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Abstract. – Standard models of sequential adsorption are implicitly formulated in a scale
invariant form, by assuming adsorption on an infinite surface, with no characteristic length
scales. In real situations, however, involving complex surfaces, intrinsic length scales may be
relevant. We present an analytic model of continuous random sequential adsorption, in which
the scale invariance symmetry is explicitly broken. The characteristic length is imposed by a
set of scattered obstacles, previously adsorbed onto the surface. We show, by means of analytic
solutions and numerical simulations, the profound effects of the symmetry breaking on both
the jamming limit and the correlation function of the adsorbed layer.

The irreversible adsorption of colloidal particles onto a solid surface [1, 2] has been the
subject of a particularly active research effort over the last years. The kinetics of adsorption
has been mainly studied through the formulation of different models, aiming to capture the
essential features of the process. These models are defined via a set of rules by which the
particles accommodate when arriving at the surface, and their main purpose is to reproduce
the experimentally observed properties of the adsorbed phase. Among those, we emphasize
the maximum density of adsorbed particles —the jamming limit ρ∞— and the structure of
the adsorbed layer, as measured by the correlation function g(x) [2]. In the basic models
proposed so far (the random sequential adsorption model (RSA) [3, 4, 5, 6, 7, 8], the ballistic
model [9, 10, 11], and their subsequent extensions), the kinetics is considerably simplified,
both numerically and analytically, by assuming that the adsorption takes place onto a planar
surface of infinite extension. Under this condition, and given that there is no characteristic
length involved in the problem (apart from the size of the particles) it is presumable that the
basic dynamic quantities satisfy certain scaling laws. The existence of those scaling laws is
ultimately responsible for the fact that, once the model is established by predicating a certain
set of rules, all relevant quantities remain fixed and their values depend only on the rules
adopted. In particular, all properties are independent of the particle size and the rate of
adsorption—this latter assumed to be constant in space and time. Moreover, in the absence
of external forces or interactions among the particles [12, 13, 14], the adsorbed layer exhibits
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a simple structure in which correlations decay very fast, thus indicating absence of long range
order. Although models formulated under those conditions may accurately reproduce many
experimental situations, their extension to more complex surfaces having an intrinsic structure
is by no means trivial. For example, a characteristic length may be present in the substrate,
which may alter the kinetics of the process and the structure of the adsorbed layer. With the
only exception of some discrete models formulated to analyze adsorption in the presence of
point-like quenched impurities [15, 16], and a model of RSA of spherical particles adsorbing
onto a substrate composed by a random collection of points [17], the physics on those complex
substrates (beyond the scaling regime) remains essentially unexplored.

Our purpose in this Letter is to show that when the scale invariance is broken by in-
troducing a characteristic length, new aspects of the problem arise, leading to considerable
changes in the adsorbed layer. The appearance of new scales may originate from the exis-
tence of pinned objects on the surface [15, 16]. Thus, to make our analysis concrete, we will
present an extensive study of a one-dimensional (1d) model in which particles adsorb accord-
ing to the RSA rules onto a line where a distribution of spherical obstacles of different size
has been previously dispersed. We note that this model is essentially different from those of
Refs.[18, 19, 20, 21, 22], which deal with the simultaneous adsorption of particles of different
sizes.

In the RSA model [2, 4], the adsorbing particles are sequentially located at random po-
sitions on the surface. If an incoming particle overlaps with a previously adsorbed one, it is
rejected; otherwise, it becomes irreversibly adsorbed. The continuous version of this model
can be solved in 1d by analyzing the density function of gaps—holes between two consecu-
tively adsorbed particles. In the RSA of spheres of a single diameter σ, the density of gaps of
length x, Gσ(x, t), fulfills the equations [10]

∂Gσ(x, t)

∂t
= −(x− σ)Gσ(x, t) + 2

∫

∞

x+σ

Gσ(y, t)dy, x ≥ σ; (1)

