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Abstract—The theory of regions was introduced in the early nineties as a method to bridge state and event-based models. This paper

tackles the problem of deriving a Petri net from a state-based model, using the theory of regions. Some of the restrictions required in

the traditional approach are dropped in this paper, together with significant extensions that make the approach applicable in new

scenarios. One of these scenarios is Process Mining, where accepting (discovering) additional behavior in the synthesized Petri net is

sometimes valued. The algorithmic emphasis used in this paper contributes to the demystification of the theory of regions as been only

a good theoretical exercise, opening the door for its application in the industrial domain.

Index Terms—Petri nets, transition systems, theory of regions, synthesis, process mining, bisimulation.
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1 INTRODUCTION

STATE-BASED representations, like FSMs [17], I/O Auto-
mata [21], Team Automata [27], or burst-mode automata

[24], among others are typical models of complex systems.
Such formalizations represent the behavior by means of
sequences of events carrying state information. Event-based
specifications like Petri nets [25] or CCS [22], model event
causality, conflict, and concurrency, thus, providing alter-
native information to state-based models often captured in
a more concise form.

The theory of regions [18] provides a bridge between
state- and event-based representations. This theory, which is
now almost two decades old, was introduced to solve the
synthesis problem. This problem consists of transforming a
state-based into an event-based specification while preser-
ving the behavior. More specifically, the theory of regions
was used for transforming a transition system (TS) into a
Petri net. The theory was initially defined for elementary
transition systems deriving 1-bounded Petri nets, whereas in
[11] this restriction was dropped. Mukund [23] extended the
theory of [18] for k-bounded Petri nets with weighted arcs,
while in this paper we extend [11] for the same purpose.

Transforming a transition system into a Petri net is
particularly useful when modeling concurrent systems: the
state-based model (which represents the concurrency
implicitly) can be too complex to understand whereas the
equivalent Petri net (which represents the concurrency
explicitly) is usually a more concise and clear representa-
tion. Moreover, the formal analysis of the model can be
highly alleviated if done at the Petri net level. Examples of
concurrent systems in the real life range from digital circuits

to databases systems. Another useful application of the
synthesis problem comes from the Business Intelligence
domain: business information systems that record transac-
tions (called event logs) might mine a model from the set of
transactions observed in order to realize the processes
underlying the system. This is known as Process Mining. The
available tool support for synthesis based on the theory of
regions is relegated to the academic domain. For synthesis,
we can mention the tools Petrify [11] and Synet [7]. For
process mining, the Parikh language miner [31] (within the
ProM tool) and the ViPTool [5], [4].

In this paper, we provide a uniform approach for
deriving Petri nets from transitions systems, based on the
theory of regions. We extend the synthesis theory of [11]
(only valid for 1-bounded Petri nets) to k-bounded Petri nets.
Second, we show how to derive (mine) k-bounded Petri nets
whose corresponding language includes the one from the
initial transition systems. The practicality of our approach is
demonstrated by providing efficient algorithms, heuristics,
and data structures to implement the methods developed in
this paper. This paper extends the work presented in [9], [8].

1.1 Two Introductory Examples

Let us introduce the two main results of this paper by
means of two simple examples.

Synthesis of k-bounded Petri nets. Fig. 1a shows a TS
with two events a and b (we ask the reader to ignore for the
moment the numbers in states). The language defined by the
transition system is faaa; ab; ba; bbg. From this transition
system, a 6-bounded Petri net can be derived by the theory
developed in this paper, as shown in Fig. 1b. In contrast, if a
1-bounded Petri net is required, more than one transition
with the same label is needed to represent the same behavior,
leading to a Petri net with five transitions and five places.
The theory in this paper extends the one presented in [11],
which was restricted to 1-bounded Petri nets, representing a
significant step toward the use of Petri nets in more complex
scenarios.

Informally, the theory works as follows: the states of the
transition system are collected into regions, which are
multisets satisfying conditions with respect to the set of
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events. Each one of the regions corresponds to a place in
the derived Petri net. For instance, Fig. 1a shows the (only
one) region r corresponding to the place shown in Fig. 1b.
The region is rðs0Þ ¼ 6; rðs1Þ ¼ 4; . . . ; rðs6Þ ¼ 0. The crucial
idea is that r is a region because each event has a
homogeneous enter and exit relation with it: for instance,
each time event a occurs, the cardinality of the state
reached is decremented by two in r. Once the region is
computed, the corresponding place can be created in the
Petri net, and the initial marking and input and output arcs
for the place can be derived: since rðs0Þ ¼ 6, i.e., the initial
state of the transition system has cardinality 6, the initial
marking of the place is 6. Moreover, due to the aforemen-
tioned relation between event a and r, there is an arc with
weight two between the corresponding place and the
transition a in Fig. 1b. The behavior of this net corresponds
exactly to the one described in Fig. 1a.

Mining of k-bounded Petri nets. For some applications,
reproducing exactly the behavior is not a requirement, but to
have instead a clear visualization of what are the main
processes is preferred. Process Mining [29] is a clear
application of this, but many other applications will appear
in the future, given the increasing complexity of software and
hardware-based systems. The theory presented in this paper
for Petri net mining is a first step toward bridging the gap
between the classical theory of region-based synthesis and
real industrial applications. Alternative approaches have
been presented in the last years [5], [31] with the same goal.

Let us use the simple example of Fig. 2a, representing a
3-input OR gate. Although simple, this example illustrates a
typical behavior that cannot be easily represented in a
Petri net: the or-causality between events. The behavior of
this gate can be represented with a transition system of 14
states. However, to reproduce exactly this behavior in a
Petri net requires complex interactions between transitions.
For instance, a 1-bounded Petri net representing the

behavior has 11 places, 17 transitions, and 74 arcs. If a
3-bounded Petri net is synthesized instead, it does not get
significantly better: eight places, eight transitions, and
65 arcs. In contrast to synthesis, Petri net mining can
summarize nicely the most important part of the 3-or gate
by means of a 1-bounded Petri net, shown in Fig. 2b. The
Petri net contains every possible behavior of the gate,
including the correct alternation of every rising and falling
transitions of the signals in the gate (denoted by aþ and a�,
respectively), and the input-output relation. It also shows
additional behavior not observed in the gate: initially the
gate might be in an unstable state by changing infinitely its
state (i.e., trace ðq þ q�Þ� is possible in the initial marking of
the Petri net). In other words, in mining of Petri nets the goal
is in finding a Petri net that can reproduce all observed
behaviors, but extra behavior is allowed. The intention is to
restrict extra behaviors as much as possible and to obtain a
tight overapproximation of the observed behaviors.

1.2 Overall Approach for Synthesis and Mining

Fig. 3 describes the complete flow for k-bounded PN
derivation. The transition system representing the input of
our methods can be obtained from some of the traditional
formalisms to specify a concurrent system (FSM, CSP, CCS),
from graphs describing hardware (State graphs) or also from
event logs [28]. Our approach offers two possibilities for
obtaining the corresponding Petri nets: mining and synth-
esis. In mining, the language formed by the set of feasible
traces in the derived PN (PN1) includes the language of the
transition system. In synthesis, the obtained PN (PN2) has a
reachability graph bisimilar to the transition system. Mining
can be considered as an intermediate step for synthesis [12],
and this is why an arc exists between PN1 and PN2 in Fig. 3.
In this paper, we emphasize the mining due to the
applications that it has for discovering unseen behaviors,
as was demonstrated in the Process Mining area [30], [29].

