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Stochastic Equation for the Erosion of Inclined Topography
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We present a stochastic equation to model the erosion of topography with fixed inclination. The
inclination causes the erosion to be anisotropic. A zero-order consequence of the anisotropy is the
dependence of the prefactor of the surface height-height correlations on direction. The lowest higher-
order contribution from the anisotropy is studied by applying the dynamic renormalization group. In
this case, assuming an inhomogenous distribution of soil material, we find a one-loop estimate of the
roughness exponents. The predicted exponents are in good agreement with new measurements made
from seafloor topography. [S0031-9007(98)06072-4]

PACS numbers: 92.40.Gc, 05.60.+w, 64.60.Ak, 64.60.Ht

The rich complexity of the Earth’s surface, both onfixed. The unit vectoe, is the “growth” direction, which
land and beneath the sea, is the result of physical mech& measured downwards from the top of the slope. The
nisms ranging from tectonic motion to surficial erosionpreferred, downhill, direction is given by the unit vector
[1,2]. Despite this variation, however, geologic surfacese, while e, represents a vector perpendicularejpand
show a certain degree of universality: they may often be;,. Later, when applying the DRG, we will generalize
characterized aself-affing[3,4] over some range of length with landscapes on @-dimensional substrate; in this case
scales. This means that/ifx, 7o) is the height of the sur- e, represents the subspace of all directions perpendicular
face at positiont at some timey, then the “roughness,” to e ande, and has the dimensiah — 1. The configu-
measured by the height-height static correlation functiomation is completed by selecting fixed boundary conditions
Cx) = ((h(x, 1) — h0,1))"/?, grows asc®, wherea  at the top of the slopey; = 0, or by imposing the sym-
is called theroughness exponeft]. Empirical measure- metryx; — —uxj.
ments ofa are numerous. While many indicate that Because of the preferred directiafy in Fig. 1, the
is small 0.30 < a < 0.55) [5,6], a number of other mea- statistical properties ok may be anisotropic. Thus, if
surements show it to be large.70 < « < 0.85) [6-8]. & is self-affine, we expect different roughness exponents
Moreover, some measurements indicate thatosses over for correlations measured in each of the directiepsnd
from large to small values as length scales become greater . Thus, we definey; anda; such thatCy(x) ~ xﬁ"

than approximately 1 km [6]. Motivated by these find- for correlations along a fixed transeé! = const, and
ings, we propose that the large valueswat small length ¢, (3,) ~ x7* for correlations along a fixed transet =

scales may be explained by the influence of a preferred dgonst, where in general; # «,. These relations can be
rection—downhill—for the flux of eroded material. We symmarized in the single scaling form

derive an anisotropic noisy diffusion equation to describe > @ ~1 s
erosion at the small length scales where the preferred di- _C(x”’x{) ~ BUCEB bR, (1)
rection is fixed throughout space. Under the additionalvhere{j is the anisotropy exponent The exponentsy
assumptions that the flux of eroded material increases witAnd . are related througky, = /4. The exponent
increasing distance downslope and that the dominant efll accounts for the different rescaling factors along the
fects of noise are fixed in space, we find, using the dy-
namic renormalization group (DRG), a first-order estimate €
of the roughness exponents. New measurements of our <
own, made from the topography of the continental slope off
the coast of Oregon, are in good agreement with our pre- e
dictions. We find that our anisotropic theory significantly
enriches previous isotropic continuum models [9,10] for
two reasons. First, it predicts that correlations differ in
different directions, and second, it predicts that these cor-
relations decay quantitatively differently than they do for
isotropic topography.

Figure 1 depicts the framework for our theory: a surface

h on a two-dimensional substrate. We refemtgeneri- F|G. 1. Schematic configuration of an anisotropic landscape
cally by the termlandscapeand note that its inclination is for the casel = 2.
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two main directions. Since the space is anisotropic, wheshown [4] that the correlation functions along the main
performing a scale change, we must rescgleand x;  directionse; and e, are inversely proportional to the
by different factorsh and b, respectively, if we are to square root of the diffusivities), and v, respectively,
recover a surface with the same statistical properties. Wehat is, C,/C ~ (vj/v.)"?. In other words, since
assume in our model thdf = logb, /logb; = const. the preferred direction giveg; > v,, the topography

