already available but the hard lésknot provided yet all
fields. With probability 1-vy it is necessary to wait for the hard disk to deliver the data,
i.e., the path(S3, S5, Shis taken. At S6 all data is available and can be processed.
When moving from S6 to S1 the tokenspg and py are consumed (although only the
one ispy is required) and a new token | is put meaning that a new request must be
done. On the other hand, from S3 there is a probabjlif not having to wait for the

disk, i.e., the arc from S3 to S4 is taken. In such case, theanefields are processed
(the token inp3 is consumed) and a new record request is issued (a tokanisput).
Notice that in parallel to this processing, the disk is wogkin order to get the whole
record which must not be processed. A simple way of discgritia token that will be
delivered by theDeliver task is by putting a negative token i at S4. This way, the
token that will produce th®eliver task atpy will vanish when meeting the negative
token, state S2.

The main new feature of the model in Figure 1, with respecbto/entional Petri
nets, is that it is not strictly necessary to finish every fes task before starting
the Procesgask. This fact provides more flexibility to the modeling édatete event
systems and usually increases the system performariR®{iesss executed only after
MemoryandDeliver, the system state will loop on S1, S2, S3, S5 and S6, ignahniag t
short cut provided by S4).

A natural consequence of performing a task, IRecess without having fin-
ished some previous task3eliver, is that negative tokens appear after the completion
of the task, state S4. Negative tokens are necessary to st with the pro-
ducer/consumer pattern, in which a token is consumed fraryemaput place. More-
over, they have the responsibility of getting rid of non reed tokens, like the token
in placepy at S4.

Negative tokens have been considered in several works ffarelt purposes.
In [MY90], Petri nets with negative tokens are used to studiomated reasoning
programs. Negative event graphs are introduced in [LPO%jntlyze time window
constraints. In [OMO05], a negative token represents a tearpduffer overflow in a
manufacturing system. Differential places of differehiatri nets [DK98] are allowed
to store real quantities (positive or negative) of tokergriaer to model hybrid systems.

1.1 Framework and Contribution

This paper focuses on the class of Multi-Guarded Marked gBMG). The un-
derlying structure of &MG is that of a conventional marked grapgi@), a Petri net
subclass that offers an interesting trade-off between tirggpower and analysis ca-
pability [Mur89]. In contrast to conventiondGs, a transition of &SMG can have
several guards, i.e., it is multi-guarded, which are rangsmlected. With respect to
the preliminary results obtained in [JCKO06], the presemigualiscusses the bound-
edness property dEMGs, analyzes the resulting throughput bounds, and proposes a
heuristics to improve the obtained throughput bounds.

The main goals of the paper are the following:

e Provide an efficient method to compute steady state thrautdigunds.

e Describe a heuristics to obtain a small subsystem that asgrthe steady state
throughput.

Before focusing on these goals, essential system propeiiveness and bound-
edness osMGs are studied to ensure the well-behavior of the system. ppeach
suggested in this paper to compute steady state througlopudbs is based on Lin-
ear Programming (LP). Such an approach allows us to nagurelhage structural and
steady state constraintsGMG.

LP techniques have been intensively used to compute thpudiounds in the
framework of queueing networks and Petri nets. In the quepetwork setting, some
representative works in the literature are the followikg<94] establishes a set of lin-
ear equality constraints on the mean values of some vasiand conservation laws

allow to bound the performance of the system. A similar apphds taken in [BC99],
where the region of achievable performance vectors is ctexiaed in order to for-
mulate a linear programming problem to obtain bounds. InT84], performance
bounds for bulk arrival queues are computed by making uskeobbunds for single
arrival queues.

In the Petri nets framework (notice that with respect to @iy networks, Petri
nets include a synchronization primitive), two main apjgiess that make use of
LP techniques can be distinguished. In [Liu98], the unifization technique is
used to derive linear equalities and then LP is applied tainlthroughput bounds.
In [CAC*95,CS92], the use of operational laws allows one to obta#gli constraints
that are included in a LP problem whose solution is an uppentdor the throughput.

Similarly to [KK94, BC99], the approach presented hereldisthes some linear
constraints related to conservation laws and mean valudsafighput and average
markings [CS92] to design a Linear Programming Problem JLPRe solution of the
LPP is an upper bound for the throughput in the steady stateomtrast to previous
approaches, in order to handle multi-guarded transitiam&w expression relating the
throughput and average marking of multi-guarded transitioas been developed and
included in the mentioned LPP.

With respect to the second goal, the heuristics is basedtainilg a small subsys-
tem whose throughput s similar to the throughput of the whsgtistem. The subsystem
is built from the solution obtained by a LPP and an iterativecpss. As far as we
know, no similar approach has been proposed before in #ratitre.

The rest of the paper is organized as follows: Section 2 defimeclass of Multi-
Guarded Marked Graph&MG) and presents some basic properties. Section 3 shows
how to compute the throughput o3MG by using Markov chains. Section 4 presents a
linear programming problem to compute upper bounds fortraighput. A procedure
to obtain a small bottleneck subsystem @&®IG is explained in section 5. Section 6
shows the obtained experimental results. Conclusionsramin section 7.

2 Multi-Guarded Marked Graphs

2.1 Definition and Semantics

In the following, the reader is assumed to be familiar withriPaets PN s)
(see [Mur89, Sil93] for a tutorial on Petri nets).

Definition 1 (GMG) A Multi-Guarded Marked Graph(GMG) is a tuple
N = (P, T,Pre, Post G, mo) where:

e P is a finite set of places, and T is a finite set of transitionke firesetand
postsebf a node xc PUT are denoted a8k and X. The following condition
holds:Vpe P, |*p| = [p*| = 1.

e Pre: PxT — NU{0} and Post PxT —NuU{0} are the pre- and
post-incidence functions that specify the arc weights. The Erod@ matrix of
the net isC = Post— Pre.

e G: T2 assigns a set of guards to every transition. The followingp@ions
must be satisfied: &) g € G(t) it holds gC °t; b) L(J;()g ="°t.
geG(t

e mp: P — NU{0} is the initial marking.

A conventional Marked GraptMG) is simply aGMG in which G(t) = {{*t}} for
everyt € T. In aGMG, the transitions can also satisfy the condit®ft) = {{*t}}.
Such transitions will be callesimpletransitions, the rest of transitions will be called
multi-guarded transitions. Simple transitions will be negented graphically as empty
rectangles; multi-guarded transitions will be represgrate rectangles with oblique
lines inside (see Figure 2 for a multi-guarded transition).

Definition 2 (Firing semantics) The dynamic behavior of &MG system is deter-
mined by its firing rules. The execution of a transition t cardescribed as follows:

e Guard selectionA guard dt) € G(t) for the next firing is selected nondetermin-
istically. The guard selection is trivial for simple tratisns, since they only have
one guard. For multi-guarded transitions any guard it&can be selected. The
selected guard of a transition t fersistenti.e., it does not change until t fires.

e Enabling If the guard dt) € G(t) has been selected for the next firing of t, then
the transition t becomes enabled when every plaegft) is positively marked,
i.e.,m(p) >0.

e Firing. A transition t enabled at marking can fire leading to markingn’ such
thatm’ = m+ C(P,t) whereC(P,t) is the column of corresponding to t.

Notice thatGMGs can reach markings with negative valuesn(fp) > 0 one says
that placep hasm(p) positive tokens. Otherwise, plapehas|m(p)| negative tokens.
Negative tokens account for the data that must be discartied arriving at the input
of the transition.

As in conventionaMGs the state equatiom = mg + C - o provides a necessary
condition for the reachability ah, whereg is the firing count vector of the transitions
andm can contain negative elements. Then, vecyorsO,y-C=0 (x> 0,C-x=0)
represent P-semiflows or conservative components (T-sewsifbr consistent compo-
nents). A semiflow is said to beminimal when its support||v||, is not a proper
superset of the support of any other, and the greatest condimizor of its elements
is one. As in convention&lGs [Mur89], every minimal P-semiflow of &@MG corre-
sponds to a simple cycle, i.e., a cycle with no repeatedoesgxcept for the start and
end vertex.