∂Gσ(x, t)

∂t
= 2

∫

∞

x+σ

Gσ(y, t)dy, x ≤ σ. (2)

Here time t has been rescaled by the rate of arrival of the particles to the line and it has
therefore units of inverse length. The subscript σ explicitly denotes the dependence on the size
of the particles. The coverage ρσ(t) is given by 1−

∫

∞

0 xGσ(x, t)dx. The solution of Eqs. (1) and
(2), with the initial condition of an infinite clean substrate [i.e., Gσ(x, 0) = 0] yields the result

ρσ(t) = ψ(σt) [10], where ψ(t) ≡
∫ t

0 F (u)du is the coverage corresponding to an RSA process

with particles of size 1. We have defined the usual function F (t) ≡ exp
{

−2
∫ t

0 dz(1− e−z)/z
}

.

From this solution we see that ρ∞ = limt→∞ ρσ(t) ≡ ρR = 0.74759 [4], independent of σ.
This fact can be understood by noticing that the gap distribution, as given by Eqs. (1) and
(2), fulfills the identity

Gλσ(x, t) ≡ λ−2Gσ(λ
−1x, λt), (3)

for any real positive number λ. This identity means that the gap density Gσ is scale invariant:
covering the line (and in general any surface) with particles which are larger by a factor λ
has the only effect of reducing the time at which a given configuration is reached, by a factor
of λ−1. It is the existence of this scale invariance that is responsible for the fact that the
jamming limit remains fixed upon variations of the particle size σ.

The presence of impurities—defined as preadsorbed obstacles of a fixed size σ0 6= σ—
breaks the scale invariance by introducing an external length scale. The jamming limit and
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the structure of the adsorbed phase must therefore depend in this case on the size of the
adsorbing particles, more precisely, on the size ratio of particles to obstacles, r = σ/σ0.

We consider in general the adsorption of particles of size σ onto a linear substrate, over
which there is a preadsorbed set of obstacles of size σ0, present with an initial density ρ0. As-
suming that the impurities have been adsorbed onto the surface following the RSA dynamics,
they reach the coverage ρ0 at time t0,

ρ0 = ψ(σ0t0) = ψ(ζ0). (4)

The dependence of ρ0 on t0 is through the combination ζ0 = σ0t0. At this time, the surface
exhibits a gap distribution given byGσ0

(x, t0). The problem translates then to solving Eqs. (1)
and (2) with the initial condition that, at time t0, the gap density is given by G0(x) ≡

Gσ0
(x, t0).
We contemplate two possibilities, namely σ > σ0 and σ < σ0. The instance σ > σ0

has been previously considered in the literature, numerically [15, 16, 23] and analytically
[16, 23, 24], on one- and two-dimensional lattice (discrete) models. In this case, the imposed
characteristic length is small, thus implying slight variations of the form of the surface with
respect to the planar form. The first characteristic we want to show is that our model admits
in this case a very direct solutions, which agrees with the continuum limit of the lattice models
previously proposed.

To show this, we perform in Eq. (1) the substitution G(x, t) = e−(x−σ)tH(t). The cor-
responding equation for H(t) is then dH/dt = (2e−xσ/t)H , which is solved with the initial
condition H(t0) = H0. The constant H0 is determined by comparison with the initial value
G>

0 (x) ≡ G0(x > σ0). We obtain

G(x, t) = Υ0t
2e−(x−σ)tF (σt), x > σ, (5)

where we have defined the constant

Υ0 = e−(σ−σ0)t0
F (σ0t0)

F (σt0)
≡ e−(r−1)ζ0

F (ζ0)

F (rζ0)
. (6)

Eq. (2) is solved by direct integration, yielding

G(x, t) = G0(x) + Υ0

∫ t

t0

2ue−xuF (σu)du, x < σ, (7)

where G0(x) equals G<
0 (x) ≡ G0(x < σ0) or G>

0 (x), according to the value of x. Further
integration of the quantity xG, in the limit t→ ∞, yields the jamming limit

