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Abstract 

The identification of healthy individuals harboring amyloid pathology constitutes one important 

challenge for secondary prevention clinical trials in Alzheimer's disease. Consequently, noninvasive 

and cost-efficient techniques to detect preclinical AD constitute an unmet need of critical importance. 

In this manuscript, we apply machine learning to structural MRI (T1 and DTI) of 96 cognitively normal 

subjects to identify amyloid-positive ones. Models were trained on public ADNI data and validated on 

an independent local cohort. Used for subject classification in a simulated clinical trial setting, the 

proposed method is able to save 60% unnecessary CSF/PET tests and to reduce 47% of the cost of 

recruitment when used in a simulated clinical trial setting. This recruitment strategy capitalizes on 

already acquired MRIs to reduce the overall amount of invasive PET/CSF tests in prevention trials, 

demonstrating a potential value as a tool for AD screening. This protocol could foster the development 

of secondary prevention strategies for AD.  
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1 Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a progressive loss of 

cognitive abilities and specific neuropathological alterations, namely plaques of beta-amyloid (Aβ) and 

tangles of tau proteins. The last decade has seen a paradigm shift by which AD is now perceived as a 

biological continuum that ranges all the way from normal cognition to dementia [1]. This new concept 

of AD recognizes the presence of a preclinical stage of AD (PreAD) that precedes the symptomatic 

phases of mild cognitive impairment due to AD (MCI-AD) and dementia due to AD (AD). PreAD is 

characterized by cognition within normal ranges and abnormal amyloid biomarkers as measured in 

cerebrospinal fluid (CSF) or by positron emission tomography (PET). Studies show that amyloid 

biomarkers in cognitively healthy individuals can be altered decades before the clinical diagnosis of the 

disease and, therefore, the PreAD stage constitutes a window of opportunity for prevention therapies 

[2].  

At present, disease-modifying therapies have failed to show adequate efficacy in clinical trials and there 

is a growing consensus that trials should focus on earlier stages of the disease, prompting treatment 

options before irreversible neuronal loss. For example, the A4 (Anti-Amyloid Treatment in 

Asymptomatic Alzheimer’s disease) stands as the first secondary prevention trial aimed at preventing 

clinical symptom in cognitively healthy individuals with AD pathophysiology. However, prevention 

trials in the PreAD stage face crucial ethical and logistic challenges. Among other considerations, the 

slow buildup of amyloid accumulation requires long follow-up periods, and large amounts of 

individuals that should be screened in order to achieve adequate statistical power due to the small effect 

sizes. Critical to the success of AD prevention strategies, efficient, noninvasive and cost-effective 

methods of screening asymptomatic at-risk subjects for preventive trials need to be developed.  

MRI has proven to be instrumental at characterizing impending dementia and cognitive decline due to 

AD both for research and in the clinic. Structural changes in AD-vulnerable structures such as the 

entorhinal cortex, hippocampus and temporal lobe constitute diagnostic markers of cognitive 

impairment [3,4] and stand as valid marker for AD progression [4]. Moreover, other MRI modalities 

(Magnetic resonance spectroscopy [5], diffusion-weighted imaging (DWI) [6], diffusion-tensor 

imaging (DTI) [7,8]) and functional magnetic resonance imaging (fMRI) [9] offer further 
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complementary information and have unveiled specific AD alterations at different stages of the AD 

spectrum. On the other hand, to which extent MRI can resolve structural and connectivity changes at 

the preclinical asymptomatic stage of AD is still an area open for exploration [10,11].  

The machine learning field has contributed a battery of tools for the automated classification of images 

from MRI. These tools have been applied to publicly available data resources dedicated to AD 

biomarker discovery. For example, the Alzheimer Disease Neuroimaging Initiative (ADNI)[12] with 

the primary goal of testing whether serial MRI, PET and other biological markers, can be combined 

with clinical and neuropsychological assessment to measure the progression of MCI and early AD.  

While most studies are limited to structural T1 data, some recent efforts also cover other imaging 

modalities (e.g. ASL[13]), To our knowledge, all machine learning efforts have been focused on 

diagnostic categories (MCI and AD) and the prediction of impending cognitive decline. For recent 

reviews see [14]. Whether machine learning can resolve the signature of preclinical AD remains to be 

investigated. Furthermore, no studies have analyzed the practical utility of MRI-based screening for the 

recruitment of cognitively normal volunteers in AD prevention trials. 