The organization of the paper is as follows: Section 2
includes the theory needed for the paper. Section 3 shows
how to derive a k-bounded Petri net from a set of k-bounded
regions. Sections 4 and 5 provide two alternatives for
deriving a Petri net, depending on the properties to achieve
(language inclusion or bisimilarity). Section 6 defines an
algorithm for the generation of k-bounded minimal regions.
Section 7 introduces the notion of irredundant cover, to
restrict the set of necessary regions. In Section 8, the
technique of label splitting is presented for the general case,
to force the bisimulation approach of Section 5 to obtain a
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Fig. 1. (a) TS and (b) equivalent 6-bounded Petri net.

Fig. 2. (a) The 3-or gate and (b) mined Petri net.

Fig. 3. Flow for Petri net derivation.



k-bounded Petri net bisimulating the initial TS. Finally,
Section 9 provides experiments of synthesis and mining,
some of them taken from real life applications.

2 BASIC THEORY

2.1 Finite Transition Systems and Petri Nets

Definition 2.1 (Transition system). A transition system
(TS) is a tuple ðS;E;A; sinÞ, where S is a set of states, E is an
alphabet of actions, such that S \ E ¼ ;; A � S � E � S is a
set of (labeled) transitions, and sin is the initial state.

Let TS ¼ ðS;E;A; sinÞ be a transition system. We con-
sider connected TSs that satisfy the following axioms:

. S and E are finite sets.

. Every event has an occurrence: 8e 2 E : 9ðs; e; s0Þ 2 A.

. Every state is reachable from the initial state:
8s 2 S : sin !

�
s.

A TS is called deterministic if for each state s and each
label a there can be at most one state s0 such that s!a s0.
The relation between TSs will be studied in this paper. The
language of a TS, LðTSÞ, is the set of traces feasible from the
initial state. When LðTS1Þ � LðTS2Þ, we will denote TS2 as
an overapproximation of TS1. The notion of simulation
between two TSs is related to this concept:

Definition 2.2 (Simulation, Bisimulation [2]). Let TS1 ¼
ðS1; E;A1; sin1

Þ and TS2 ¼ ðS2; E;A2; sin2
Þ be two TSs with

the same set of events. A simulation of TS1 by TS2 is a
relation � between S1 and S2 such that

. for every s1 2 S1, there exists s2 2 S2 such that s1�s2;

. for every ðs1; e; s
0
1Þ 2 A1 and for every s2 2 S2 such

that s1�s2, there exists ðs2; e; s
0
2Þ 2 A2 such that s01�s

0
2.

When TS1 is simulated by TS2 with relations �, and vice
versa with relation ��1;TS1 and TS2 are bisimilar [2].

Definition 2.3 (Petri net [25]). A Petri net (PN) is a tuple
ðP; T ;W;M0Þwhere P and T represent finite sets of places and
transitions, respectively, and W : ðP � T Þ [ ðT � P Þ ! NN is
the weighted flow relation. The initial marking M0 2 NNjP j

defines the initial state of the system.

A transition t 2 T is enabled in a marking M if
8p 2 P : M½p� �W ðp; tÞ. Firing an enabled transition t in
a marking M leads to the marking M 0 defined by
M 0½p� ¼ M½p� �Wðp; tÞ þWðt; pÞ, for p 2 P , and is de-
noted by M !t M 0.

The set of all markings reachable from M0 is called its
reachability set. The reachability graph of PN (RG(PN)) is a
transition system in which the set of states is the reach-
ability set, the events are the transitions of the net and a
transition ðM1; t;M2Þ exists if and only if M1 !

t
M2. We use

LðPNÞ as a shortcut for LðRGðPNÞÞ.

2.2 Multisets

In general, a region in a TS is a multiset where additional
conditions hold [23]. We recap in this section the main
definitions and operations on multisets. From now on, we
will assume a TS ¼ ðS;E;A; sinÞ providing the necessary
context for the corresponding definitions.

Given the set S, a multiset r of S is a mapping r : S �! NN.
We will also use a set notation for multisets. For example, let
S ¼ fs1; s2; s3; s4g, then a multiset r ¼ fs3

1; s
2
2; s3g corre-

sponds to the following mapping rðs1Þ ¼ 3, rðs2Þ ¼ 2,
rðs3Þ ¼ 1, rðs4Þ ¼ 0. The support of r (suppðrÞ) is defined as
fs 2 SjrðsÞ > 0g. The power of r (r�) is maxs2SrðsÞ. For
instance, for r ¼ fs3

1; s
2
2; s3g, suppðrÞ ¼ fs1; s2; s3g and r� ¼ 3.

The union, intersection, and difference of two multisets r1

and r2 are defined as follows:

ðr1 [ r2ÞðsÞ ¼ maxðr1ðsÞ; r2ðsÞÞ;
ðr1 \ r2ÞðsÞ ¼ minðr1ðsÞ; r2ðsÞÞ;
ðr1 � r2ÞðsÞ ¼ maxð0; r1ðsÞ � r2ðsÞÞ:

A multiset r is said to be trivial if rðsÞ ¼ rðs0Þ for all s, s0 2 S.
The trivial multisets will be denoted by 0;1; . . . ;K when

rðsÞ ¼ 0, rðsÞ ¼ 1; . . . ; rðsÞ ¼ k, for every s 2 S, respectively.
Multiset r is k-bounded if for all s 2 S : rðsÞ 	 k. The

multiset r1 is a subset of r2 (r1 � r2) if 8s 2 S : r1ðsÞ 	 r2ðsÞ.
As usual, we will denote by r1 
 r2 the fact that r1 � r2

and r1 6¼ r2. The k-topset of r, denoted by >kðrÞ, is defined

as follows:

>kðrÞðsÞ ¼
rðsÞ; if rðsÞ � k;
0; otherwise:

�

and k is the degree of such k-topset. Multiset r1 is a topset of

r2 if there exists some k for which r1 ¼ >kðr2Þ. For example,
the multiset fs3

1; s3g is a subset of fs3
1; s

2
2; s3g, but it is not a

topset. The multisets fs3
1; s

2
2g and fs3

1g are the 2 and
3-topsets of fs3

1; s
2
2; s3g, respectively.

2.3 General Regions

Given a multiset r, the gradient of a transition ðs; e; s0Þ is
defined as �rðs; e; s0Þ ¼ rðs0Þ � rðsÞ. An event e is said to
have a nonconstant gradient in r if there are two transitions

ðs1; e; s
0
1Þ and ðs2; e; s

0
2Þ such that �rðs1; e; s

0
1Þ 6¼ �rðs2; e; s

0
2Þ.

As example, consider the following multiset r. Event a has
nonconstant gradient in r, because �rðs0; a; s1Þ ¼ �2 6¼
�4 ¼ �rðs1; a; s2Þ. However, b has constant gradient 1.

Definition 2.4 (Region). A multiset r is a region if all events

have a constant gradient in r.