Example 1 Let us assume that the transition in Figure 2 has two guards
G(t) = {{pa, Pv},{Pa; Pc} }, and that initially the places pand p have a token.

Pa Pb Pa Pob Pc b pa Po pc
e}

Pc Pa P Pc
%9 {Pa,p % %g {Pa, Po}

Figure 2: Multi-guarded transition: (a) early firing with @l {pa, pc}; (b) guard
{pa, pp} is selected, the transition will not fire until plapg contains a token.

If the guard{pa, pc} is selected (Figure 2(a)), the transition is enabled gnd
pc are marked) and can fire. The firing removes the tokens frgrangd ., puts one

positive token in the output place, and produces a negatikert in p. If the guard
{pa, Pp} is selected (Figure 2(b)), the transition is not enabledd avill not become
enabled until a token is put in place.p

The persistence of the guards is an accurate abstractitve cbnhditions to model
early evaluations. For instance, once a multiplexer selantinput channel, it must
wait for the selected channel to provide data before yigldlis output and selecting
another channel for the next firing.

In order to allow the system exhibit a cyclic and bounded biltawe assume
that the net is strongly connected. The subclasSMIG is sufficient for modeling a
wide variety of systems, e.g., queueing networks, paraitetessing systems, resource
allocation schemes, etc. It also satisfies some propenéesimplify their analysis.

2.2 Properties ofGMGs

Two basic properties 06MGs are considered in this subsection: boundedness and
liveness.

2.2.1 Boundedness

Definition 3 (Boundedness)

e Aplace,p, of aGMG is upper-bounded there exista € N such tham(p) <u
for every reachable marking. Placep can also be said-upperbounded

e Aplace,p, of aGMG is lower-boundedf there existd € N such tham(p) > |
for every reachable marking. Placep can also be saidlowerbounded

e A place isboundedf it is upper-bounded and lower-bounded.

These definitions are trivially extended for nets: A net isl $a beupper-bounded
(lower-boundedboundedlif every place isupper-boundeflower-boundegbounded.
Since non-bounded systems cannot be implemented, bouesketnoften a required
system property. ASMG can be upper-bounded by adding complementary places in
the same way it is done for conventional Petri nets. Moredberaddition of places
can also be used to lower-boun&MG.

SN T

to Py

%O —O

Figure 3: Transformation of @MG with G(t3) = {{pa},{p,} } to lower-boundo, and
Po. In the transformed neb(ts) = {{ pa, P4, P,,}, { Pb, Pa, P} } and for every reachable
marking it holds thatm(pa) > —ka, m(pp) > —kp

Assume that the guards &f in Figure 3(left) areG(tz) = {{pa},{po}}. If the
guard{pa} is selected indefinitely antd is not fired, i.e., only transitionig, t3 andts
are fired, then the marking @, tends to minus infinity. This can be avoided by adding
placesp, andp;, and redefining the guards@fasG(ts) = {{ pa, Pa, P, }+ { Po, Pa, P} }-
This transformation still allows some flexibility, i.e., ggtive markings irpg and py,
but for every reachable marking it holds that(p,) > —ka, m(pp) > —k.

2.2.2 Liveness

Definition 4 (Liveness) A GMG is live if for every transition t and every reachable
markingm, there exists a markingn’ reachable fromm such thatt is enabled an'.

A conventionalMG is live iff every cycle has a positive number of tokens. The
same necessary and sufficient conditions appli€s\gss [Jul09].

Theorem 1 A GMG is deadlock-free iff the sum of tokens in each cycle is p@siti

Thus, liveness of &@MG can be decided in polynomial time by checking that every
cycle has a positive number of tokens [Sil93].

2.3 Timed Multi-Guarded Marked Graphs

In Petri nets, transitions usually represent the eventstires of the system. To model
latencies or delays of the system events, a nonnegativeueaberd(t) is associated
with every transitiort of the GMG. We will assume that delays are deterministic, i.e.,
a transitiont that becomes enabled at timevill fire at time 1+ (t). More general
delay models are possible f@MGs, most notably it is possible to have probabilistic
distributions of delays associated with every transitmmidel variable latency units
or delay variations. This however goes beyond the scopeoptper.

The performance evaluation of the model requires some a prformation about
probabilities for selecting guards. Such probabilitieswasually known prior to system
design or can be obtained after simulation by monitoringnesand counting them. It
is assumed here that selection of guards for differentitians are independent events
and hence probabilities of the guards of different traosgiare uncorrelated.

Definition 5 (TGMG) A Timed Multi-Guarded Marked Grap{TGMG) is a tuple
N = (P T,F,G,mo,d,a) where:

e (PT,F,G,mgp) is aGMG.
e 3: T — RTU{0} assigns a nonnegative real delay to every transition.

e a:G — RT assigns a strictly positive probability to each guard sukhttfor

every multi-guarded transitiont: 3 a(g) = 1.
geG(t)

Itwill be assumed that there exists at least one trandisoich thad(t) > 0. For the
firing of the transitions, theingle-server semantiegill be adopted. According to this
semantics, no multiple-instances of the same transitionfica simultaneously. The
single-server semantics is an abstraction for those sgstieat communicate through
channels using FIFOs. The time evolution of@MG is derived from the previously
described semantics of ti@&MG:

e After the firing of a multi-guarded transitidna new guard fot is selected.

e Guard selection for every transition is still non-deteristic, but respects prob-
abilities in the infinite executions.

e Firing of transitiort takesd(t) time units, from the time it becomes enabled until
the firing is completed.

Definition 6 (Steady state throughput) The steady state throughput of transition t,
Th(t), of aTGMG is defined as:
Thi) = lim == 0

wheret represents the time aralt, 1) is the firing count vector of t at tinte

Given that the unique minimal T-semiflow of strongly conreeldIGs is a vector
of ones, the following proposition holds:

Proposition 2 Let N be aTGMG. For every couple of transitions,t; € T it holds
that: Th(t;) = Th(tj)

Definition 7 (Average marking) The average marking of place my(p), of aTGMG

is defined as:
T

m(p) = lim = [m(&)de)

T—o0 T 0

wherem(p,§) is the marking of p at timé.

Both limits, (1) for the steady state throughput and (2) foe average marking,
exist for everyTGMG [JCKO6].

2.3.1 Reduction to singleton form

This subsection presents a technique to transform the gudinthulti-guarded transi-
tions into singleton guards. This transformation will vexseful for the computation
of upper bounds for the throughput.

Figure 4 shows a fragment of EGMG with a multi-guarded transitioh whose
guardsG(t) = {{pa,; P}, {Pb, Pc}} are not singletons. An equivaleMGMG has a
multi-guarded transition with singleton guards. Two newmpde transitionsf; and
to, with zero delay are introduced. They combine together therds{ pa, pp} and
{pb, pc} of the original transitiort. Note that placepy is duplicated. This technique
transforms anff GMG to a singleton form without changing its throughput. In gahe
for a given multi-guarded transitidrwith non-singleton guards, this technique creates
g(t)| new transitions angg(t)| + 3 .ot [{9(t) € G(t) | p € g(t)}| — [°t| new places.
Notice that the number of new elements, i.e., places anditiams, is bounded by a
polynomial in|T|, |P|, |G].

ta ! I ! o I

—~ T 7 IOaOIObO ODbOpc

e v o

plO pz
N -a
@ ¢

Figure 4: Reduction to singleton form.

In the rest of the paper, it is assumed that all non-simpiestt@ns are transformed
to the singleton form. Moreover, it is assume that eVEBMG is bounded and live.
These assumptions do not reduce in practice the generéliheaesults, since both
properties are required for an adequate behavior of retdrsgs

3 TGMG as a semi-Markov process

This section shows how the exact throughput ®f2MG can be computed. The evolu-

tion of the state of FGMG can be expressed as a graph in which each node represents
a reachable state, and each arc represents a transitioedretwo states (see Figure 1).