We seek a single stochastic equation for the landis quantitatively rougher, at all scales and by the same
scape heighti. Whereas others [9] have advocated thefactor, in the perpendicular direction than in the parallel
now classical, isotropic, nonconservative interface growtldirection.
equation due to Kardar, Parisi, and Zhang (KPZ) [11], we In order to obtain more information on the scaling
assume here that the underlying soil is locally conservegroperties of Eq. (4), we have studied it using the DRG.
such that Assuming thatI'(z) is an analytical function, we can

ah=—-V-J+ n, ) perform a Taylor expansiqn in_ powers af Since all

odd powers ofz must vanish in order to preserve the
joint symmetryh — —h, J — —J in Eq. (2), we are left

t the lowest order withy(h) = A,h%. By dimensional
analysis one can check that all the terms in this expansion
are relevant under rescaling. However, the f@if) of

where ] is the current of soil per unit length. The soil,

however, is not globally conserved, since it is lost at th

bottom boundary. We also allow local conservation to
be broken by the addition of a stochastic noise tefm

discklljss.ed”belo;/]v. 5 q f the erosive agent (water or soil) flowing on the surface
Physically, the current/ is expected to reflect o g0, grow no faster thamQ(x)) ~ x|‘|’. Then, taking

effects. First, we expect a local isotropic diffusing , _ x, we find that the terms ig(#) should be of the
component, tending to smooth out the surface. Secon§rder of k¢ or less. Specializing to the case @f= 2
i

we expect an average global flow of dragged soil, directe o e surfaces), we then find it reasonable to truncate

mainly downhill. Thus, we postulate the following form ¢ at second order, such that Eq. (4) takes the form
for the current:

J=—vVh — TVh. (3) ah = vyoih + v V2 h + %aﬁ(#) +n, (5
The first term corresponds to Fick's law for diffusion here A — A,. Note that Eq. (5) differs from the

and represents the isotropic relaxational dynamics of the . . O h
soil. The second term represents the average flow diisotropic driven diffusion equation of Hwa and Kardar
soil that is dragged downhill, due to either the flow of [13] because the form of our currentis suggested not

water or the scouring of the surface by the flow of the@Nly by symmetry arguments, but also by the physics of

soil itself. The direction of this term is given by the €rosion. _ . o
vector Vi = ajhey. The term[ plays the role of an We now address the issue of noise. We distinguish
anomalous anisotropic diffusivityin order to gain insight Wo_different sources. First, we may allow a term
into the role of I', consider the case in which erosion ©f “@nnealed” noisen,(x,7), depending on time and
results from the stress exerted on the soil bed by aRosition, and de_scnbmg a random_, external forcing, due
overland flowg of water, wherey is the volumetric flow  t©: for example, inhomogeneous rainfall. We assume that
rate through the unit area perpendicular to the directiofiS NOiSe is isotropic, Gaussian d'SE”bUteq; V)"th Z€ero
of steepest descent. The greateis, the stronger the MaN. and Ejlncorrelatled such that(x, 1)n,(x',1')) =
stress is [12]. Moreover, sincg flows downhill, it 2D‘f‘5 (x — x”)B(t' — ). Second, we may have aterm
increases with distance downslope. This,must be ©Of “quenched” noise to account for the heterogeneity of
an increasing function af. Since the fixed inclination the soil, mimicking the variations in the erodibility of
implies thath increases withy, we choose to parametrize (e landscape [8]. We represent this randomness by a
the anomalous diffusion as a function of the height suclfOUrce ot/Gaussthz(adt)lc*nms*e/ 1;(x), with correlations
that T = I'(h) [12]. Defining [(h) — Ao + g(h), with  (1s()ns(¥) = 20,8 (& — ). This form of noise has
¢(0) = 0 and G(h) = [ g(h)dh, we substitute Eq. (3) been previously proposed to model soil heterogeneity in
into (2). Since g(h)ajh — [dé(h)/dh]a||h — 9,G(h) cellular automata models of fluvial networks [14]. In the

where we have used the chain rule for the second equalitfo!lowing we consider the limits (iJ, = 0 (D; < D),
we obtain corresponding to a situation of random external forcing
and homogeneous composition of soil, and i) = 0

a2 2 >
dh = wjdjh + viVih + Gh) + m, (4 (p, > D,), representing the limit in which the external

wherev, = v andy = v + Ao. forcing is constant and the most essential source of noise
Even in the absence on any nonlinearity, fundamentak the inhomogeneous compaosition of the sail.
conclusions may be drawn from (4). By settigg= 0 Application of the DRG follows the procedure used in