For instance, the multiset shown in Fig. 1a is a region,
whereas the one shown in the figure above is not a region
due to event a.

The original notion of region from [18] was restricted to

subsets of S, i.e., events could only have gradients in
f�1; 0;þ1g. We say that a region is trivial if it is a trivial
multiset (0;1; . . . ;K). The set of nontrivial general regions
of TS will be denoted by RTS.

Definition 2.5 (Gradient of an event). Given a region r and an

event e with ðs; e; s0Þ 2 E, the gradient of e in r is defined as
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�rðeÞ ¼ �rðs; e; s0Þ:

For instance, in the example of Fig. 1a, �rðaÞ ¼ �2.

Definition 2.6 (Minimal region). A region r is minimal if

there is no other region r0 6¼ 0 such that r0 
 r.

3 DERIVING K-BOUNDED PETRI NETS

This section presents an algorithm that derives a k-bounded
PN from a set of k-bounded regions. The relation between
the initial transition system and the PN will be established
in the next two sections: language inclusion (Section 4), and
bisimilarity (Section 5). First, the following definition
describes these sets of states that must be covered by a
region in order to have an arc in the derived Petri net.

Definition 3.1 (Excitation and switching regions). The

excitation region1 of an event e;ERðeÞ, is the set of states in

which e is enabled, i.e.,

ERðeÞ ¼ fsj9s0 : ðs; e; s0Þ 2 Eg:

The switching region of an event e, SRðeÞ, is the set of states

reachable from ERðeÞ after having fired e, i.e.,

SRðeÞ ¼ fsj9s0 : ðs0; e; sÞ 2 Eg:

For convenience, ERðeÞ and SRðeÞwill be also considered as

multisets of states when necessary. As example, in the TS

shown in Fig. 4a, ERðaÞ ¼ fs1; s3; s6g and SRðaÞ ¼ fs2; s5; s7g.
Definition 3.2 (Pre- and postregions). A region r is a

preregion of e if ERðeÞ � r. A region r is a postregion of e if

SRðeÞ � r. The sets of pre- and postregions of an event e are

denoted by �e and e�, respectively.

Intuitively, pre- and postregions will be represented by
predecessor and successor places of the event in the derived
PN. Following the example of Fig. 4, the region r3 is a
preregion of a, whereas r6 is a postregion of a. Next, we
define the basic objects that will be used to establish the
weight on the arcs in the derived PN:

Definition 3.3 (Topset and its degree). Given an event e and

a preregion r, the multiset TOPðr; eÞ is the multiset q such

that q ¼ >gðrÞ, ERðeÞ � >gðrÞ, and ERðeÞ 6� >gþ1ðrÞ. The

degree g of TOPðr; eÞ is denoted as MAX-K-TOPðr; eÞ.

Informally, TOPðe; rÞ is the smallest topset of r still

covering ERðeÞ. Note that this is always a single multiset.

The value MAX-K-TOPðr; eÞ establishes the maximal num-

ber of tokens that can be safely removed from the place

corresponding to rwhen e fires guaranteeing that no negative

markings are reached. For instance, in the example of Fig. 1a,

if we consider the region r shown, TOPða; rÞ ¼ >2ðrÞ ¼
fs6

0; s
4
1; s

2
2; s

3
4g, and therefore MAX-K-TOPðr; aÞ ¼ 2.

Now we define important objects called enabling topsets,
which are crucial for deriving the weighted flow relation in
the algorithm.

Definition 3.4 (Enabling topsets). The set of smallest enabling

topsets of an event e is denoted by �e and defined as follows:

�e ¼ fq j 9r 2 � e ^ q ¼ TOPðe; rÞg:

In the PN derived by Algorithm 1, every region becomes a
place and each event a transition. The flow relation from
places to transitions is defined with respect to the enabling
topsets: for a preregion r of an event e, g ¼ MAX-K-TOPðr; eÞ
tokens can be removed from place r (lines 7 and 8). However,
the gradient of e in r can be greater than�g, i.e., e removes less
tokens than g. In this situation, part of the removed tokens
(gþ�rðeÞ) are put back in r (lines 9 and 10). The flow relation
from transition e to places is defined for regions covering
SRðeÞ and the corresponding gradient (line 13). For instance,
in the example of Fig. 1, the region r shown is preregion of
both a and b, with MAX-K-TOPðr; aÞ ¼ 2 and MAX-K-
TOPðr; bÞ ¼ 3, and so the corresponding weighted arcs
derived by Algorithm 1 are connecting the region to
transitions a and b, respectively. The initial marking of the
region is 6 due to line 3 of the algorithm. Another example of
application of Algorithm 1 is shown in Figs. 4a, 4b, and 4c.
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Fig. 4. (a) Initial TS, (b) 1-bounded minimal regions, and (c) Petri net
derived by Algorithm 1.

1. Excitation and switching regions are not regions in the terms of
Definition 2.4. They correspond to the set of states in which an event is
enabled or just fired, correspondingly. The terms are used due to historical
reasons.



4 MINING

4.1 Motivation

In this section, we answer the following question: what is
the relationship between the PN derived by applying
Algorithm 1 (to the set of minimal regions of a TS) and
the original TS? We will show that LðPNÞ � LðTSÞ. This
result is consistent with the classical theory of region-based
synthesis according to which the net synthesized using
minimal regions is an approximation from above (i.e.,
includes the original language, see for instance [12]). In this
section, we assume that the set of minimal regions has been
computed: in Section 6, we will present an efficient
algorithm to compute minimal regions.

Let us consider the example of Fig. 4 to illustrate the
main message of this section. Fig. 4a shows a TS. Assume
that 1-bounded minimal regions from this TS are used in
Algorithm 1. These regions are reported in Fig. 4b, and the
PN derived from Algorithm 1 on these regions is shown in
Fig. 4c. It is easy to see that LðPNÞ � LðTSÞ: the sequence
cbade belongs to LðPNÞ but it does not belong to LðTSÞ.

The remainder of this section formalizes the construction
of Petri nets based on language overapproximation and
presents an important result stating a minimality property
on the derived PN. Formal proofs and necessary lemmas are
provided in Appendix.

4.2 Mining Properties

Formally, given a TS ¼ ðS;E;A; sinÞ, Algorithm 1 derives a
k-bounded Petri net PN ¼ ðP; T ;W;M0Þ with the following
characteristics:

1. LðTSÞ � LðPNÞ,
2. T ¼ E, i.e., there is only one transition per event (no

label splitting, see Section 8), and
3. Minimal language containment (MLC) property:

For any k-bounded PN0 ¼ ðP 0; T 0;W 0;M 0
0Þ

s:t: T 0 ¼ E : LðTSÞ � LðPN0Þ ) LðPNÞ � LðPN0Þ:

Therefore, the algorithm generates the tightest overapprox-
imation (measured by language containment) among all
possible Petri nets that can be obtained without splitting
labels. Since Algorithm 1 clearly guarantees item 2, it only
remains to demonstrate the two other properties. First,
language inclusion holds due to the following result:

Theorem 4.1. Let TS ¼ ðS;E;A; sinÞ be a transition system,
and PN ¼ ðP; T ;W;M0Þ be the synthesized net (using
Algorithm 1) with the set of minimal regions of TS. Then,
LðTSÞ � LðPNÞ.