In this work, we propose an MRI-driven machine learning protocol for the identification of cognitively 

normal individuals bearing abnormal amyloid levels to be implemented in clinical trial recruitment. Our 

proposed protocol, uses an MRI-based machine learning model to identify those subjects that are more 

likely to report abnormal amyloid biomarkers (Figure 1). While it does not replace the gold standard 

measures, our method gains further knowledge from already acquired MRIs, minimizing the amount of 

PET or CSF tests, in exchange for non-invasive and cost-effective MRIs.   

We assessed the utility of our system for PreAD screening based on MRI. To this end, our model was 

trained on features based on brain morphometry and structural connectivity using a subset of the ADNI 

cohort. Then, in a local cohort we validated the capacity of our model to prospectively detect amyloid-

positive individuals. Finally, we determined the benefits of utilizing this classifier in the recruitment of 

subjects for secondary prevention trials. Taken as a whole, our results show that MRI modalities 

combined with machine learning can be used as a practical and cost-effective screening tool for AD 
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prevention trials.  

  

2 Materials and methods 

2.1 Subjects 

CSF as well as T1 and DTI imaging data from 96 subjects of the ADNI cohort [12] was downloaded. 

This subset of ADNI was selected to collect T1 and DTI images acquired on the same 3T scanner. In 

this sample, cognitively normal subjects were classified as PreAD if they had Aβ42 CSF concentration 

below 192 pg/mL and as normal control (NC) if else. This threshold for Aβ positivity (Aβ+) was 

selected  as it optimally discriminates between controls and AD patients on the ADNI-independent 

autopsy-based AD CSF samples analysed with the multiplex xMAP Lumnex platform [Shaw et al. Ann 

Neurol. 2009 Apr; 65(4): 403–413], MCI and AD classification criteria applied in the ADNI project 

have been reported elsewhere [17] and were further refined by exclusively considering Aβ+ individuals. 

This classification criteria resulted in 28 normal controls (NC), 16 PreAD, 23 MCI due to AD [MCI], 

29 AD.  

Equivalent CSF, T1 and DTI imaging data was also acquired from our single-site cohort at the AD Unit 

Hospital Clinic of Barcelona (HCB) including 87 subjects (40 NC, 12 Pre-AD, 21 MCI due to AD 

[MCI], 14 AD). Subjects were classified as PreAD if they were cognitively normal and Aβ+, defined 

according to recommended reference values with the INNOTEST ELISA (CSF Aβ42 < 500 pg/mL) 

[10,15,16]. Criteria for MCI and AD have been previously reported [10] and, of note, only included 

Aβ+ patients. The local ethics committee approved the study and all participants gave written informed 

consent.  

2.2 Image acquisition and processing 

HCB participants underwent MRI in the same 3T Siemens TrioTIM scanner providing 3D T1- weighted 

images with the following parameters: Repetition Time (TR) = 2300 ms, Echo Time (TE) = 2.98 ms, 

Inversion Time (TI) = 900 ms, Flip Angle = 9, voxel resolution of 1×1×1 mm3 on 240 sagittal slices; 

and two diffusion-weighted sequences: TR = 7600 ms, TE = 89 ms, Flip Angle = 90, 30 non-collinear 

directions (b = 1000 s/mm2) and 1 non-gradient volume (b = 0), voxel size of 2.05×2.05×2 mm3 on 60 
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axial slices. 

ADNI participants were scanned on the same 3T GE MRI model, on 13 different sites, comprising  3D 

T1-weighted images: TR = 7.256 ms, TE = 2.988 ms, TI = 400 ms, Flip Angle = 11, voxels resolution 

of 1.02×1.02×1.2 mm3 on 196 sagittal slices; and a diffusion-weighted sequence: TR = 13000 ms, TE 

= 69.1 ms, Flip Angle = 90, 41 non-collinear directions (b = 1000 s/mm2) and 5 non-gradient images, 

voxel resolution 1.3672×1.3672×2.7 mm3 on 59 axial slices. 