A real number is associated to each arc indicating the pilityad taking such arc.

This way, the behavior of &GMG is described as a semi-Markov [Wol89] process.
Once the average sojourn time of each state is computedytheghput of a transition,

t, can be obtained by dividing the probability of being endbfgob(enalit)), by its
delay,5(t) [CACT95]:

__prob(enaldt))
G

In the following example we will describe the state of@MG at a given instant
as a tuplglm, g, cks}, wherem is the marking of the neg: T — G is the set of guards
selected for each multi-guarded transition, akdis a function,cks: T — R where
ckgt) is the remaining time to fire transitiar(if t is not enabled an thenckgt) =).

Thit) 3

Example 2 Let us consider the system in Figure 5(a) with initial magkin

mo = (1;0;1;0;1), delaysd = (3;1;1;3, anda({p1}) =V, a({ps}) = 1 —y. Assume

that initially the guard selected foi is { p1 }. At that initial state { and t are enabled,

and will fire after 3 time units. Then, the initial state of thesociated semi-Markov
process is $={(1;0;1;0;1,{p1}, (3;00;00;3)}. After three time units;tand t fire
reaching marking0;1;1;1;0. Since the multi-guarded transitiopn has fired, a new
guard, either{ p1} or {ps}, must be selected. The new state of the systems depends on
the selected guard.

The set of reachable states for the system in Figure 5(a) is:
S1={(1;0; 1; 0; 9, {pa}, (3;;0;3)}, ={(0; 1; 1; 1; 0, {pa}, (0;1;1;00)},
SB={(0; 1,11, 0, {ps}, (3;1;10)}, SA={(1;0; 1; 0; 1, {pa}, (2;00;0;3)},
SB={(0;101 D, {p}, (1,1}, B={(0;1,0;1; D, {ps}, (= 1;1;1)},
S7={(1;0; 1; 0; D, {ps}, (3;0;0;3)}. he graph in Figure 5(b) shows the
transition probability among states.

tr

@ (b)
Figure 5: ATGMG (a) and its associated Markov process (b).

From the graph in Figure 5(b), one can obtain the transitionkgability matrix P,
where Ri, j) equals the probability of taking the arc from ® Sj. As for discrete

time Markov chains, one can solve the linear syst€m=11-P; -1 =1, to obtain
the stationary distributionf1, of the corresponding embedded Markov chain. j(s}
denote the sojourn time in state s, eg{S1) = 3. If the embedded Markov chain of the
semi-Markov process is irreducible and recurrent then tlaetfon of time,(s), that
the process spends in s is given by [Wol89]:

__ p(-N(y)
Zseop(s)-M(s)

where@ is the set of all states. For the system in Figure 5(a), we have

1
b= 7_3.y(6'v—3-v2; V1=V, 2-2.v,y—V5 1-2.y+V4 3-6-y+3-V)

W(s)

The throughput of a transition t is the probability of beingabled in the steady
state divided by its delay(t). Let us compute the throughput af tSince § is en-
abled at 3, A4, 5, 5, and g, the probability of being enabled is pr@dgnalits)) =
W(SL) + W(S4) + W(S5) + W(SB) + W(S7). According to the enabling operational
law [CAC™95](see Equatiorf3)) we obtain:

_ prob(enalits)) 1 6-3-y 2-y
Thita) = 3(ta) T3 7-3y 7-3vy

which by Proposition 2 is the throughput of all transitions.

4 Throughput bounds

This section shows how to formulate a linear programminglem to compute an
upper bound for the steady state throughput 6GMG.

4.1 Linear relationships

As stated in Section 2, it is assumed that every transititbreeis simple, i.e., it has
only one guard, or has singleton guards, i.e., each guan@iosronly one place. We
will discuss two kind of linear relationships: one for megtiarded transitions, one for
simple transitions.

Lett be a multi-guarded transition of BGMG, 9(t) its delay, andprob(enalit))
the probability ot to be enabled during the steady state. In other wqrdd)(enalit))
is the time ratio during whichis enabled. Since transitions have deterministic delays
and operate under the single server semantics, the enaiplérgtional law [CAC 95]
fortis:

3(t)- Th(t) = prob(enak(t)) foranyteT 4)

After a number of algebraic manipulations, the vajueb(enakt)) can be ex-
pressed in terms of the marking of the input places df particular, a useful expres-
sion is given by Theorem 3, which provides a linear relatigm&etween the through-
put of a multi-guarded transition and the average markiritsafput places.

Theorem 3 Lett be a transition with singleton guards, then:

30 Th) = 3 a((p)- (m(p) - i(i—l)-prob<m<p>=i>)

pe’t =

Proof: See Appendix. |

10

Corollary 4 Lett be a transition with singleton guards, then:

J(t)- Th(t) < Z a({p}) -m(p) (5)
pe’t

Moreover, if the input places of t are 1-upperbounded then:

3(t) - Tht) = Z a({p})-m(p) (6)
pe°t

Notice that neither Theorem 3 nor Corollary 4 require theutnqgaces ot to be
lowerbounded. Moreover, the conditions required to apbBsé results are purely
local: It does not matter whether the rest of the places anadbed or not.

On the other hand, each pdip,t} wherep® =t is a simple transition can be
seen as a simple queuing system for which Little’s formul&6[l] can be directly
applied [CS92]:

R(p) - Th(t) =m(p) ()

whereR(p) is the average residence time at placé.e., the average time spent by a
token inp. The average residence time is the sum of the average wéitiegdue to a
possible synchronization delay and the average serviauihich in our case i§(t).
Therefore the service timit) is a lower bound for the average residence time. This
leads to the inequality:

o(t)-Th(t) <m(p) for every input placep of a simple transition (8)

4.2 Linear programming and throughput bounds

One can combine the above constraints on the throughput mnidecaverage mark-
ing, (5) and (8), to build a Linear Programming Problem (LERY maximizes a pa-
rameterp, corresponding to thEGMG throughput [JCK06]. One scalar variable suf-
fices since the throughput of all transitions is the samep@sition 2). LetT; be the
set of multi-guarded transitions, aiigl the set of simple transitions. Transitions with
only one input place can be included eithefTinor in T,. The resulting LPP can be
expressed as:

Maximize (p'

9)

Z ({p})-M(p) foreveryte Ty
pe
rﬁ(foreverype°T,

+C-

5(t)- ¢

P)
o]

63)

zo, 0>0

whereo represents the firing count vector that drives the system fhe initial mark-
ing, mo, to the estimated average markifig

We will now perform some manipulations on (9) in order to aiveamore intuitive
LPP. Let’tj = {p1,..., pn} foragiventj € To. Thetermy ,_e; a({p})- m(p) in (9) can
be substituted by a single variabfe; such thatmj = 3 ey a({p})-m(p). This is
equivalent to substituting the rows ofy, Pre andPostcorresponding td p1, ..., pn}

11

by a single row that is a linear combination of them (in suclinadr combination
the weight of the row corresponding 1@ is a({pi})). Let mqg, Pre;, Post and
C; = Post — Pre; be the arrays obtained after performing such a substitutiothe
set of input places of every multi-guarded transition.

At net level such a substitution can be seen as a net tranafiamthat produces
“real weighted arcs”: Figure 6 shows the graphical inteigitien of the transformation.
Notice that the obtained net is noMG any more. We will just focus on the algebraic
consequences of the transformation.

t2 t2

n@y o, (P IO

e .

Figure 6: Transformation rule for the system in Figure 5. Théti-guarded transition
t; has two guards with probabilitiggand 1—y. The weight of the arcétz, p1) and
(t4, p1) of the transformed net arg:and 1.