This theorem guarantees that no trace is lost when using
only the set of minimal regions in TS. Moreover, as the
following theorem states, the MLC property holds in the PN:

Theorem 4.2. Let TS ¼ ðS;E;A; sinÞ be a transition system,
and PN ¼ ðP; T ;W;M0Þ be the synthesized net (using
Algorithm 1) with the set of minimal regions of TS. Then,
PN satisfies the MLC property.

Hence, this property guarantees a tight overapproxima-
tion of the input language. Compared to the language-
based regions from [31], this is a distinguishing factor that

might be important if the degree of overapproximation
must be controlled.

5 SYNTHESIS

5.1 Motivation

For some applications, deriving a Petri net equivalent to the
initial transition system is required. However, as the
example of Section 4.1 demonstrates, this cannot be always
accomplished. In this section, we tackle this problem by
defining a property (excitation closure) that a TS must satisfy
in order to derive a PN with bisimilar behavior. Moreover, a
label splitting technique is presented in Section 8, to repair
excitation closure violations in a TS. This allows to present
a complete method for deriving bisimilar k-bounded PNs,
described in Section 8.1. Finally, in Section 7, excitation
closure is used to reduce the number of necessary regions
while preserving the properties in the derived net.

5.2 Excitation Closure

The concept of excitation closure was presented in [11] for
1-bounded regions. Here, we generalize it for arbitrary
k-bounded regions:

Definition 5.1 (kk-ECTS). A TS is k-excitation closed (k-ECTS)
if using minimal k-bounded regions, it satisfies the following
two properties:

1. Excitation closure. For each event e

\
q2�e

suppðqÞ ¼ ERðeÞ:

2. Event effectiveness. For each event e, �e 6¼ ;.
For instance, the TS shown in Fig. 4a is not 1-ECTS, since

event c is not excitation closed for the set of regions shown
in Fig. 4b:

\
q2�c

suppðqÞ ¼ r1 � ERðcÞ;

while the rest of events (a, b, d, and e) are excitation closed.
However, the TS is 2-ECTS, as Fig. 5 demonstrates. We will
say that a TS is ECTS if it is k-ECTS for some k.

The intuition behind the notion of excitation closure is
that, provided that Algorithm 1 uses the enabling topsets
to decide when a transition is enabled, the set of states
corresponding to the enabling of the transition must be
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Fig. 5. (a) The 2-bounded minimal regions in the TS of Fig. 4a, where
only region r0 is not 1-bounded, and (b) bisimilar Petri net derived by
Algorithm 1.



exactly the set of states where the transition is actually
enabled in the TS (ER). In other words, if one state in the
intersection of enabling topsets does not belong to the ER
of the event, then the RG(PN) is an overapproximation
of the TS and hence it cannot be simulated by TS. The
following theorem links excitation closure and bisimilarity
(see proof in Appendix):

Theorem 5.1. Let TS ¼ ðS;E;A; sinÞ be a k-excitation closed
transition system. Algorithm 1 on the set of minimal regions
derives a PN ¼ ðP; T ;W;M0Þ with reachability graph
bisimilar to TS.

For example, the reachability graph of the PN from Fig. 5b
is bisimilar to the TS of Fig. 4a.

6 COMPUTATION OF GENERAL REGIONS

The first step in the approaches presented in the two
previous sections is to compute the set of regions from the
TS. The fact that the number of k-bounded regions in a given
TS might be large with respect to the number of states makes
this step a challenging one. In this section, we will try to
convince the reader that practical algorithms can be used to
fight the complexity underlying the generation of regions.

Independently on the desired properties in the derived
Petri net, not all the regions are necessary. Regions that are

. Nonminimal [16], or

. Not a preregion or postregion (see Property 6.1), or

. Trivial, i.e., 0;1; . . . ;K

are not required. Moreover, as Section 7 reports, depending
on the properties in the derived Petri net some minimal
regions can also be excluded:

. In mining, only a subset irredundant minimal cover of
regions is needed.

. In synthesis, only an irredundant minimal cover of
regions is needed.

6.1 Basic Algorithm

In this section, we will present an algorithm to generate a
set of regions sufficient for deriving a correct Petri net,
independently of the approach followed (language inclu-
sion or bisimilarity). Excitation/switching regions will be
the sets of states that serve as seeds in the algorithm. The
following property will be useful to ensure the generation
of minimal pre/postregions [9]:

Property 6.1. Let TS ¼ ðS;�; E; sinÞ be a transition system.
Then, any region r 6¼ 0 is the preregion or the postregion of
some event e.

Due to Property 6.1, only supersets of the ER and SR of
every event must be considered. When a given (multi)set
contains some region violation, it is expanded to avoid it.
Formally, given a multiset r and an event e with non-
constant gradient, the following definitions characterize the
set of regions that include r:

Definition 6.1. Let r 6¼ 0 be a multiset. We define

Rgðr; eÞ ¼ fr0 
 rjr0 is a region and �r0 ðeÞ 	 gg;
Rgðr; eÞ ¼ fr0 
 rjr0 is a region and �r0 ðeÞ � gg:

Rgðr; eÞ is the set of all regions larger than r in which the

gradient of e is smaller than or equal to g. Similar forRgðr; eÞ
and the gradient of e greater than or equal to g. Notice that in

this definition a gradient gmay be used to partition the set of

regions including r into two classes. This binary partition is

the basis for the calculation of minimal k-bounded regions

that will be presented at the end of this section.
The expansion of a set consists of increasing the arity of

some states to satisfy the region condition. As it is proved
below, there is a bound in the increase for each state:

Definition 6.2. Given a multiset r, a state s, and an event e, the

following � functions are defined2:

�gðr; e; sÞ ¼ maxð0; max
ðs;e;s0Þ2E

ðrðs0Þ � rðsÞ � gÞÞ;

�gðr; e; sÞ ¼ maxð0; max
ðs0;e;sÞ2E

ðrðs0Þ � rðsÞ þ gÞÞ:

Informally, �g denotes a lower bound for the increase of

rðsÞ, taking into account the arcs leaving from s, to force

�r0 ðeÞ 	 g in some region r0 larger than r. Similarly, �g

denotes a lower bound taking into account the arcs arriving

at s, to force �r0 ðeÞ � g.
Let us use Fig. 6a to illustrate this concept. In the figure,

each state is labeled with rðsÞ. Now imagine that we want to

force the gradient on event e to be greater or equal to 2. For

state s1, we have �2ðr; e; s1Þ ¼ 3, which is determined from

the arc s0 !
e
s1, indicating that r0ðs1Þ � 4 in case we seek a

region r0 � r with �r0 ðeÞ � 2. The states that, as s1, violate

this constraint are shown with gray background.

Definition 6.3. Given a multiset r and an event e, the

multisets ugðr; eÞ and ugðr; eÞ are defined as follows:

ugðr; eÞðsÞ ¼ rðsÞ þ �gðr; e; sÞ;
ugðr; eÞðsÞ ¼ rðsÞ þ �gðr; e; sÞ:

Intuitively, ugðr; eÞ is a move toward growing r and

obtaining all regions r0 with �rðeÞ 	 g. Similarly, ugðr; eÞ for

those regions with �rðeÞ � g. It is easy to see that ugðr; eÞ and

ugðr; eÞ always derive multisets larger than r. The successive

steps of calculating u2ðr; eÞ are illustrated in Figs. 6a, 6b, 6c,

and 6d. The following theorem formalizes the notion:
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2. For convenience, we consider maxx2DP ðxÞ ¼ 0 when the domain D is
empty.