ρ∞ = ρ0 +Υ0 [ρR − ψ(rζ0)] . (8)

This result coincides with the continuum limit obtained from the lattice model in Ref. [23].
We turn now to the more complex case σ < σ0, in which more interesting changes are

expected, due to the fact that the planar form of the surface is considerably altered. The
difficulty in solving the model stems from the coupling of the solution to the initial conditions.
We consider in particular the case σ0/2 ≤ σ ≤ σ0; the case σ < σ0/2 can be worked out along
the same lines. The solution of the model is found for different ranges of values of x:

(a) x > σ0: From Eqs. (2) and (5), we readily obtain

G(a)(x, t) = Υ0t
2e−(x−σ)tF (σt). (9)
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(b) σ0 > x > σ: From Eq. (1), we see that the equation is coupled to G(a). The solution is

G(b)(x, t) = e−(x−σ)(t−t0)

∫ t0

0

2ue−uxF (σ0u)du+Υ0e
−(x−σ)t

∫ t

t0

2ue−σuF (σu)du. (10)

(c) σ > x > σ0 − σ: Given G(a), the solution follows by direct integration:

G(c)(x, t) = G<
0 (x) + Υ0

∫ t

t0

2ue−xuF (σu)du. (11)

(d) σ0 − σ > x > 0: The equation for G(d) is coupled to the cases a and b. The solution is
found to be

G(d)(x, t) = G<
0 (x) + 2

∫ t

t0

dv

∫ t0

0

2ue−σuLx(u+ v − t0)F (σ0u)du

+ 2Υ0

∫ t

t0

dvLx(v)

∫ v

t0

2ue−σuF (σu)du +Υ0

∫ t

t0

2ue−(σ0−σ)uF (σu)du, (12)

where we have used the auxiliary function

Lx(z) =
1

z

{

e−xz − e−(σ0−σ)z
}

(13)

In order to estimate the covering at jamming, we compute the integral
∫

∞

0 xG(x, t)dx. In
the limit t→ ∞ the contribution from regions a and b vanishes, since at jamming there are no
gaps of length larger than a particle diameter. After performing some cumbersome algebra,
we arrive at the final expression for the total coverage, counting both particles and obstacles:

ρ∞ = ρ0(1 + r) + 2r

∫ ζ0

0

(e−ru − 2e−u)F (u)du

+ 2rΥ0

∫

∞

ζ0

{

[1 + (1− r)u] e−(1−r)u + e−ru − 2e−u
}

F (ru)du. (14)

Equation (14) determines the coverage at jamming for any value of ρ0 < ρR, both explicitly
and implicitly as a function of the initial time t0. We can however determine an explicit form
as a function of ρ0 in the limiting case ζ0 ≪ 1 (small initial coverage ρ0), by Taylor expanding
the expression for F (t). We obtain

ρ∞ = ρR + (1 − r)(1 − ρR)ρ0 +O(ρ30). (15)

That is, up to corrections of order ρ30, ρ∞ grows linearly with ρ0, with slope (1 − r)(1 −

ρR). Incidentally, we note that the same Taylor expansion in valid for the expression (8),
corresponding to σ > σ0. In this case, however, since r > 1, the jamming limit decreases
linearly with ρ0.

For larger values of ρ0 we can estimate the theoretical predictions of Eq. (14) by integrating
this expression up to a very large time t. Given a value of ρ0, the corresponding time t0 is
found by numerically solving Eq. (4). Having obtained these two values, we perform the
integration in Eq. (14). Figure 1 shows the results of such integration for different values of r,
as a function of the initial density ρ0. The symbols represent data obtained from Monte Carlo
simulations of the model on a line of length L = 5000σ with periodic boundary conditions,
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Fig. 1 – Jamming limit ρ∞ as a function of the initial density ρ0. Full lines, analytic result Eq. (14);
filled symbols, computer simulations; dashed lines, linear approximation Eq. (15).

averaging over 100 realizations. The error bars reported are standard deviations. The dashed
lines correspond to the results obtained in the linear approximation (15).