T1-weighted images were segmented with the Statistical Parametric Mapping (SPM) VBM8 toolbox 

[18] to obtain CSF, gray matter (GM), and white matter (WM) probabilistic map. Then, a binary GM 

mask was formed by those voxels whose probability of belonging to GM was bigger than the probability 

of belonging to any other tissue. The AAL atlas [19] in the Montreal Neurological Institute (MNI) 

standard space was warped to each subject’s T1 native space by mean of ANTS (UPENN, UVA and 

UIowa, USA; http://stnava.github.io/ANTs/) and using the DARTEL template obtained from the 

segmentation step. AAL maps were resliced to the T1 resolution using nearest neighbour interpolation 

and intersected with the GM mask. Volumes of all AAL regions were computed for every subject and 

normalized by total intracranial volume, calculated as the sum of the CSF, WM and GM masks.   

Structural connectivity matrices (SCM) were also computed. To this end, AAL regions were 

superimposed to the DTI data using a similar protocol as the one described above. For tractography, to 

create a seed mask insensitive to grey matter volume changes, the interface between grey and white 

matter was dilated by one voxel. Then, probabilistic tractography was performed between pairs of AAL 

regions using FSL's ProbtrackX [20] (see further details in [16]). 

 

2.3 Overview of machine-learning methods 

Our core machine learning pipeline was trained using the ADNI cohort dataset and tested with our local 

dataset from HCB (Figure 2). The performance of the overall system was validated using CSF/PET 

biomarkers as gold-standard.  

 

Feature extraction and selection. Feature selection techniques were used to retrieve a reduced set of 

informative features from high dimensional medical images. From each T1-weighted image, we 
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extracted a 90-dimensional vector corresponding to the grey matter volume (GMV) of each of the 90 

regions of interest (ROIs) described in the AAL atlas. From each DTI image, we extracted a 90x90 

structural connectivity matrix (SCM) for atlas ROIs (SCM). The upper triangular determines a 4005-

feature vector.  

The different acquisition protocols across medical centers introduce biases that are reflected in 

considerable variability in the distribution of imaging feature vectors. Thus, imaging features were 

normalized using Z-scores computed independently for each cohort to make data comparable and 

ensure standardized feature weights. 

 

Different filter feature selection methods have been compared for performance. We focused on 

balancing the relevance and the redundancy of the subset of features and three methods were evaluated 

for this purpose: F-test, mRMR-FCD and mRMR-FCQ [21]. The first two provided optimal 

performance in the selection of T1 and DTI imaging features respectively and were used throughout 

this study. We discard the use of wrapper and embedded feature selection methods since they are 

sensible to small sample sizes and result in high generalization error indicating severe overfitting of the 

training set.   

 

Classification. Cognitively normal individuals (NC and PreAD) in the two cohorts were used to train 

and test a classifier to predict dichotomous Aβ status (either positive or negative). The ADNI cohort 

were used for training the classifier and the HCB data for test. In addition, two different classifiers were 

built, one based on T1 data alone and, another one, based on a combination of T1 and DWI data.  

Different classification schemes were tested out, including logistic regression (LR), support vector 

machine (SVM) with linear and gaussian kernels, random forests and k-nearest neighbours, being linear 

methods (logistic regression and linear-SVM) the most succesful, giving similar results in practice. 

Finally, due to slightly better performance and easier interpretation of the model, a binary LR classifier 

was used with L2 regularization and a penalty term λ, optimized by a cross-validation strategy in the 
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ADNI cohort. The LR classifier outputs a score for each subject that can be interpreted as the probability 

of being Aβ+ or Aβ-, as validated by the CSF biomarker readout.   

The optimized model was tested for performance in terms of the savings in cost of clinical trial 

recruitment. To this end, precision (fraction of positive prediction correctly classified)), recall (also 

known as sensitivity, i.e. fraction of positive instances correctly classified) and specificity (fraction of 

negative instances correctly classified) were calculated using the dichotomized CSF Aβ as gold 

standard. Precision-recall (PR) and receiver-operating curves (ROC) were also computed to evaluate 

method performance. See formulae in Appendix A.  

For a target normal population of mean age 65, the prevalence of amyloid pathology was estimated to 

be 20% [2]. We employed a bootstrapping approach to simulate the required disease prevalence and 

iteratively repeat the classification protocol, yielding different splits of the test set at each run.  