The LPP (9) can be expressed as:

max @| ¢-D <mgr +C;-0, ¢>0,0>0} (10)
whereD(p) = d(p°®). Let us defing = (_lp ando’ = %, then (10) becomes:

min{p|D<p-my+C;-0,p>00>0} (11)
The dual of (11) is:
maqy-D[y-Cr<0,y-mg <1, y>0} (12)

One theorem of the alternatives [Mur83] states that > 0 such thatC; - x > 0
iff ¥y >0 such thay-C, <0 theny-C; = 0. Since we are dealing with consistent
systems, there exisks> 0 such thatC, - x > 0, thereforey - C, < 0 can be replaced by
y-Cy = 0. Furthermore, since the objective functipnD is maximized, the solution
must satisfyy - mo, = 1 (otherwise a “more optimal” solution is possible wighy,

B=1/(y-mor)).

Theorem 5 Let N be aTGMG. LetC,, D) andmg, be the matrices obtained after
performing the above transformation rule. Uebe the solution of:

r:max{yD|y(cl’:07ym0f:17y20} (13)
1
Then, Tlit) < r foranyteT.
Proof: Let us first show that the LPP is feasible and bounded.

(Feasible) In [Sil93] it is shown that every place of a stigngpnnectedG be-
longs to a P-semiflow. The described net transformationttutes sets of rows of

12

by a linear combination of them, then after the transforaragivery place still belongs
to a P-semiflow. Let us take any P-semiflguof the transformed net and normalize
it to satisfyy-mg, = 1. Then,y satisfies all constraints of the LPP. Hence, the LPP is
feasible.

(Bounded) Given that we are considering IB&Gs, every cycle, i.e., P-semiflow,
contains at least one token (Theorem 1). Then, the norntializg - mo, = 1, prevents
any P-semiflowy from tending to infinity.

Given that at least one transition has strictly positiveagésee assumption below
Definition 5), the value of will be always strictly positive, that is/T is never infinity.
The constraints in the LPP have been obtained from exprestiat upper bound the
throughput for each transition. Hence, the solution of tR€lproduces an upper bound
for the throughput.]

This way, the computation of an upper bound for the througbpo be computed
in polynomial time by solving the LPP (13), which actuallypresents a search for the
bottleneck P-semiflow of the transformed net.

Although, in general, the solution of (13) gives an upperrbfor the throughput,
there are two particular cases for which it gives the exaothput.

Corollary 6 LetN be aTGMG such that for every & T, t is simple and®*t| = Lort
is multi-guarded and has singleton guardsNfis 1-upperbounded thety ", wherel”
is the solution of(13), is the exact throughput of tHeEGMG.

Proof: Assume that for everye T, t is simple and*t| = 1 ort is multi-guarded and
has singleton guards. Then the transformed net (see alansfdrmation rule) has no
synchronizations, i.e., for evetye T it holds that|*t| = 1. Then, the net has only
one P-semiflow. In other words, there is a unique vegtitrat satisfies the constraints
in the LPP. Given that those constraints must be satisfiethdpystem, the solution
associated to such a vector must be the real throughput sf/gtem. O

Corollary 7 LetN be a 1-upperboundefGMG with simple transitions only. Then,
1/T, whererl is the solution of(13), is the exact throughput GIGMG.

Proof: This is a well known result in marked graph theory [Ram74, BH8 O

Example 3 Let us consider again the 1-bounde@MG in Figure 5 where the delays
ared=(3;1;1;3. The values aig, andC;, for the transformed net (see Figure 6) are:
mo =(1; 0; 0;) andC,=(-1 y 0 1y;1 -1 0 0;1 0-1 0;0 O 1 -1).
Then, t2he value of/I" of the solution of the LPR13) associated to thi§GMG is:

1 -y
r 7-3.y
chain analysis. The solution obtained by the LPP is necégghe exact throughput
since the condition of Corollary 6 is fulfilled.

, which corresponds exactly to the solution obtained with karkov

5 System bottlenecks

It has been shown that linear programming can be used toegffigibound the steady
state throughput of #GMG. This section presents a method to estimate more accu-
rately such throughput. The main idea of the method is toiolatamall subsystem,
i.e., a system bottleneck, from a giveé@MG that approximates the throughput of the
TGMG. The method takes a subnet obtained from the solution of I9pBq the ini-

tial system bottleneck. Then an iterative process enlasgels initial bottleneck. The
iterative process makes use of the concepts of basic betawiatight marking. Sub-
section 5.1 introduces the concepts of basic behavior ghtiriarking. The iterative
method to compute a system bottleneck is discussed in Sidis&c2.

13

5.1 Basic behaviors and tight marking

Informally, a basic behavior of 8&GMG is the behavior exhibited by the system when
the probabilities of all the guards are set either to 0 or tsm1hjs section the proba-
bilities of the guards are allowed to be 0). For instancestfstem in Figure 5 has two
basic behaviors: whep= 1 the system behavior is equivalent to the lbpg- {t1,t2},
wheny = 0 it is equivalent to the loofy = {t1,t3,t4}. For our purposes, it is useful to
consider basic behaviors of subnets. In these basic bekawity the multi-guarded
transitions in the subnet have probabilities 0 or 1 in theiargls, the rest of multi-
guarded transitions are taken as simple transitions.

Definition 8 (Q(Ns)) Let N; be a subnet of a giveMGMG N. Q(Ns) is the set of
probability functions that assign to each guard ipéitherO or 1.

P10 .tg
Pe - ~@Pr@pPs (P
v >@
o TNV X
P9 Q‘H*O Ps O Ps

Figure 7: ATGMG with two basic behaviors.

(O b1

In other words, eacto € Q(Ns) represents a basic behavio™f Consider the system
in Figure 7 with all delays equal to 1. Let us assume taits defined by the places
{Pa, Ps, Ps; P7, Ps, Po}. Then,Q(Ns) contains two elementsy andwy, such that

w1({ps}) =0, ({ps}) =1, wp({ps}) = 1 anduwp({ps}) =0

Definition 9 (N(Ns,w)) Let N; be a subnet of a giveMGMG N. For a given
w € Q(Ns), N(Ns,w) is the TGMG N in whicha({p}) = w({p}) for every pe Ns,
and every transition t not in Ns taken as non guarded, i.e., t is a simple transition.

Consider again the system in Figure 7 with andw, as defined above. Then,
N(Ns,) is the whole net in Figure 7 witb({ps}) = 0 anda({ps}) = 1 (N(Ns, ()
is also the whole net witti({ps}) = 1 anda({ps}) = 0)

Given a basic behavian € Q(Ns) of subnetNs, the throughput oN(Ns, w) is
denoted adl h,. We say that the cycl® of a N(Ns,w) is critical if it fulfills the
following equality:

ngmo(p)
Th,=~—>~
he, 0 (14)
teQ

SinceN(Ns, w) evolves as a conventional tim&tis, critical cycles and hy, can be
computed in an efficient way [Kar78,DG98]. The throughputlf@ system in Figure 7
for wy is Thy, =0.25.

Notice that ifa({p}) = 0, p never constraints the firing @®. In other words, ifp
is removed the evolution of the system keeps the same. Ifagvaces are removed,
i.e.,a({p}) =0, the resulting net might consists of several non-conicemienponents
that would evolve independently. To avoid this phenomeitomill be assumed that
those places not reachable from the critical cycle are reahéomN(Ns, w), i.e., for
every placep in N(Ns,w) there is a directed path from the critical cyclegto

14

Definition 10 (Tight marking) A markingm such tham e RIPl is called atight mark-
ing of a given NNs,) if it satisfies:

emM=mg+C-0
e 3(p°) - Thy < a({p}) -m(p) for every p
¢ for eacht there exists @ °t such tham(p) = d(p*) - T hy

For instance, a tight marking foN(Ns,w1) (where N is the net depicted
in Figure 7 and the values foey are wi({ps}) = 0 and wi({ps}) = 1) is
m = (0.5; 0.25; 0.25; 0.25; 0.75; 0.25; 0.25; 0.25; 0.25; 0.25; 0.75).

Notice that the average markingy, of N(Ns, w) fulfills the first two constraints
of Definition 10. Hence, it makes sense to take the tight magrkis an estimate for
the average marking. The places satisfying the last equafiop) = 6(p*) - T hy,, are
calledtight places, and can be seen as the actual throughput constrEigits$ places
will be used by an iterative process to build a system bagti&n

A tight marking of a giverN(Ns, w) can be obtained by means of a linear program-
ming problem.