From Figure 1 we observe that the jamming limit is very well approximated by the linear

expression (15), up to a critical density ρ
(c)
0 , above which ρ∞ overshoots and increases faster.

The critical density can be seen to depend approximately linearly on the size ratio, being a
decreasing function of r. The presence of this critical density can be understood as follows:
The effect of a small concentration of obstacles is to essentially impose a small perturbation in
the structure of the adsorbed phase. For r ≪ 1 and ρ0 ≪ 1, one can consider the interactions of
particles and impurities as effectively decoupled. We are then in a situation where the particles
saturate the surface up to a density ρR, leaving free a fraction 1 − ρR which is filled with
impurities with density ρ0. This amounts effectively to a total coverage ρ∞ ≈ ρR+(1−ρR)ρ0,
which indeed coincides with the exact Taylor expansion, Eq. (15), in the limit r → 0. We can
thus interpret this case as a soft symmetry breaking, which induces at most linear corrections
to the jamming limit. When the density ρ0 increases, the interaction between particles and

impurities grows larger. Beyond ρ
(c)
0 , the presence of impurities radically alters the structure

of the adsorbed phase, breaking completely the scale invariance symmetry, and inducing non-
linear corrections to the jamming limit.

We can assess the effects of the symmetry breaking on the structure of the adsorbed
phase by studying the particle-particle correlation function g(x). In Figure 2 we have plotted
g(x) as a function of the reduced length x/σ, for different values of ρ0 and a fixed size ratio
r = 0.70. Data is obtained from simulations onto a line of length L = 10000σ, averaging over
10 different realizations. The bin width used is 1/100. For this particular value of r, we can

estimate from Fig. 1 ρ
(c)
0 ≈ 0.50. For values of ρ0 < 0.50, we observe that the correlation

function has essentially the same shape as in standard RSA. At ρ0 = 0.50, however, we observe
the development of a secondary peak in g(x), which eventually grows and takes over for larger
concentrations. This peak corresponds to a majority of pairs of particles separated by exactly
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Fig. 2 – Particle-particle correlation function for fixed r = 0.70 and different initial coverages ρ0.

one obstacle, such that the distance between the centers of the particles in a pair is x = σ+σ0
or x/σ = 1 + 1/r ≃ 2.429. This value has been marked in Fig. 1 by means of a straight
vertical line. For even larger values of the initial concentration, ρ0 ≥ 0.70, a third peak in the
correlations is also observed.

In summary, we have studied the kinetics of adsorption onto a line under the conditions for
which the density of gaps among particles is not scale invariant. The analysis of the process,
governed by the RSA rules, has revealed the existence of new and rich phenomenology beyond
the scaling regime, including: substantial increase in the jamming limit, which depends on
the density of inhomogeneities introduced; the appearance of new correlations among the
particles; and also the existence of a critical density of impurities, dividing regimes of soft and
complete violation of the scaling symmetry. To this purpose, we have proposed and solved
analytically a continuous 1d model in which particles adsorb, following the RSA rules, onto
a surface in which spherical particles of different size have been previously scattered. When
particularized to the case in which the imposed length scale is smaller than the size of the
particles, our model reproduces the results obtained from a previous model considering the
adsorption on a lattice in the presence of point-like impurities. Our results may offer new
perspectives on what concerns modelization of the adsorption phenomena in more complex
surfaces, as the ones having a certain roughness or an intrinsic structure manifested through
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the existence of a characteristic correlation length. In those surfaces, found in situations of
practical interest, the property of scale-invariance, inherent to standard adsorption models, is
no longer satisfied.
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