As a secondary analysis and for the sake of comparability with previously reported AD/MCI classifiers, 

an ‘optimized diagnostic’ classifier was derived with an identical pipeline and using NC,  MCI and AD 

subjects in the two cohorts to discriminate between NC-MCI and NC-AD (for further details see 

Appendix B). Finally, we also assessed the performance of the classifier optimized to discriminate 

PreAD from NC to classify between of NC vs. the diagnostic categories (MCI and AD).   

  

Savings. Savings in clinical trial recruitment were calculated as the percentage difference in resources 

between the standard recruitment protocol and our proposed protocol with the MRI-based classifier 

(Figure 1) to obtain a desired number of PreAD subjects for the clinical study. Savings were assessed 

in terms of economic cost (Equation [1]) or participant burden (Equation [2]) i.e. the amount of 

unnecessary PET/CSF tests spared through MRI-screening.   

 

Eq. [1]   

Eq. [2]   

 

in terms of the precision (P), recall (R), and the costs of MRI and CSF tests estimated as CMRI = 700€, 



  

9  

and CPET = 3000€. Cavg represents the average cost among the screening tests which may include 

additional costs (e.g. neuropsychological cognitive testing). For simplicity, we have performed the 

calculations solely using the imaging costs. A more general formulation of the savings structure and 

formulae is provided in Appendices C & D. Classifier thresholds and feature-extraction methods can 

be optimized to enhance the Savings in Eq.[1] visualized with precision-recall curves.  

 

3 Results 

First we report our standardization protocol to make data actionable across training and testing cohorts 

(Section 3.1). Then, we evaluate the performance of a classifier based on GMV from T1-weighted 

images only (Section 3.2) and an extended classifier based on a combination of T1 and DTI features 

(Section 3.3). Demographic characteristics of the studied samples are shown in Table 1. 

 

3.1 Data normalization 

Following normalization of the raw imaging features from the training cohort (ADNI) and test cohort 

(HCB), the resulting distributions of Z-score features were confirmed as matching distributions under 

the Kolmogorov-Smirnov (KS) test (p <= 0.05) (Figure 3). 

 

3.2 Classification of PreAD subjects using T1-weighted images 

F-test selection provides the most discriminative features in the classification NC vs PreAD based on 

ADNI data (Figure 4, Appendix D). The classification algorithm provides a ranking and a weight for 

these features (Figure 4) based on their relevance. Maximal area under the ROC curve (AUC) and 

maximal clinical recruitment savings can be achieved for 20 T1 features (Table 2).   

 

3.3 Classification of PreAD subjects using multimodal feature vectors 

Multimodal classification was performed combining imaging features from T1 and DTI. Z-score 

transformed features concatenated from both modalities yield 4095-dimensional feature vectors. The 

optimal PR threshold that yields the highest savings highly depends on the number of features used in 
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the classifier (Table 3, Figure 5). Feature selection with the mRm-FCD [21] method resulted in a 45-

dimensional feature vector (features listed in Appendix D). Notably, only 2 out of these 45 most 

informative features were T1 features (feature 18: Olfactory (L), feature 23: Pallidum), while 43 were 

DTI feature-pairs. This result suggests that DTI features may be more informative than T1 features for 

identifying preclinical subjects. Figure 5 shows the most DTI-connected regions, given by the weighted 

sum of the DTI-feature pairs and reflects their relevance in the identification of PreAD. For example, 

the Pallidum is highlighted as a ROI with multiple connections as well as by itself as a GMV feature.  

Remarkably, almost same performance (AUC) and cost savings are obtained for both T1 and the 

multimodal classifiers but precision is higher (P = 0.85) in the multimodal model than in the T1 case (P 

= 0.54) resulting in larger savings with regards to participant burden (76.5%). The description of the 

association between CSF Aβ42 levels and tractography falls beyond the interest of this work as it has 

been described elsewhere [16]. 

 

3.4 Classification of NC vs MCI/AD subjects  

The T1-only classifier optimized to discriminate between NC and MCI/AD patients yielded AUCs 

comparable with state-of-the-art methods (AUC>0.89). Addition of the DTI data marginally improved 

the classification performance (AUC>0.91). Again, these  metrics were achieved in the HCB cohort 

after training the classifiers on the ADNI dataset. On the other hand, the classifier optimized to 

discriminate between NC and PreAD subjects yielded an AUC<0.20 to discriminate among NC and the 

diagnostic categories (i.e. MCI, AD). For further details see Appendix C.  