Fig. 6. Successive calculations of u2ðr; eÞ. States violating the constraint
�rðeÞ � 2 are depicted with yellow background.



Theorem 6.1 (Expansion on events).

a. Let r 6¼ 0 be a multiset and e an event such that there
exists some ðs; e; s0Þ with rðs0Þ � rðsÞ > g. The
following hold:

1. r 
 ugðr; eÞ;
2. Rgðr; eÞ ¼ Rgðugðr; eÞ; eÞ.

b. Let r 6¼ 0 be a multiset and e an event such that there
exists some ðs; e; s0Þ with rðs0Þ � rðsÞ < g. The
following hold:

1. r 
 ugðr; eÞ;
2. Rgðr; eÞ ¼ Rgðugðr; eÞ; eÞ.

The calculation of all minimal k-bounded regions is

presented in Algorithm 2. It is based on a dynamic

programming approach that, starting from a multiset,

generates an exploration tree in which an event with

nonconstant gradient is chosen at each node (line 7). All

possible gradients for that event are explored by means of a

binary search (lines 8-13). Dynamic programming with

memoization [10] avoids the exploration of multiple in-

stances of the same node (line 6). The final step of the

algorithm (lines 16-17) removes all those multisets that are

neither regions nor minimal regions that have been gener-

ated during the exploration.

Fig. 7 shows how Algorithm 2 will explore the ERðaÞ
(center). After successive calculations of r1 ¼ u�1ðERðaÞ; aÞ,
it reaches the region shown on the left. Analogously, the

region on the right is obtained after successive calculations

of r2 ¼ u0ðERðaÞ; aÞ, and notice that provided that r2 covers

both ERðaÞ and SRðaÞ, it corresponds to a self-loop place for

transition a.

Theorem 6.2. Algorithm 2 calculates all k-bounded minimal

regions.

6.2 Computing an Upper Bound for k

The algorithm presented in Section 6.1 assumes an input
parameter k determining the maximal bound required for
the derivation of a PN. If k is unknown, an upper bound can
be computed from the transition system. In [14, Section IV],
a method to compute the bounded Petri net closure of a
regular language is presented. This method consists of:

1. Unbounded Petri net synthesis of the language [13],
by solving a finite system of linear constraints over
the integers.

2. Construction of the covering tree [20] related to the
unbounded Petri net derived in step 1: the vertices of
this tree are tuples v ¼ ðM; qÞ, where M is a marking
of the Petri net constructed in the previous step, and
q is a state of the transition system.

3. Iterate 1 and 2 until each leaf vertex v ¼ ðM; qÞ of the
corresponding covering tree is identical to some
ancestor vertex v0 ¼ ðM 0; q0Þ, i.e., M 0 ¼M and q0 ¼ q.
When iteration takes place (M 0 < M), new con-
straints are added to the linear problem solved in
step 1. These new constraints account for the
boundedness of the new net derived, for the case
of the repetitive sequence between M 0 and M.

If step 1 is done with language T �, the final net obtained
provides an upper bound for k [15].

Although this strategy to provide an upper bound has
high complexity, it might be used when there is no
knowledge on the maximal cardinality needed for the
regions. For many practical purposes, it is also possible to
progressively increase the size of k during synthesis
iterations. Note that this problem was not considered in
previous work [11], [9].

7 IRREDUNDANT COVERS

In the methods presented in previous sections, all the
minimal regions were used to satisfy the properties
(bisimilarity and language inclusion, respectively). In this
section we show that, as in the case of 1-bounded minimal
regions [11], the number of minimal general regions needed
might be smaller than the total number of minimal regions.
Regions that are not needed for deriving a correct PN (under
language inclusion or bisimilarity) are called redundant.
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Fig. 7. Exploration of regions in Algorithm 2 for ERðaÞ:
min�rðaÞ ¼ �1;max�rðaÞ ¼ 0.



We start by defining an important set of states related to
an event:

Definition 7.1 (Enabling Closure). Given an event e and a set
of regions R, the enabling closure of e with respect to R is
defined as

ECðeÞ ¼
\

q2 ð�e\RÞ
suppðqÞ:

The enabling closure of an event e represents the set of states
that enable e if the set of preregions is only considered for a
given set of regions R. The intuition behind the theory of the
remainder of this section is the following: given a set of
regions R, if a region r does not reduces the enabling closure
of any event, then the language of the Petri net derived by
Algorithm 1 from R and from R� frg is the same. To prove
that a given region is not needed by Algorithm 1, a stepwise
simplification of the arcs arising in the place is applied.
Fig. 8 illustrates the idea: region r 2 �e is shown together
with the corresponding partition based on the cardinality of
its states (only the partition for states corresponding to the
arities g� 1; . . . ; gþ 2 is shown). Accordingly, the enabling
topset derived from region r (see Definition 3.4) will be
>gðrÞ. However, if >g�1ðrÞ is considered instead as enabling
topset, ECðeÞ is still preserved due to the presence of
region q. As a consequence, the arc derived by Algorithm 1
will have weight g� 1 instead of g. In general, this
methodology can lead to arcs with zero weight, which can
be removed. When all arcs arising in a place have been
removed, then the place can be safely removed from the
Petri net without modifying its language. The rest of the
section formalizes this idea.

Theorem 7.1. Given a TS ¼ ðS;E;A; sinÞ and R a set of
regions, let e be an event and a region r 2 � e \R such that
ERðeÞ � >gðrÞ. If the following equality holds

ECðeÞ ¼
\

q2ð�e�frgÞ
suppðqÞ

0
@

1
A \ >g�1ðrÞ;

then the arcs p!g e and e �!gþ�rðeÞ
p in the PN derived by

Algorithm 1 can be substituted by the arcs p !g�1
e and

e �!gþ�rðeÞ�1
p, respectively, as long as gþ�rðeÞ � 1 � 0,

leading to PN0. Moreover, LðPNÞ ¼ LðPN0Þ.

Corollary 7.1. Given a place p, if successive applications of

Theorem 7.1 are applied making every arc p!0 e, then p is

redundant.

In the results presented above, a set of regions R is used
for which the set �e is defined for every event e, i.e.,
�e � R. Therefore, the notion of redundancy presented in

Corollary 7.1 is done with respect to a given set of regions.
In general, the notion of redundancy is not monotonic, i.e.,
if places p1 and p2 are redundant with respect to the set of
regions R, it does not necessarily imply that p2 is redundant
with respect to R� fr1g, or vice versa.

Hence, redundancies can arise in the approaches
described in the previous sections. We can define irredun-
dant minimal covers for each one of these approaches:

. In the language-inclusion approach (Section 4): the
cover will contain only those regions whose removal
modify the enabling closure of some event.

. In the bisimilarity approach (Section 5): regions that
are not necessary for the excitation closure of any
event will not appear in the cover.