Proposition 8 A tight markingm, of a given NNs, w) can be computed by solving the
following LPP:

MaximizeXo :
Mm=mg+C-0o
3(p*)-The < a({p})-f(p) forevery p
o(ta) =k

(15)

where } is a transition that belongs to a critical cycle and k is anglreonstant number.

Proof: a) proves that the LPP is feasible and bounded. b) proveitdablution is a
tight marking.

a) The set of solutions that satisfy the first two constramtsot empty, e.g., the
average marking satisfies them. SinceNifNs, w) the vectorl is a right annuller of
C, a markingm = mo + C - o can be obtained with any firing sequer@e=0+j -1
wherej is a real number. Hence, the third constraifi) = k can also be satisfied by
the average marking. Therefore, the LPP is feasible.

The third constraint forces(ta) = k. Let p €t andp*® is a simple transition or
a({p}) > 0. Thena(p*) cannot tend to infinity, otherwisa(p) would tend to mi-
nus infinity and the second constraéifp®) - Thy, < a({p}) -M(p) would be violated.
Since we assumed that MiNs, w) every place is reachable from the critical cycle this
reasoning can be extended to the rest of placég M, w).

b) Sincet, is in a critical cycle, there exists a plapes °ta such thatp is in the
same critical cycle. Hence, in order to satisfy (14) and #eoad constraint in (15),
the solution of the LPP will fulfill tham(p) = 8(p*) - Th,. Given that the objective
function o is maximized, for every transitionin N(Ns,w) there will necessarily
existp € *t such tham(p) = &(t) - T hy, (otherwiseo(t) could be greater). Hence, the
obtained markingn is a tight marking.]

5.2 Computing a system bottleneck

Subsection 4.2 showed that solving LPP (13) can be intexgiaet a search for the bot-
tleneck P-semiflow in the transformed net. Once the LPP igesblthe places of such

15

bottleneck are given by the componenty tifiat are positive. That is, a plapdelongs
to the bottleneck iff in the solution of the LPP it holds tly@p) > 0; consequently a
transitiont belongs to the bottleneck iff the platebelongs to the bottleneck.

Recall that in the transformed net the input places of eadti-guarded transition
were merged into a single one, see Figure 6. Hence, the hetkeof the original
net must include every place that after the transformatiesylted in a single place
included in the bottleneck. For instance,pf in Figure 6(right) is included in the
bottleneck, therp; and p3 of the original net, i.e., Figure 6(left), must be included i
the bottleneck.

The subnet composed of the places and transitions in thiehetk computed by
LPP (13) will be denoted asy,. We will now present a fix point algorithm in whidk,
is taken as the initial bottleneck net of the system, and lizrgad in order to obtain a
subnetN;,, that approximates the throughput of the whole system.

The algorithm starts by exploring the different basic betwws/of N,. For each
basic behaviow, a tight marking is computed. The tight plages.e., places fulfilling
m(p) = d(p°®) - the, are considered as constraints for the throughputafd therefore
they are included in the new bottlenek After exploring the basic behaviors, the
strongly connected component (SCCINyfis taken as the seed for the next iteration.

Algorithm 9 (Computing a system bottleneck)
Input: Ny
Output: N,
Nz = Ny
Repeat
Ny = N,
for each w e Q(Ny) of Ny
Compute my, and T hy, of N(Ny, w)
N, = N,U{p|pis a tight place in M}
end_for
Nz = SCANy)
until Nz = Ny

Example 4 Leta({ps}) = 0.25for the system in Fig. 7, then the set of places jrisN
{Pa, Ps, Ps; P7, P8, Po}. The first inner iteration of the algorithm computes the tigh
marking foron (w1({ps}) =0, wm({ps}) = 1), whose tight places argpz, ps, p4, Ps,
P7, Ps, Pa, P1o}-

The second inner iteration takes, (wz({ps}) = 1, wi({pe}) = 0), and obtains
these tight place$pi, p2, Ps, Ps, P7, Ps, P9, P10} Hence, at the end of the inner loop,
N, contains all places but . Therefore, g is removed from Nwhen the strongly
connected component is computed. Neithgmupr p;1 will be added to MNin the next
outer iteration, and the algorithm will finish. In fact,;pdoes never constrain the
firing of its output transitions. It can be checked that thensal is obtained if one
takesa({ps}) > 0.5, which implies that pis { p1, p2, ps}.

The number of basic behaviors oT&MG is |'|T |G(t)| where|G(t)] is the number
te

of guards oft. Hence, the number of basic behaviors to explore might ebgss the
algorithm executes. Moreover, the subNgemight not be very useful if it is very large.
Itis, of course, possible to stop the execution of the athoriwhen the size df, or
the number of basic behaviors to explore reach a given liffiite subnetN, can be
seen as the part of the net in which design efforts must besémturable 2 shows, for
a set ofTGMGs, the size of the obtained bottlenecks and their associt¢ady state
throughputs.

16

6 Experimental results

This section is divided into two subsections: the first oqors the results concerning
the computation of throughput bounds via linear prograngysee Section 4; the sec-
ond one refers to the throughput of the system bottleneakgated by the algorithm
in Section 5.

The experiments have been performed on a set of circuits fatm the ISCAS-89
benchmarks [BBK89]. The largest strongly connected corapbof each circuit is
taken and transformed intol@GMG as follows: a) each node is taken as a transition
and each arc as a place; b) a place is initially marked withtoken with a probability
of 0.25; b) the deterministic delay of each transition is assigméformly random from
the interval[0, 1]; c) a transition is taken as multi-guarded, i.e., as a meltgr, with
probability 025; d) each input place of a multi-guarded transition is tede a guard;
e) the probability of each guard is assigned uniformly randi@m the interval0, 1);

f) the TGMG is made 1-upperbounded as discussed in Section 2. The siomslavere
carried out using the independent replication method [lBph@w07]. The precision
of the computed throughput was set to 1% with a confidence &v@5%. All the
experiments were performed in Matlab 7.3 environment nogrin Linux in a 20
GHz processor.

6.1 Throughput bounds

Section 4 showed that an upper bound for the throughpuT@MG can be computed
in polynomial time by solving the LPP (13). One can also abtiower throughput
bound for aTGMG just by considering all transitions as non-guarded, and tioen-
puting the throughput of the resulting conventional margesbh. This computation
can be efficiently carried out [DG98]. Table 1 reports theadi®d throughput bounds,
the committed errors with respect to the real throughputeflystem and the required
CPU times.

Circuit Throughput CPU time
Name [P| [T|] | LowLP UpLP | MeanLP Sim Err | LPcpu Simcpu
s27 136 58 | 0.2252 | 0.2847 0.2549 | 0.2699 | 5.55% | 0.13s| 163.32s
s208 66 30 | 0.4182| 0.5714 0.4948 | 0.5465| 9.46% | 0.05s| 156.61s

s349 442 180 | 0.2637 | 0.2637 0.2637 | 0.2637 | 0.00% | 0.21s| 562.72s
s382 172 68 | 0.1389| 0.1523 0.1456 | 0.1522| 4.32% | 0.26s| 114.13s
s386 778 306 | 0.1436 | 0.2518 0.1977 | 0.2364 | 16.37% | 0.52s| 956.51s
s400 180 70| 0.4663 | 0.5224 0.4944 | 0.4949| 0.11% | 0.34s| 386.43s
s444 204 78 | 0.4125| 0.4337 0.4231 | 0.4274| 1.02% | 0.39s| 378.15s
s510 | 2416 904 | 0.2335| 0.3004 0.2670 | 0.2691| 0.79% | 8.03s| 4664.03s
s526 278 118 | 0.2001 | 0.3500 0.2751 | 0.3429 | 19.78% | 0.13s| 447.40s
s713 654 264 | 0.3292| 0.3476 0.3384| 0.3379| 0.15% | 0.42s| 1129.42s
s820 | 2740 1056| 0.2489 | 0.3510 0.3000 | 0.3105| 3.40% | 9.32s| 6640.29s
s832 | 3062 1186| 0.1329 | 0.1329 0.1329 | 0.1329| 0.00% | 9.78s| 3411.44s
s953 982 388 | 0.3202 | 0.3412 0.3307 | 0.3246| 1.88% | 0.84s| 1751.89s
s1423 | 2582 976 | 0.1842| 0.2106 0.1974 | 0.2085| 5.34% | 1.81s| 4063.12s
s1488 | 3718 1420| 0.2340 | 0.2759 0.2549 | 0.2615| 2.49% | 20.28s| 8818.12s
s1494| 3712 1420| 0.1420 | 0.2632 0.2026 | 0.2168 | 6.55% | 15.28s| 7341.48 s

Table 1: Throughput bounds obtained by linear programming.