 

4 Discussion 

 

Our work investigates the automated screening of PreAD individuals using machine learning methods 

on features derived from structural MRI. We present the potential integration of such a technology as a 

screening tool for the recruitment of subjects in secondary prevention trials and present a framework to 

quantify the benefits of such approach in economic and participant burden terms. Noteworthy, it is not 



  

11  

proposed to replace the gold standard PET/CSF tests, but to provide a prediction of amyloid positivity 

in order to avoid unnecessary PET/CSF tests and, thus, reduce participant burden and economic costs. 

 

Validation across cohorts. We utilized public MRI and CSF data available from ADNI for feature 

selection and model training. Our independent HCB cohort served for model testing, simulating a real 

trial recruitment scenario. The data normalization scheme enabled validation overcoming the 

differences between data acquisition protocols and scanners in both institutions. Thus, the relevance of 

our models can be generalized to other population samples, with different age and education ranges. Of 

note, performance of the algorithm was stable when reversing the training and test datasets. Therefore, 

we foresee that the performance of our PreAD classification will hold when prospectively applied to 

independent cohorts with practical utility for PreAD screening purposes. 

 

Feature selection. By design, our data-driven approach was agnostic to previously reported anatomical 

changes due to AD. This allowed us to validate the selected features given their role in preclinical and 

prodromal stages of AD according to the literature. As expected, most of the features found informative 

in PreAD classification relate to the established AD signature. In the case of T1, characteristic AD 

affected regions include atlas ROIs such as the Hippocampus and Amygdala, temporal and parietal 

areas as well as the Cingulum, Thalamus, Rectus and Fusiform giri (Figure 4). Regions such as olfactory 

bulb pertain to well documented alterations of the olfactory system in the pathogenesis of AD and other 

dementias [22]. Other regions showing a high discriminative power such as the Caudates, have been 

found altered in cognitively normal individuals at high genetic risk of developing AD [23,24]. Finally, 

the role of other regions such the Globus Pallidus is not as clear in PreAD (Figure 5). One explanation 

would be that this atlas ROI includes the nucleus basalis of Meynert, which is an adjacent region not 

explicitly identified in the AAL parcellation. In a previous voxelwise analysis of the HCB cohort, the 

nucleus basalis showed alterations in PreAD [15] and, moreover, this region has been consistently 

reported to degenerate in early AD stages [25]. Interestingly, the features that classify between NC and 

PreAD yielded an AUC<0.2 to discriminate among NC and the diagnostic categories (i.e. MCI, AD). 

An AUC significantly departing from 0.5 is classifying de facto. However, being well below 0.5 
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suggests that some features that characterize PreAD from NC appear in the opposite direction as some 

of the features that classify NC vs AD. This interpretation is further reinforced by the fact that 

classification models built using an identical pipeline but trained specifically to recognize diagnostic 

categories perform accordingly to what has been reported in the literature (AUC=0.95 for 20 T1 

features, P=1.0, R=0.76), and are based mainly on hippocampal and temporal lobe volumes (Appendix 

B). Future work should improve the identification of discriminant brain regions using voxelwise 

approaches to fully characterize the preclinical AD signature using MRI and to identify overlaps with 

the established AD signature [24].  

Overall, our results shows that feature selection has prioritized DTI features over T1 features in a 

multimodal imaging vector. Thus, DTI feature-pairs may be more robust than T1 features, 

compensating for the lower image quality (resolution, noise, blur) and artifacts given by surrogate 

measures of brain anatomical connectivity in DTI. Also, DTI conveys complementary information from 

white matter connectivity. Our data raises the question of whether changes in connectivity may be more 

evident in early AD than volumetric changes [16]. Nevertheless, the relevance of DTI over T1 features 

observed in this study should be further confirmed in other datasets. Despite its similar performance, 

the multimodal model is more precise than the T1-based model, which translates into less false positives 

and therefore less unnecessary PET/CSF tests in exchange for more MRI scans given the low recall of 

the model.  

 

Range of application and PreAD prevalence. In this proof-of-concept study, our MRI-based classifier 

thresholds are optimized to maximize the cost savings. The model can be tuned for other applications 

such as minimizing participant burden (Equation 2).  

The practical utility of our MRI-based screening protocol highly depends on the prevalence of PreAD 

subjects, which in turn, is intimately related with the age range and age distribution of the clinical study. 