8 LABEL SPLITTING

In some applications, the maximal bound accepted in the
derived PN cannot be exceeded. If a TS is not k-ECTS and
the bound cannot be incremented further, then only PNs
overapproximating the initial TS can be derived with the
method presented so far (see Section 4). This section
presents a simple yet practical technique to escape from
this problem. Let us illustrate the technique with the
running example shown in Fig. 4a. Assume that the
maximal bound accepted is 1, and a PN with bisimilar
behavior must be generated. As reported in Figs. 4b and 4c,
the derived PN on the set of minimal 1-bounded regions
accepts more traces than the initial TS. Now let us split

events a and b in the TS as shown in Fig. 9a. The new events
appearing, a1, a2, b1, and b2 are treated as different events
and will generate a transition each in Algorithm 1. The new
TS is 1-ECTS with corresponding PN shown in Fig. 9b. The
fact that transitions keep the label of the original events
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Fig. 8. Situation where the arc r!g e can be converted into p !g�1
e.

Fig. 9. (a) Transition system after application of label splitting on events
a and b, (b) Petri net derived by Algorithm 1 on the set of minimal regions
from TS (a).



guarantees that the reachability graph of the PN in Fig. 9b is
bisimilar to TS of Fig. 4a. The formal definition of the
technique is presented:

Definition 8.1 (Label splitting). Let TS ¼ ðS;E;A; sinÞ be a

transition system. The splitting of event e 2 E derives a

transition system TS0 ¼ ðS;E0; A0; sinÞ, with E0 ¼ E �
feg [ fe1; . . . ; eng, and such that every transition ðs1; e; s2Þ 2
A corresponds to exactly one transition ðs1; ei; s2Þ, and the rest

of transitions for events different from e are preserved in A0.

This section presents heuristics to guide the label
splitting technique for the achievement of the excitation
closure. The following theorem guarantees completeness of

the method:

Theorem 8.1. Let TS be a non-k-ECTS. There exists a finite

sequence of label splitting transformations that derive a

k-ECTS TS’ bisimilar to TS.

Theorem 8.1 provides only an upper bound on the

number of splittings to be done to achieve excitation closure.
In the remainder of this section, we provide heuristics to
choose, among all the possible splittings, those that may be
more likely to repair the excitation closure violations.

In [9], some effective heuristics based on the excitation
closure condition (see Definition 5.1) are presented for
label splitting. Here, we briefly sketch the main idea of
each heuristic:

. Splitting disconnected ERs: when the ER of an event
can be partitioned into disconnected components,
and some of these components satisfy the excita-
tion closure.

. EC-guided splitting: for a nonexcitation closed event
e, the multisets reached when expanding ERðeÞ (see
Section 6) are ordered according to the number of
events with constant gradient, and the more promis-
ing multiset (the one with more events with constant
gradient) induce the event to split.

8.1 Bisimulation-Based Algorithm

A complete algorithm for deriving a PN with bisimilar
reachability graph to the initial TS is presented in
Algorithm 3. The algorithm combines the generation of
minimal regions (Algorithm 2, presented in the previous

section) together with the label splitting technique pre-
sented in the previous section, which is applied only when
excitation closure does not hold for the actual TS and the
maximal allowed bound (kmax) is reached.

The label splitting technique can be used also in the
language-inclusion approach: if some events are considered
to be critical in the sense that no overapproximation must be
done for these events, then one can use label splitting to
force only excitation closure on these events.

9 EXPERIMENTS

In the next two sections, we show particular uses of the
algorithms presented in this paper (implemented in the tool
Genet) for different applications. In the first section, we
illustrate how to apply the algorithms in the area of Process
Mining.3 In the second section, we abstract away the
particular application and show the benefits of representing
complex behaviors with k-bounded Petri nets.

9.1 Synthesis and Mining from Event Logs

First, we provide a simple example to illustrate the
applicability of the flow presented in Section 1.2 in the
emerging area of Process Mining [30]. The example is taken
from [29] and considers the process of handling customer
orders. The starting point in Process mining is typically a
set of traces representing the log of a system. In our
example, the event log contains seven traces with the
following activities: r ¼ register, s ¼ ship, sb ¼ send bill,
p ¼ payment, ac ¼ accounting, ap ¼ approved, c ¼ close,
em ¼ express mail, rj ¼ rejected, and rs ¼ resolve. The set
of traces recorded is shown in Fig. 10a, while Fig. 10b shows
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Fig. 10. Process mining: (a) event log, (b) corresponding transition system, and (c) Mined Petri net.

3. We decided to apply both the synthesis and mining algorithms in
Section 9.1 on purpose: traditionally synthesis has also been applied in
Process Mining [6], [28].



one of the possible TSs representing the event log,
constructed with the methods described in [28]. Since this
TS is 1-ECTS, both synthesis and mining derive the same
1-bounded PN depicted in Fig. 10c.

The synthesis/mining of some small examples is
summarized in Table 1. Following the two-step mining
approach described above (Log ! TS ! PN), we have
obtained the transition systems from each log with the
FSM Miner plug-in available in the tool ProM [32]. For each
log, columns report the number of states of the initial
log jSj, number of states of the minimal bisimilar transition
system j½S�j (that gives an idea of the amount of redundancy
present in the initial log), and number of events jEj. Next,
the number of places jP j and transitions jT j of the PN
obtained by the synthesis tool petrify [11] is reported. For
each version of the mining algorithm (safe and 2-bounded)
implemented in the tool Genet, the number of places of the
mined PN and number of states of the corresponding
minimal bisimilar reachability graph are reported. The
mining of the examples in Table 1 took few seconds. Finally,
the same information is provided for two well-known
mining algorithms in ProM: the Parikh Language-based
Region and the Heuristics [34] miners. The number of
unconnected transitions (jTU j) derived by the Parikh miner
and the number of invisible transitions introduced by the
Heuristic miner is also reported (jTI j).

The numbers in Table 1 suggest some remarks. If the
synthesis is compared with the mining in the case of safe
PNs, it should be noticed that even for those small examples
the number of transitions and places is reduced, due to the
absence of label splitting (see row for pn_ex_10). In mining,
the Parikh miner tends to derive very aggressive abstrac-
tions, as it is demonstrated in the pn_ex_10 and herbst-
Fig6p21 logs. Sometimes, the Petri nets obtained with this
miner contain unconnected transitions, because the miner
could not find places connecting them to the net.

Table 2 compares the results reported in the recent paper
[31] for the Parikh miner.4 The goal of this experiment is
twofold: first, to show the capability to deal with large logs,
and second, to provide some measure on the quality of the
derived results. For the latter, we used the well-known
fitness and appropriateness measures [26]. Briefly, fitness is a
metric that evaluates the extent to which the log traces can
be associated with traces in the model, and appropriateness

quantifies the degree of accuracy in which the model
describes the observed behavior, combined with the degree
of clarity in which it is represented. Both metrics can be
normalized to be a real number between 0 (low) to 1 (high).

Using the approach described at the beginning of this
section (in particular, Log ! TS !mining PN), we have been
able to derive PNs with high fitness and appropriateness
factors in significantly less CPU time than the one reported
in [31].