(i.e., by consideringl'(z) = Ay = const), we obtain a Refs. [13,15]. In Fourier space we proceed by integrating
linear equation which is an anisotropic counterpart of theover the shell of large wave vectorse ! < k < A,
Edwards-Wilkinson equation [4]. In can then be easilywhere A is the wave vector upper cutoff and is
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the rescaling factor, and by subsequently rescaling thiength scales [6,7]. However, these measurements were
system back to its original size through the transformatioreither averaged over all directions or the direction of the
¥ —e'xy, x> ey, h—el*h, and t — e*'r.  measurements was not reported. Thus, to check our re-
The anisotropy is explicitly included in the exponentsults with a natural landscape that has an unambiguous
{ = gn_l. To the lowest order in perturbation theory, preferred direction, we have analyzed digital bathymetric
both limits (i) and (ii) above provide the same form for maps of the continental slope off the coast of Oregon.

the renormalization group flow equations: In this case the slope results from the relatively abrupt
dvj B dv, increase in the depth of the seafloor as the continental
T vz — 240 + A, T vi(zo —2),  shelf gives way to the deeper continental rise. Figure 2(a)
i ; s?oi\:vs one portlﬁn _of th(IjS region. _Here Itlh(;lr;)am f_eature
ar _ _ _ 5 of the topography is a deep incision calle marine
ar Mt 2an =200 = A, canyon In this region, submarine canyons are thought
dD; to have resulted from seepage-induced slope failure [18],
T Di(kiz, —2a; — {1 —d+ 1), which occurs when excess pore pressure within the mate-

rial overcomes the gravitational and friction forces on the
where i =1,s stands for the limits (i) and (i) surface of the material, causing the slope to become unsta-

above, respectively. Herel; is an effective cou- ple. Slope instabilities then create submarine avalanches,

pling constant, depending on the type of noise:
X = AD,Ky- A2/2070Y7 in (i), and A, =

AD K, _ A4 4/21/3/21/1/2 in (i), with K; = S;/Q2m)?

and S, the surface area of d-dimensional unit sphere.
The value of the correction factok; is «; = 1 and

kg = 2. The flow equations fow; and D; are exact to
all orders in the perturbation expansion [13,16]. They
provide us with the exact result; =2 [17]. The

effective coupling flows under rescaling as z
dA; -
= /\ i /\i N 6
7 (er = 3A) (6)

wheree; = d\ — d, andd!" is the critical dimension for
each particular limitd? = 2 andd") = 4. The stable
fixed points of (6) are\; = 0 ford > d¥ andA} = /3
ford < d\. Ford > dV the critical exponents attain in
both limits their mean-field valuea’ = 0, (M =

. o 1.5
andz!'" = 2. On the other hand, faf < d, the critical
exponents computed at first order in thexpansion are
Se; €
)= T, i) = 1 + —. 7
L = 7, L 5 (7) ol ]

The physically relevant dimension for erosionfis= 2.
In the limit of thermal noise this corresponds to the critical
dimension. By continuity, the exponents are = «) =
0and{, = { = L. This result is consistent with a flat 0.5 1
landscape, with logarithmic corrections to the roughness
[4]. However, we still expect anisotropy to appear in
the prefactor of the correlation functiortg andC, as
argued above. On the other hand, in the limit of static 0.0 . . . .

log,, C(r)

noise we are below the critical dimension, and (7) is L5 2.0 25 3.0 3.5 4.0
applicable. Substituting, = 2 we obtain the roughness log, r
exponents FIG. 2. (a) Digital map of a submarine canyon off the coast
5 @y 5 of Oregon, located at coordinatdgd°40’ N, 125°45" W. The
a; = — =0.383, ay=—=—-=063. (8) \vertical axis represents the depth below sea level. Distances
6 {1 8 are measured in meters. (b) Height-height correlation functions

. . computed along the parallelC{) and perpendicular ((,)
The values (8) predicted fow, and «| are in rea- directions. Solid lines are least-squares fits to the scaling
sonable agreement with previous measures made at smeadbion.
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which themselves can erode the slope as they slidB.H. R. was supported in part by NSF Grant No. EAR-

downwards. 9706220.
Figure 2(b) shows the height-height correlation func-

tions C; and C, corresponding, respectively, to the

parallel and perpendicular directions of the seafloor topog-

raphy in Fig. 2(a). The computation 6f, follows from [1] A.E. ScheideggerTheoretical GeomorphologiSpringer-

its definition but the computation @f; requires some com- Verlag, Berlin, 1991), 2nd ed.