At lower disease prevalence, savings rely on higher classifier precision to make the MRI-based 

screening layer worthwhile (Equation 1). This proposed recruitment protocol is most efficient for 
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younger cohorts which are also best suited for secondary intervention trials. 

 

Precision vs. recall. Higher classifier precision reduces the number of unnecessary PET/CSF 

acquisitions (less false-positives). Higher classifier recall reduces the size of the initial participant pool 

for which MRI images need to be acquired by limiting the amount of false negatives that are missed in 

the classification. Ensuring a cognitively healthy participant pool also incurs associated costs (e.g. 

additional cognitive/clinical tests) that scale up with the number of participants. While it is true that 

MRI-based screening relies on recruiting a larger initial cognitively healthy participant pool and 

therefore more MRI scans and cognition tests, we estimate that the proposed protocol is still more 

efficient in terms of saving economic and participant burden (see Appendix C for details on more 

complex savings structure). 

 

Example of application. In a standard clinical trial recruitment protocol, if the prevalence of PreAD is 

20%, 1500 individuals need to undergo CSF/PET test in order to identify 300 Aβ+ subjects. First, a 

preliminary MRI scan is acquired to exclude participants displaying incidental findings or other 

neuroradiological exclusion criteria. Instead, a modest MRI-based classifier (0.54 precision/0.84 recall), 

requires 1807 MRI images to predict an identical pool of 300 Aβ positive individuals. From these 

images, only 555 will be predicted positive and sent for CSF/PET validation, with 300 resulting to be 

true positive and 255 will be false positives. This second protocol would spare 945 PET/CSF tests, in 

exchange for the additional 307 MRIs required to compensate for the false negatives missed by the 

classifier. In economic terms, the savings provided by the MRI-screening layer can prevent up to 60% 

unnecessary PET/CSF scans and save 47% of the cost as compared to the standard protocol that relies 

only the gold standard CSF/PET measures. 

Comparison to other approaches to detecting Aβ. At present, blood-based approaches to detecting 

Aβ+ are being actively pursued (Nakamura et al. Nature volume 554, pages 249–254 (08 February 

2018) doi:10.1038/nature25456; Ovod et al. Alzheimers Dement. 2017 Aug;13(8):841-849; Nabers et 

al. EMBO Mol Med. 2018 May;10(5). These methods show a high concordance (AUCs~0.80-0.90) 

between plasma Aβ species against PET imaging. Unlike our PreAD group that only included 
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cognitively normal subjects, the performance of these methods was estimatied including MCI and/or 

AD patients which might have favoured them. Nevertheless, these works demonstrate a link between 

cerebral and peripheral Aβ alterations and, when validated and automated, they will represent a major 

resource to screen the general population and implement secondary AD prevention strategies. On the 

other hand, our MRI-based approach might be particularly useful in the context of research studies in 

which CSF and or PET imaging is envisaged, as in this case MRI scans are typically   

prescribed for safety reasons.   

 

Limitations. The main limitation in our study is the small sample size of the studied groups. This was 

due to the limitation of available T1 and DTI data of the same individuals in the two cohorts. 

Nevertheless, previous reports on standardizing the evaluation of algorithms for computed-aided 

diagnosis of dementia based on structural MRI recommend using small training sets (N~30) to mimic 

the clinical setting where limited data is available and to avoid overtraining issues [Bron et al. 

Neuroimage. 2015 May 1;111:562-79]. On the other hand, to maximize the generalizability of the 

performance evaluations, they prioritized applying the algorithms to independent datasets with different 

demographics and scanning parameters. Based on this rationale, we prioritised testing the algorithm in 

independent cohorts over the total sample size. Nevertheless, future studies will focus on validating 

similar approaches in larger test sets to better account for sample demographics and confounders. To 

this end, and given the results in this report, T1 data might solely achieve similar levels of classification 

accuracy. In addition, the small sample size has limited the complexity of the machine learning schemes 

that could be implemented robustly. Future studies with bigger samples sizes will also allow the 

investigation of potential improvements in classification performance of more complex classifying 

schemes. Nevertheless, we consider this report as a promising proof-of-concept as, even with a simple 

logistic regression model, robust performance can be achieved across two independent datasets with 

distinct demographic characteristics, potentially leading to significant savings of gold-standard 

procedures.  