9.2 Synthesis Experiments

In this section, a set of parameterizable benchmarks is
synthesized using the methods described in this paper. The
goal of this experiment is to illustrate the capability in
reproducing complex behaviors in a very succinct manner, by
using the theory of k-bounded synthesis described in this
paper. The following examples have been artificially created:

1. A model for n processes competing for m shared
resources (SR), where n > m. Fig. 11a describes the
Petri net.5

2. A model for m producers and n consumers (PC),
where m > n. Fig. 11b describes the Petri net.

3. A 2-bounded pipeline of n processes (BP). Fig. 11c
describes the Petri net.

Table 3 contains a comparison between a synthesis
algorithm of safe Petri nets [11], implemented in the tool
petrify, and the synthesis of general Petri nets as described
in this paper, implemented in the tool Genet. For each
benchmark, the size of the transition system (states and arcs),
number of places and transitions, and CPU time are shown
for the two approaches. The transition system has been
generated from the Petri nets.

The main message from Table 3 is the expressive
power of the approach developed in this paper to derive
an event-based representation with minimal size. If the
initial transition system is excitation closed, using a bound
large enough one can guarantee no splitting and therefore
the number of events in the synthesized Petri net is equal
to the number of different events in the transition system.
Note that the excitation closure holds for all the bench-
marks considered in Table 3, because the transition
systems considered are derived from the corresponding
Petri nets shown in Fig. 11.
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TABLE 1
Petri Net Mining Applied to Event Logs from processmining.org

4. Only CPU times are provided in [31].
5. A simplified version of this model was also synthesized by

SYNET [7] in [3].



10 RELATED WORK

Regarding synthesis, apart from the differences with respect
to related work and the contributions reported for the
1-bounded case [11, Sections 1.3-1.4], there is a high
algorithmic emphasis on the extension presented in this
paper. This contrasts with some of the approaches
presented in the literature for the same goal [18], [23],
[16], [3], [19], making the approach presented in this paper
more suitable for a practical implementation. Moreover,
regarding the classical theory of region-based synthesis, the
methods described in this paper drop the restriction on
elementary transition systems.

Our approach for mining derives the tightest possible
overapproximation of the language defined by the input
traces. Other approaches, as was demonstrated in [8] often
derive a much looser overapproximation. The Parikh miner
approach, which is also based on the theory of regions [31],
uses a different strategy from the one presented in this
paper: integer linear models are repeatedly solved to find
the Petri net places that forbid some of the unseen behavior
until some halting criteria is reached. As has been shown in
the previous section, these approaches often derive very
loose overapproximations, because sometimes it is not
possible to find a place between two transitions that can
forbid a particular behavior.

Another interesting approach is presented in [5], [4],
where regions of languages are applied directly to the log,
assuming that each trace in the log is a particular partial
order. The approach yields always a net with the behavior
being the tightest overapproximation of the initial behavior.
Additionally, it can handle proper partial orders that can
arise from real applications.

To the best of our knowledge, the work in [6] was one of
the first theoretical approaches to apply the theory of
regions to mining. In this approach, however, only the
synthesis (and not mining) of elementary transitions
systems is considered, thus restricting the application to
particular types of logs.

11 CONCLUSIONS

In this paper, the theory of regions has been extended into
several dimensions to allow for a uniform approach for the
synthesis and mining of general Petri nets from state-
based specifications. The practicality of the approach is
demonstrated by presenting efficient algorithms, heuris-
tics, and data structures.

The theory presented in this paper has been implemen-
ted in a tool [1], and the experimental results reported are
promising. More research is required to improve the speed
of the synthesis and mining algorithms.

APPENDIX

PROOF OF THE MAIN RESULTS

Lemma 11.1. Let TS ¼ ðS;E;A; sinÞ be a transition system, and
PN ¼ ðP; T ;W;M0Þ be the synthesized net (using Algorithm
1) with the set of minimal regions of TS. If trace � is enabled
both in TS and PN leading to state s and marking M,
respectively, then each minimal region ri satisfies
riðsÞ ¼M½pi�.

Proof. Induction on j�j. For j�j ¼ 0, line 3 of the algorithm
makes riðsinÞ ¼M0½pi� for every minimal region ri.
Assume that the lemma holds for any � such that
j�j < n. Let us show it holds for � ¼ �0e, with j�j ¼ n. By
this assumption, the state s0 and marking M 0 reached

CARMONA ET AL.: NEW REGION-BASED ALGORITHMS FOR DERIVING BOUNDED PETRI NETS 381

Fig. 11. Parameterized benchmarks: (a) n processes competing
for m shared resources, (b) m producers and n consumers, and
(c) a 2-bounded pipeline of n processes.

TABLE 3
Synthesis of Parameterized Benchmarks

TABLE 2
Large Benchmarks from [31]



after firing �0 satisfies riðs0Þ ¼M 0½pi� for every minimal
region ri. We focus on the influence of e in regions in �e
and e�, because regions not in these two sets are not
affected by the firing of e. Now let us consider the firing
of e in s0 leading to state s: for every region ri 2 � e,
riðsÞ ¼ riðs0Þ þ�riðeÞ. In M 0 the firing of e results in the
following marking M for every minimal region ri:

M½pi� ¼M 0½pi� �W ðpi; eÞ
¼M 0½pi� �MAX-K-TOPðri; eÞ
¼ riðs0Þ �MAX-K-TOPðri; eÞ
� riðsÞ;

and the last inequality holds because lines 9-13 of the
algorithm always guarantee �MAX-K-TOPðri; eÞg �
�riðeÞ. But the inequality is in fact an equality: if
�MAX-K-TOPðri; eÞg > �riðeÞ, then there exists a transi-
tion ðs; e; s00Þ satisfying riðsÞ ¼ g; riðs00Þ ¼ gþ�riðeÞ < 0,
which will imply riðs00Þ < 0, a contradiction. Finally,
places corresponding to regions ri 2 e� are incremented
exactly with �riðeÞ tokens (line 15 of the algorithm);
hence, the equality also holds for these places. tu
Proof of Theorem 4.1

Proof. Induction on the length of the traces in LðTSÞ: in
the case j�j ¼ 1, we have that if sin 2 ERðeÞ then
M0 !

e
, because otherwise there exists a place pi 2 �e

such that M0½pi� < W ðpi; eÞ ¼ MAX-K-TOPðri; eÞ, which
implies TOPðri; eÞ does not contain sin, and therefore
sin 62 ERðeÞ, contradiction.

Assume the theorem holds for traces of length less
than n, and consider the trace � ¼ �0e of length n.
Using the induction hypothesis, let sm;M be the state
reached in TS and the marking reached in PN after
firing the trace �0, respectively, and consider the
minimal regions r1 . . . rk corresponding to the places
p1 . . . pk 2 �e. Lemma 11.1 guarantees riðsmÞ ¼M½pi�, for
i 2 1 . . . k and therefore, if we assume that there exists a
pj 2 �e such that M½pj� < Wðpj; eÞ, then

rjðsmÞ < W ðpj; eÞ ¼ MAX-K-TOPðri; eÞ;

which implies that sm 62 ERðeÞ, a contradiction. tu

Lemma 11.2. Let TS ¼ ðS;E;A; sinÞ and TS0 ¼ ðS0; E;A0; s0inÞ
be such that there exists a simulation relation of TS by TS0

with relation �. If r 2 RTS0 , then ��1ðrÞ 2 RTS, and for every
event e;�eðrÞ is preserved in ��1ðrÞ.