The columngP| and|T| are the number of places and transitions of TI&EMGs.
The value of the obtained lower and upper bounds are showolimns LowLP and
UpLP. The column MeanLP stands for the averfgavLP+ U pLP)/2 which is taken
as the estimation for the system throughput. The column Sitiha throughput of the

17

system obtained by simulation. The relative error yieldgdeanLP with respect to
the middle point of the confidence interval given by Sim isoréed in Err. The columns
LPcpu and Simcpu express CPU times, in seconds, requirazhtpute MeanLP and
Sim.

One of the main advantages of using an LPP to obtain a thrat@lopind is that its
complexity is polynomial, and, in general, provides a gopgraximation to the real
throughput. Thus, it is a suitable method for fast systentuesin.

6.2 System bottlenecks

Table 2 illustrates the results obtained after applyingofithm 9 on the circuits of
the previous subsection. The following heuristics has Hekbowed: The maximum
number of basic behaviors considered is limited to the eapilon of 5 multiplexers in
Nz. When there are more than 5 multiplexerdinonly those with probabilities closer
to 0.5 are explored, the rest are handled in the same way as in)PP (9

Circuit System bottleneck Throughput CPU time

Name | |[sbA |sbT| | Reduc sbcpu| sbSim Err | sbSim Sim
s27 30 23| 27.3% 24s| 0.2762| 2.33% | 33.8s| 163.3s
s208 31 22| 55.2% 0.9s| 0.5491| 0.46% | 66.7s| 156.6s
$349 6 6| 1.9% 0.8s| 0.2637 | 0.00% 71s| 562.7s
s382 12 11| 9.6% 0.7s| 0.1522| 0.00% 80s| 1141s
$386 66 48 | 10.5% 54.2s| 0.2377| 0.54% | 63.1s| 956.5s
s400 61 43 | 41.6% 9.9s| 0.4953| 0.08% | 120.0s| 386.4s
s444 41 30 | 25.2% 55s| 0.4292| 0.40% | 70.0s| 378.1s
s510 122 102| 6.7% | 593.2s| 0.2647| 1.66% | 147.8s| 4767.5s
s526 13 11| 6.1% 0.7s| 0.3456| 0.78% | 19.0s| 447.4s

s713 194 134| 35.7% | 308.9s| 0.3476| 2.87% | 287.1s| 1129.4s
s820 133 112| 6.5% | 506.8s| 0.3058| 1.54% | 174.1s| 6640.2s
s832 12 12| 0.6% 19.3s| 0.1329| 0.00% 7.2s| 3411.4s
s953 113 85| 14.5% 56.0s| 0.3246| 0.01% | 155.8s| 1751.8s
s1423 120 89| 5.9% | 1128.1s| 0.2062| 1.10% | 104.8 s| 4063.1s
s1488 190 167| 6.9% | 765.6s| 0.2507 | 4.30% | 228.5s| 8818.1s
s1494 368 293| 12.9% | 916.5s| 0.2167 | 0.04% | 398.3s| 7341.4s

Table 2: Throughput approximations obtained with systettidrtecks.

The columngsbR and|sbT| are the number of places and transitions of the sys-
tem bottleneck. The column Reduc expresses the reductiim itais computed as
100- (|sbA + |sbT])/(|P| + |T|). The column sbcpu stands for the CPU time spent to
compute the system bottleneck. The throughputs, compytethiulation, of the sys-
tem bottlenecks are presented in sbSim (the throughputseobtiginal systems are
shown in Table 1). The column Err is the relative error of th8im with respect to
Sim in Table 1. The CPU times to simulate the system bottleaad the original sys-
tem are shown under the title 'CPU time’ (sbSim for the boitiek system, Sim for the
original one). All CPU times are expressed in seconds.

The exploration of at most 5 multiplexers limits the time exion of the algorithm
and the size of the system bottlenédk This way, some “relevant” places might not
be included inN,, causingN; to have a similar, not equal, throughput to the original
system throughput. However, from a practical point of vigwan be worth dealing
with a much smaller, yet representative, net at the costsrigpsome precision.

18

7 Conclusions

In conventional marked graphs a transition cannot fire waitiits input places are
marked. This constraint turns out to be excessively résteievhen modeling the be-
havior of actions that only require a subset of input eleménstart performing. Typ-
ical examples of this behavior are found in electronic dis;Le.g., a multiplexer can
yield an output as soon as the selected input arrives. The ofanulti-guarded marked
graphs extends the modeling power of marked graphs to ejtese behaviors.

A timed multi-guarded marked graph evolves as a semi-Magkoeess. Thus,
it is theoretically possible to compute the exact throughgfua system by solving
its embedded Markov chain. Unfortunately, the state expfoproblem prevents, in
practice, the use of this approach. Two different methode lieeen developed that
avoid the state explosion problem and estimate the systemghput. The first method
makes use of an algebraic expression that relates the tmpougf a transition and the
average marking of its input places. This expression allomss to easily establish a
linear programming problem whose solution is an upper bdanthe throughput.

The second method is a heuristics that extracts from a timdd-guarded marked
graph a bottleneck with similar throughput. The heurisigsaaspired by conventional
marked graphs, in which the throughput of a critical cycledsial to the throughput
of the whole system. The method is based on the solution dfrtbar programming
problem to compute throughput bounds and on the concemlafrinarking.

References

[BBK89] F. Brglez, D. Bryan, and K. Kozminski. Combinatidmaofiles of sequen-
tial benchmark circuits Circuits and Systems, 1989., IEEE International
Symposium grpages 1929-1934 vol.3, May 1989.

[BC99] D. Bertsimas and T. Chryssikou. Bounds and policiesif/namic routing
in loss networksOper. Res.47(3):379-394, 1999.

[CACT95] G. Chiola, C. Anglano, J. Campos, J. M. Colom, and M. Si@perational
Analysis of Timed Petri Nets and Application to the Compiotaof Per-
formance Bounds. In F. Baccelli, A. Jean-Marie, and |. Mitraditors,
Quantitative Methods in Parallel Systenpages 161-174. Springer, 1995.
Also appears in Procs. PNPM93.

[CS92] J. Campos and M. Silva. Structural Techniques antbfeance Bounds
of Stochastic Petri Net Models. In G. Rozenberg, edialvances in Petri
Nets 1992volume 609 ol ecture Notes in Computer Scienpages 352—
391. Springer, 1992.

[DG98] A. Dasdan and R. K. Gupta. Faster maximum and minimusamcy-
cle algorithms for system performance analysiEEE Transactions on
Computer-Aided Desigri7(10):889-899, 1998.

[DK98] I. Demongodin and N. T. Koussoulas. Differential Petets: represent-
ing continuous systems in a discrete-event wotlHEE Transactions on
Automatic Contrql43(4):573-579, April 1998.

[JCKO06] J. Julvez, J. Cortadella, and M. Kishinevsky. Berfance analysis of
concurrent systems with early evaluation. Rroc. International Conf.
Computer-Aided Design (ICCADNovember 2006.