Another limitation of our experimental approach is that thresholds for Aβ+ might not be completely 

equivalent across the two cohorts. The respective CSF Aβ cut-offs have been independently validated 
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to yield optimal discrimination between NC and AD patients on the respective analytical platforms 

(INNOTEST ELISA for HCB and xMAP-Luminex for ADNI). While absolute values are definitely not 

comparable, the correlation between them has been shown to be very high (r > 0.75 [Irwin et al Arch 

Neurol. 2012 Aug; 69(8): 1018–1025; Wang et al. J Alzheimers Dis. 2012; 31(2): 439–445, Fagan et 

al. Arch Neurol. 2011 Sep; 68(9): 1137–1144.]). Nevertheless, according to published conversion 

equations, the respective thresholds are within the interlaboratory reproducibility of the analytical 

platforms which fall in the rage of 15-30% (%CV) [Kang Clin Chem. 2013 Jun; 59(6): 903–916.]. 

Based on this rationale, we preferred to use published and validated cut-offs for comparability with 

previous reports with the respective datasets. A similar limitation may arise from equating positivity 

based on CSF and PET data unless cut-offs are defined against modalities, like in Hansson et al 

Alzheimers Dement. 2018 Mar 1. pii: S1552-5260(18)30029-3. doi: 10.1016/j.jalz.2018.01.010.   

Future developments. Our study was restricted to a limited subject sample and therefore our models 

can only recognize a limited aspect of the PreAD signature. We expect an enhancement in performance 

when using larger training sets. We have adopted an atlas ROI-based approach using the AAL atlas that 

implements a rather coarse parcellation; future work will explore additional more fine-grained atlases 

or even explore voxel-based multivariate approaches. Despite their modest performance, our models 

could still be applied for prospective classification in an independent cohort. Follow-up efforts involve 

the application of this workflow to larger imaging datasets such as the one being acquired within our 

ALFA project [25]. Another line of improvement is to predict the actual CSF Aβ42 levels in order to 

dichotomize the result at a later stage in order to accommodate for optimal Aβ42 thresholds for different 

applications. 

 

5 Conclusions 

In this proof-of-concept study, we establish that machine learning can detect amyloid pathology in 

cognitively normal populations using T1 and DTI MRI. This method can be used prospectively for 

PreAD screening subjects in future cohorts, following appropriate data standardization. Such an 

approach can lead to significant reduction in participant burden and economic costs. The proposed 

application is not meant to replace gold-standard techniques for determination of amyloid pathology. 
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Indeed, the benefit of this method relies on adding value to MRI images that have already been acquired, 

prior to PET scans in secondary prevention trials. In the near future, we ought to explore other 

biomarkers (p-tau, t-tau) and risk factors (APOE4, APP) and their relationship with multimodal imaging 

features for the identification of preclinical AD. Taken together, MRI-based PreAD detection can make 

a valuable tool for secondary prevention trials and should be further validated in prospective multicenter 

clinical trials. 
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Table 1 - Demographics and biomarkers, HCB and ADNI separately, and for HCB and 
ADNI merged together. 
* Significantly different vs. Control group (p < 0.05). 
† Significantly different vs. Preclinical group (p < 0.05). 
‡ Significantly different vs. same group in HCB population (p < 0.05). 
Groups: NC- normal controls, Pre- preclinicals, MCI- mild cognitive impairment due to AD, 
AD- Alzheimer’s disease patients. 
 
 
    

	   HCB	   ADNI	  
	   NC	   Pre	   MCI	   AD	   NC	   Pre	   MCI	   AD	  

N	   40	   12	   21	   14	   28	   16	   23	   29	  
N total	   87	   96	  

Women/Men	   26/14	   7/5	   10/11	   8/6	   15/13	   10/6	   7/16	   11/18	  
	   W=51, M=36	   W=43, M=53	  

Mean Age	   62.1	   72.7*	   70*	   65.9†	   71.8‡	   75.8*	   72.4	   74.2‡	  
SD	   8.5	   6	   7.5	   9	   5.1	   4.6	   8	   7.8	  

Mean Schol.	   11.9	   10.6	   11	   8.6*	   17.2‡	   16.2‡	   16.1‡	   15.2*	  
SD	   4.4	   4	   4.3	   4.2	   2.6	   2.1	   2.8	   2.8	  