ment. The fluctuations measured 6y must be defined [2] I. Rodriguez-Iturbe and A. Rinaldd;ractal River Basins:

with respect to an appropriate average profile. Briefly, one  Chance and Self-OrganizatiofCambridge University

expects that geologic processes other than erosion (e.g., Press, Cambridge, England, 1997).

tectonic stresses) are responsible for long-wavelength3] B.B. Mandelbrot,The Fractal Geometry of Naturg-ree-

deformation in the parallel direction. We may estimate ” 'Tal'_“' SBZ?aE?s?C::g'|-1|9|§2)étanley=ractal Concepts in

iSnUC;EeSys;?;T;litllC d(i:roer(rzzcc)ﬂ(:)hrlvs(gﬁl)Cin;,piultl}]?l;T(}az (Tlﬁirlf rofile Surface GrowthCambridge University Press, New York,

: 1995).
We then computeC from the fluctuations of the de- 5] W.I. )Newman and D.L. Turcotte, Geophys. J. Int.

trended surfaceh = h — hq(x)). From both € and 100, 433 (1990); D.L. TurcotteFractals and Chaos in

C, we find that the least-squares estimates of the  Geology and Geophysic€Cambridge University Press,

roughness exponentsy; = 0.67 and a; = 0.78, ex- New York, 1992).

hibit a surprisingly good fit to our theoretical predic- [6] D.M. Mark and P.B. Aronson, Math. Geoll6, 671

tions (8). (1984); M. Matsushita and S. Ouchi, Physica (Amsterdam)
We have also measured; and C, in some desert 38D, 246 (1989); S. Ouchi and M. Matsushita, Geomor-

environments. In these cases (not shown), we did not  Phologys, 15 (1992); C.G. Chase, Geomorpholdgy39
obtain conclusive power law scaling, but we always (717991239;"6‘ Lifton and C.G. Chase, Geomorpholdgy
found C,/C) > 1, as predicted by the linear theory. ( )

g . . [7] G.I. Barenblatt, A.V. Zhivago, Yu.P. Neprochnov, and
Thus, while the example of Fig. 2 may be in some A.A. Ostrovskiy, Oceanology24, 695 (1984): L. E.

sense specialized, one of our main predictions—that the Gilbert, Pure Appl. Geophys.31, 241 (1989); D. Norton
topography in the perpendicular direction is rougher than a4 s, Sorenson, Pure Appl. Geophy81, 77 (1989).
the topography in the parallel direction—seems to be of 8] A. Czirék, E. Somfai, and J. Vicsek, Phys. Rev. Létt,
fairly general validity. 2154 (1993).

In conclusion, we note that the main elements of our [9] D. Sornette and Y.-C. Zhang, Geophys. J. IhL3 382
theory are the conservation of the eroded material, ran-  (1993).
domness of either the landscape or the forcing, and thE.0] A. Giacometti, A. Maritan, and J. R. Banavar, Phys. Rev.
presence of a preferred direction for the material trans-  Lett. 75 577 (1995); K. Sinclair and R. C. Ball, Phys. Rev.
port. The latter assumption leads to an anisotropic equa- €t 76, 3360 (1996); E. Somfai and L. M. Sander, Phys.
tion that applies, in principle, to any erosive process with ~ ReV: E56, R5 (1997); J. R. Banavatt al., Phys. Rev. Lett.

X 78, 4522 (1997).
the appropriate lack of symmetry. In the usual g(:"Ok)g'll] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.

ical setting, however, the anisotropy applies specificall 56, 889 (1986); E. Medina, T. Hwa, M. Kardar, and Y.-C.
to a surface of fixed inclination which, in turn, implies Zhang, Phys. Rev. /89, 3053 (1989). ’

that our theory should apply only locally, to the relatively [12] Arguments supporting this parametrization are also given
small scales where the preferred direction of transport is by J.D. Pelletier, physics/9705033.
approximately constant. Because the anisotropy should3] T. Hwa and M. Kardar, Phys. Rev. 45, 7002 (1992).
vanish at large length scales, these large scale featurfigt] G. Caldarelliet al., Phys. Rev. E55, R4865 (1997).
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such as the KPZ equation [9,11]. Indeed, the KPZ equall6] Z-W. Lai and S. Das Sarma, Phys. Rev. L&6, 2348
tion predicts exponents that are approximately consistent (1991). L )
with large scale observations. Since these predictions difi/] The dynamic critical exponent measures the saturation
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