19

[Jul09]

[Kar78]

[KK94]

[Kob78]

[Law07]
[Lit61]

[Liugs]

[LPO5]

[Mur83]
[Mur89]

[MY90]

[OMO5]

[Ram74]

[RH80]

[Sil93]

[Wol89]

[YCT84]

Jorge Julvez. Basic qualitative properties of ipgtts with multi-guarded
transitions. IPAmerican Control Conference, 2009. ACC 'O%ages 5026—
5031, June 2009.

R. Karp. A characterization of the minimum cycle mea a digraph.
Discrete Mathematic23:309-311, 1978.

S. Kumar and P.R. Kumar. Performance bounds for gurgueetworks
and scheduling policies. Automatic Control, IEEE Transactions pn
39(8):1600-1611, Aug 1994.

H. Kobayashi.Modeling and Analysis. An Introduction to System Perfor-
mance Evaluation Methodologpddison Wesley, 1978.

A. M. Law. Simulation Modeling and AnalysidcGraw-Hill, 2007.

J. D. C. Little. A proof of the queueing formule= A W. Operations
Research9:383-387, 1961.

Z. Liu. Performance Analysis of Stochastic Timed#Palets using Lin-
ear Programming ApproactEEE Transactions on Software Engineering
24:1014-1030, 1998.

T.E. Lee and S.H. Park. An extended event graph witfatiee places and
tokens for time window constraintslEEE Transactions on Automation
Science and Engineering(4):319-332, Oct. 2005.

K. G. Murty. Linear Programming Wiley and Sons, 1983.

T. Murata. Petri Nets: Properties, Analysis and Aggtions. Proceedings
of the IEEE 77(4):541-580, 1989.

T. Murata and H. Yamaguchi. A Petri net with negatieé¢ns and its ap-
plication automated reasoning. Proceedings of the 33rd Midwest Sym-
posium on Circuits and Systepw®lume 2, pages 762—765, Aug 1990.

N. G. Odrey and G. Mejia. An augmented Petri Net apphofor error
recovery in manufacturing systems control. Rebotics and Computer-
Integrated Manufacturing. 14th International ConferermeFlexible Au-
tomation and Intelligent Manufacturingvolume 21, pages 346—354,
August-October 2005.

C. Ramchandani. Analysis of asynchronous conotisystems by timed
Petri nets. Technical Report Project MAC Tech. Rep. 120,ddalsusetts
Inst. of Tech., February 1974.

C. V. Ramamoorthy and G. S. Ho. Performance Evalunatib Asyn-
chronous Concurrent Systems Using Petri NEEEE Trans. on Software
Engineering 6(5):440-449, 1980.

M. Silva. Introducing Petri Nets. IRractice of Petri Nets in Manufactur-
ing, pages 1-62. Chapman & Hall, 1993.

R. W. Wolff. Stochastic modeling and the theory of queu®ntice Hall,
1989.

D. D. Yao, M.L. Chaudry, and J.G.C. Templeton. On bds for bulk
arrival queues. European Journal of Operational Researctb(2):237—
243, 1984,

20

8 Appendix (proof of Theorem 3)

The proof of Theorem 3 is structured in four parts: first, s@ugiliary definitions are
presented; then, some technical lemmas are introduceuywaiftds, an expression for
the enabling degree is developed; finally, the result is gdo\As stated in Section 2,
everyTGMG is assumed to be bounded and live, and every guard is assonbedat
singleton.

8.1 Auxiliary Definitions

Each input place of a multi-guarded transitioncan be seen as a queue where tokens
are arranged in cells. At a given marking each cell is eitihepty or stores a positive
token or stores a negative token. Figure 8(b) shows theildisn in cells of the
tokens in placep; andp; of Figure 8(a).

432 1« cell index
P1

=

@
P2

(@)

Figure 8: Each place can be seen as a queue where tokensaargeatin cells.

Cells are indexed according to their proximity to the mgitiarded transition, see
Figure 8(b). When a token arrives into a place, it is storatiéncell with lowest index
that is empty or has a negative token. Each cell correspanadditing instance of the
transition. When the transition fires, one token is removenhfthe corresponding cell
of every input place, and a new guard is selected for the radixti.@., for the next fire.

t t tz

1

[% EIEI'! [% mcm [% m:[[% 000
EEEI) EEEE h 10000 h
(d)

Figure 9: Each pair of cells with the same index corresponm@siring instance.

Consider the net in queue-like form in Figure 9 Wiit) = {{p1},{p2}} to show
how the marking of the different cells evolves. Assume that guard for the first
firing of t is { p1} (see above each cell in Figure 9). Thus, the first firing rexpuime
token in p;. Hence,t is enabled in Figure 9(a), and will fire aftéft) time units.
The firing oft removes one token frorp; and one token fronpy. After the firing
of t, the first cell of each place becomes empty, and hence we damsry cell to
the right (this is equivalent to remove the first cell and dase the index of the rest),
see Figure 9(b). Assume that the guard for the second firingsodgain{p; }, then,

t is enabled in Figure 9(b). The second firingtgfroduces a negative token py,
Figure 9(c). Assume that the guard for the third firing &f again{ pz}, then, is not
enabled in Figure 9(c), and will not be enabled until a pesitoken is stored in the

21

corresponding cell op,. If t; fires from the marking in Figure 9(c) it will cancel out
the existing negative token and the cells can be shiftedeeig/int again.

The marking of thé'" cell of p; is denoted am(p;, 1), and the guard for thié" cell
is denoted ag(t,l). The fact that a guard for a given cehas not been selected yet is
denoted byg(t,l) = {}.

For each input placp; of a multi-guarded transition and each dellve define three
boolean functionspiﬁ, piOJ, andp; |, that take a markingn as input argument:

o pi(m) < (m(pi,l) =1Ag(t1) #{})

o py(m) < (m(pi,1) =0Ag(t,1) # {})

o P (M) < (m(p;,1) =—-1Ag(t,1) #{})

For clarity, the argumemn of the above functions will not be shown if it is evident
from the context. We will use the shorthangto denotea({p;i}), and the boolean
variableg; that is true iffg(t,I) = {pi}. The fact thaw(t,l) # {pi} is denoted as

not(gi ;). Consider the next statement to illustrate the use of thredniced notation:
transitiont is enabled atn’ iff there existsp; € *t and a cell such thaip;, (m’) Agi)

(or simply(pij Adi)) given that the argument qnﬁ is clearlym’).
By prob(statement we denote the fraction of timgtatemenholds in the steady
state. For instancegrob(pjfl A pf("l AGk1) is the fraction of time at which the system

marking satisfies thah(p;j,l) = 1, m(pk,1) =0, andg(t,) = {p«}.

8.2 Preliminary Lemmas

The developments in this section focus on cells that havedh®e index. Then, for
clarity, pi'}, p°,, p;}, gi) are shortened tpi", p?, p;’, gi.

Lemma 10 Let(N,mg) be aTGMG system. Lett be a multi-guarded transition of the
TGMG and g, p«, Pq € °t, then it holds that:

prob(p” A gq) = prob(p; A pg A dq) + prob(p; A P Ada) (16)

Proof: If pJ*r holds then the transition has not fired yet. This implies ﬂ&ax p. holds
for everyk € {1,...,n}, what leads directly to the result. O

From (16), the following equations are trivially obtainemt £ver couple of input
places of the multi-guarded transitibn

prob(p;” Agk) = prob(p; A pR A gk) + prob(p] A Adk) Vpj, ket (17)
prob(p;” A gj) = prob(p; A POAG)) + prob(p;” A p Agj) Vpj, Pk € °t (18)

Lemma 11 Let(N,mo) be aTGMG system. Lett be a multi-guarded transition of the
TGMG and pj, p« € °t, then it holds that:

o prob(pf ApRAgG
aj — prob(((p] APV P) AG))

(19)

22

Proof: The proof is based on the semi-Markov process associatédtetTGMG
system. LetH(t) denote the set of states of the semi-Markov process fromhadic
guard fort is selected. For instandé(t1) = {S;, S, S7} in Figure 5(a). Then, among
the successors ¢fe H(t), e.g., stat&s, there arg®t| = n stateshy, ..., h, that only
differ in the guard selected, e.g., stafsandSs, and consequently they can also differ
in the time to fire of transitions.