Proof. For every transition ðs; e; s0Þ 2 A there exists a
transition ð�ðsÞ; e; �ðs0ÞÞ 2 A0. Therefore, gradients are
preserved in TS for the set ��1ðrÞ. tu

Lemma 11.3 . Let TS1 ¼ ðS1; E1; A1; sin1Þ and TS2 ¼
ðS2; E2; A2; sin2Þ be two TSs such that TS2 is deterministic,
and LðTS1Þ � LðTS2Þ. Then, TS2 is a simulation of TS1.

Proof. The relation � � ðS1 � S2Þ defined as follows:

s1�s2 , 9 � : sin1 !
�
s1 ^ sin2 !

�
s2

represents a simulation of TS1 by TS2: the first item of
Definition 2.2 holds since LðTS1Þ � LðTS2Þ. If the
contrary is assumed, i.e., 9s1 2 S1 :6 9s2 2 S2 : s1�s2 then

the trace leading to s1 in TS1 is not feasible in TS2, which
contradicts the assumption. The second item holds
because the first item and the determinism of TS2: for
every s1 2 S1;TS2 deterministic implies that there is only
one state possible s2 2 S2 such that s1�s2. But now if e is
enabled in s1 and not enabled in s2, it will imply that the
trace �e, with sin1 !

�
s1, is not feasible in TS2, leading to a

contradiction of LðTS1Þ � LðTS2Þ. tu
Proof of Theorem 4.2

Proof. By contradiction. Let PN0 ¼ ðP 0; T 0;W 0;M 0
0Þ exist

with the reachability graph TS0 ¼ ðS0; E0; A0; s0inÞ such
that E0 ¼ T , LðTSÞ � LðTS0Þ, and LðPNÞ 6� LðTS0Þ. The
following facts can be observed:

. TS0 and RGðPNÞ are deterministic because
E ¼ E0 ¼ T and therefore they correspond to
the reachability graph of Petri nets with a
different label for each transition.6

. Since TS0 is deterministic and LðTSÞ � LðTS0Þ,
there is a simulation � of TS by TS0 (Lemma 11.3).

. 8r0 2 RTS0 , r ¼ ��1ðr0Þ 2 RTS, and events with
constant gradient are the same in r0 and r
(Lemma 11.2).

. Each nonminimal region can be described as the
union of disjoint minimal regions [11], and
therefore we can focus only on minimal regions.

. Each minimal region r 2 RTS is a region in
RRGðPNÞ, since PN has been obtained with Algo-
rithm 1 from the set of minimal regions in TS.
Moreover, since RGðPNÞ is deterministic and
LðTSÞ � LðPNÞ (Theorem 4.1), then there is a
simulation of TS by RGðPNÞ (Lemma 11.3). Now
using Lemma 11.2, together with the fact that r is
a region both in RTS and RRGðPNÞ, events with
constant gradient in TS have also constant
gradient in RGðPNÞ.

Hence, the previous items show that for a region in
TS0 there is a corresponding region in RGðPNÞ with the
same gradient on the events. In Petri net terms, this fact
means that the flow relation of PN0 is included in the
flow relation of PN. Additionally, the simulations
connecting both transition systems preserve the initial
states (see Lemma 11.3). This contradicts the assumption
that LðPNÞ 6� LðTS0Þ. tu
Proof of Theorem 5.1

Proof. Theorem 4.1 provides LðTSÞ � LðRGðPNÞÞ, and
together with the fact that RGðPNÞ is deterministic
(since T ¼ E), Lemma 11.3 can be applied to prove the
existence of a simulation of TS by RGðPNÞ. The
simulation is

s1�s2 , 9 � : sin1 !
�
s1 ^ sin2 !

�
s2:

We will prove that ��1 is a simulation of RGðPNÞ by TS
(see Definition 2.2). For that purpose, assume that there
exists a reachable state s2 in RGðPNÞ such that no state in
TS is related to. We can prove by induction on the length
of traces leading to the state that this never happens. In the
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6. Here we abuse the notation used in the paper to incorporate transition
labels when needed.



base case (n ¼ 0), this trivially holds because the initial
states are related by the relation ��1. In the induction step,
assume that there exists a trace � ¼ �0e, leading to a state
s2 in RGðPNÞ but no state in S is related to s2 by ��1. Now
consider the state s1, with corresponding marking M in
PN, reached in RGðPNÞ after firing �0. By the induction
hypothesis, ��1ðs1Þ 2 S is related to s1, and according to
our assumption, ��1ðs1Þ 62 ERðeÞ (otherwise � will relate
the state reached after firing e at ��1ðs1Þwith s2). But then
there exists a region ri 2 ?e for which ��1ðs1Þ 62 q, with
q ¼ TOPðri; eÞ. Due to the excitation closure, the corre-
sponding place pi derived by Algorithm 1 satisfies
M½pi� < Wðpi; eÞ due to Lemma 11.1, contradicting the
assumption that e is enabled at s1. The other condition for
proving the simulation can be also deduced from the
reasoning above. tu
Proof of Theorem 6.2

Proof. The proof is based on the following facts:

1. All minimal regions are pre- or postregions of
some event (Property 6.1). Any pre- (post-) region
of an event is larger than its ER (SR). Line 3 of the
algorithm puts all seeds for exploration in P .
These seeds are the ERs and SRs of all events.

2. Each r that is not a region is enlarged by ugðr; eÞ
and ugþ1ðr; eÞ for some event e with nonconstant
gradient. Given that g ¼ bðgmin þ gmaxÞ=2c, there
is always some transition s1 !

e
s2 such that

rðs2Þ � rðs1Þ ¼ gmax > g and some transition
s3 !

e
s4 such that rðs4Þ � rðs3Þ ¼ gmin < gþ 1.

Therefore, the conditions for Theorem 6.1 hold.
By exploring ugðr; eÞ and ugþ1ðr; eÞ, no minimal
regions are missed.

3. The algorithm halts since the set of k-bounded
multisets with � is a lattice and the multisets
derived at each level of the tree are larger than
their predecessors. Thus, the exploration will halt
at those nodes in which the power of the
multiset is larger than k (lines 11-13). The
condition (1 6
 r0) in lines 11-13 improves the
efficiency of the search, since regions containing 1
are not minimal. tu

Proof of Theorem 7.1

Proof. LðPNÞ � LðPN0Þ holds because PN0 is PN with one
constraint less on the arc connecting p and event e.
LðPNÞ 
 LðPN0Þ can be proven by induction on the
length of traces. Case j�j ¼ 0 holds. In the induction step,
let trace �e be enabled in PN0. By the induction
hypothesis, � is enabled in PN, leading to state s. And
now one can observe that if e is not enabled in s, then
there is a region ri 2 � e for which the state s 62 TOPðri; eÞ.
But then provided that the enabling closure is preserved,
event e cannot be enabled in PN0 after �, because state s is
still left out from the enabling closure in PN0 by the topset
of ri, contradiction. tu
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