If the statemen(cpfr A p?) does not hold for any successorttft), then pJ?r —p,is

true in any successor &f(t), consequentlprob(p, Agj) =0 and the lemma trivially
holds. Assume there existsc H(t,l), such that a successby of h exists at which
(P} A PR Ag)) holds, e.g.(pdeA PR/ Gae) holds inSz. Then, a successdy, e.g.,
S, of hthat only differs fromh; in the guard must exists, namelytatthe statement
(P A PR Agk) holds.

Given that the guard selected for cetloes not affect the system evolution neither
from h to hj nor fromh to hy, % is the ratio of visits between stathg andh;. The

j
lemma is true if the time fraction during Whiquj+ A pE/\gk) holds fromhy is not

less than the time fraction during Whi(éh(pfr APV pe) Agj) holds fromh;. The
statemen(pj+ A pfj) will hold from hy until one token is put in cellof px. On the other
ha|r|1::i, tfhe statement(p;” A pd) V p,) Agj) will hold from h; until one token is put in
celll of p.

Statedh;, e.g.,.S3, andhy, e.g.,S, only differ in the guards, and therefore, they can
also differ in the fact that is enabled irh;, and will fire afterd(t) time units, but it is
not enabled ihy. Given that everfTGMG is assumed to be live, every P-semiflow (or
cycle) has a positive number of tokens (Theorem 1). Hencl;, ahdhy the overall
number of tokens in any directed path fraro °®py is at least 1. Then, the first firing
of *px from h; andhy do not require the token thawill produce. In other words, the
time elapsed until one token is put in cebf px does not depend on the guard selected
ath. Therefore prob(pfr A PR Agk) and prob(((pj+ APR)V pr) Agj) are just related by
the probabilities of selectingpx} or { p;} as guard from state. O

In the rest of the section we will assume, without loss of gelitg, that the input
places ot are indexed from 1 ta, i.e.,’t = {p1,...,pn}-

Lemma 12 Let(N,mg) be aTGMG system. Lett be a multi-guarded transition of the
TGMG and g € °t, then it holds that:

n n
a; - prob(p;” A not(g;)) :kzluj -prob(p} A pg Agk) + kzluk - prob(p; A pOA D))
k] k]
n
+ kzlo(k- prob(p, Agj)
k]
(20)

Proof: Equation (17) allows us to expand the temm prob(pj+ A not(gj)) as follows:

n
- prob(pj"A not(g;)) = a; - 5 Prob(pj Ag)
k#]
n
=aj- 3 (prob(p] A PRAGK) + prob(p; A P Adk))

k=1
k#j

23

n n
=34 prob(p;” A py Agk)+ IR prob(p/ ApRAGY) (21)
k] k]
The equality (19) provided by Lemma 11 can be written as:
aj - prob(p; A pRAGKk) > ok prob(p] ApAgj) +ak- prob(p, Agj) (22)

The substitution ofx; - prob(pj+ A pEAgk) in (21) by the expression on the right
of (22) yields:

n n
a;j - prob(p;” A not(g;)) =200 prob(p;” A pg Agk) + 3 e prob(p; A pRAg))
KA k]
n
+ 2 O prob(p A g))
k]

8.3 Enabling of a Cell

In this subsection, we will obtain an expression for the phility thata cell is enabled
A cell | of input places of is said to be enabled 'piil A gj, holds for any input place,

pj, of t. The boolean functiornalit,l) is defined to be true iff cellis enabled. Then,
the termprob(enalit, 1)) is the fraction of time that cellis enabled. More formally:

prob(enalt,|)) = Z prob(pj’; A gj1)
pj€e t

As in the previous developments, we will focus only one tethen for clarity the
subindeX is omitted.

Lemma 13 Let (N, mo) be aTGMG system. Lett be a multi-guarded transition of the
TGMG and g € °t, then:

prob(enaldt,l)) = Z a;j - (prob(p;") — prob(p;) (23)
pje’t

Proof: Let us develogrob(enalit,l)) as follows:

prob(enalit,|)) = pgt prob(p; A gj) = pj;(probmr) ~ prob(p; A not(g;)))

— Z (prob(pj*)—((1—aj)-prob(pj+/\ not(g;j)) +a; - prob(p; A not(gj)))) (24)
pje’t

By Lemma 12, Equation (24) becomes:

24

prob(enalt,l)) = Z (prob(pj*)— ((1—aj)-prob(p; A not(g;))

n n
+ S ak- prob(pf ApRAG)+ S aj- prob(p] A p Adk)
K= &
1 1
n
+ S ak-prob(p, Agj
)3 < 19))
k#]
(25)
In (25) let us swat; - prob(p;” A p; A gk) with ok - prob(p” A p; A gj), and letus

swapa - prob(p, Agj) with a;j - prob(p; Agk). This rearrangement of terms allows
us to express (25) as:

probienatit,l)) = 5 (prob(p;)— ((1—a;)- prob(p; A not(g;))
pje’t
n n
+ 3 ai-prob(pf APRAG)) + 3 ak- prob(pj A py Ag))
1 =
n
+ 5 aj- prob(pj’/\gk)))
k=1
k#]
(26)

Notice that ifp; is selected as guard it cannot become negatively markedthée
firing, i.e., prob(p; A gj) = 0, therefore:

n
> prob(p; Agk) = prob(p;) (27)
K=1
k]
By (27) and (18), Equation (26) becomes:

prob(enalt,l)) = Z (prob(pj*)— ((1—aj) - prob(p; A not(g;))
pje’t
+ 3 ok prob(pf Agj) +aj- pfOb(pT)))
=
= Z (prob(pjﬂ— ((1—aj)- prob(p; A not(g;))
pje’t
+(1—aj)- prob(p] Agj) +a;- prob(pj’)))
=3 (prob(pjﬂ—((1—aj)-pr0b(p,-+)+dj-prob(pﬂ))
pje’t

= S aj-(prob(p}) - prob(p;))
pje't

25

8.4 Proof of Theorem 3

Theorem 3Lett be a transition with singleton guards, then:

[

3(t)-Thit) = Y a({p})- (M(p) - 3 (i=1)-prob{m(p) =)
pe’t I=

Proof: Given that transitiont is enabled when any of its input cells is enabled, the

probability thatt is enabled is:

prob(enalit)) = % prob(enalit, 1))
=1

By Lemma 13 ,prob(enaldt,l)) = >, 0(J (prob(p;;) — prob(p;)), then:
ol : :

Z - (prob(p;;) — prob(pj)))

00

prob(enakt)) Z

=Y aj- (3 prob(p;)) — 3 prob(py,))
p;t |; . |; o
Notice that if the marking op; is greater than 0, then at least one cell has a positive

token, moreover, a guard must be present for the cell witletdwndex containing a
token. More formallym(p;) > 1 — 3 | such thatp;” ;- The reverse is also true: if

a cell has one token and a guard is selected for it then, thikimgaof p; is neces-
sarily greater than 0, i.em(pj) > 1< 3| such thath,I In terms of probabilities

this can be expressed ag prob(pjﬁ) = prob(m(p;j) > 1). On the other hand, the
1=1 ’

) accounts for every negative token i and can be expressed as:

term § prob(p;.
=1

él prob(p;) = éli -prob(m(pj) = —i). Then:

prob(enalt)) = Z aj - (prob(m(pj) >1)— Iiprob(p“))

pje’t

= 2 i Zprob (pj) =1) Zﬂ prob(m(pj) = —i))
pje’t

= 5, - (31 prob(m(py) i)~ 5 (i1)- probim(py) =
pje’t 1= I=

= 3 aj-(m(p) ~ 3 (i ~1)- prob(m(py) =)
pje’t I=
Thus, by Equation (4):

3(t)-Tht) = 3 aj- (M(pj)— Y (i—1)- prob(m(p;) =1))

26