APOE4 Car.	   9	   4	   10	   8	   7	   8	   21	   20	  
Non-carrier	   31	   8	   10	   6	   21	   8	   2	   9	  
Mean Aβ	   760.8	   375.8	   339.1	   310.7	   239	   148.5	   135.7	   130	  

SD	   160.3	   80.1	   71.9	   83.9	   25.7	   24.1	   20.7	   23.1	  
Mean p-tau	   56.6	   76.6	   112.2	   105.7	   31.2	   51.7	   52.9	   66.6	  

SD	   27.7	   47.8	   43.7	   43	   12.2	   32.9	   18.7	   43	  
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 NC vs PreAD 

Features AUC Precision Recall 
Savings% 

(Cost) 

Savings% 

(CSF/PET) 

10 0.65 0.48 0.75 40.9 58.3 

20 0.76 0.54 0.83 47.1 62.9 

30 0.70 0.37 0.83 33.4 45.9 

40 0.65 0.42 0.66 32.7 52.3 

50 0.61 0.36 0.58 22.3 44.4 

 
Table 2: Performance of the PreAD classification model according to the number of features selected 

(10, 20, 30, 40, 50). In the classification NC vs PreAD, optimal performance (AUC = 0.76) is achieved 

with 20 features and the optimal P-R threshold that produces the highest savings is highlighted.  
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 NC vs PreAD 

Features AUC Precision Recall Savings% 
(Cost) 

Savings% 
(CSF/PET) 

10 0.70 0.41 0.68 32.6 51.2 

20 0.65 0.60 0.59 40.9 66.6 

30 0.70 0.54 0.59 37.9 62.9 

40 0.69 0.83 0.51 43.3 75.9 

45 0.69 0.85 0.60 49.3 76.5 

50 0.70 0.66 0.60 43.8 69.7 

 

Table 3: Performance of classification according to the number of features selected (10, 20, 30, 40, 45, 

50). Optimal performance (AUC = 0.69) is provided by 45 features. The optimal PR threshold that 

produces the highest savings is listed (SavingsCOST = 49%, SavingsCSF/PET = 76.5%). 
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Figure 1: Outline of clinical recruitment protocol of subjects with PreAD pathophysiology. (a) 

Standard recruitment protocol used in clinical trials. (b) Our proposed protocol with MRI-based 

machine learning. In the standard protocol, cognitively healthy participants undergo an MRI scan to 

identify radiological exclusion criteria (e.g. cerebrovascular disease). All cognitively healthy subjects 

with no brain injuries then participate in a PET/CSF test, and the fraction of Aβ positives is determined 

only by the disease prevalence. The proposed protocol adds an exclusion layer in which automated 

MRI-based classification predicts a subset of PreAD subjects that are later subjected to PET/CSF 

acquisition. In this case, the target cohort is defined by the true positive rate (TP%) of the classification 

algorithm. The initial participant pool needs to be larger for the proposed protocol due to classifier false 

negatives that may be excluded.  
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Figure 2: Core model training and validation for automated MRI-based classification of Aβ-positive 

(Aβ+) subjects using logistic regression. The ADNI dataset is used for model training. Feature 

extraction from GMVs of ROIs is followed by feature selection for dimensionality reduction. The 

parameters of the model are optimized iteratively based on the training data to maximize performance 

measured in terms of area under the receiver-operating characteristic curve (ROC). The final model is 

tested on the HBC dataset to predict Aβ+ subjects and validated using CSF biomarkers as ground truth. 

Model predictivity and performance are assessed in terms of area under the ROC and the overall savings 

produced in the alternative recruitment scenario that includes MRI-based classification. 
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Figure 3.  Examples of distributions of T1 features for three GMV ROIs (a) before and (b) after the Z-

score normalization. The ADNI and HBC cohort distributions are shown in red and blue respectively. 
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Figure 4: (a) ROI Features selected for the best performing method (F-test, 20 features). (b) Ranked 

list of most informative features according to the weights provided by the LR decision function (ADNI 

cohort). (c) ROC analysis of the method performance for 10, 20, and 30 top ranking features based on 

the validation cohort (HCB). (d) SavingsCOST  as a function of precision-recall calculated based on the 

optimal number of features (n = 20) applied to the HCB cohort. Color scale and dashed contour lines 

indicate savings. In particular, a contour line with savings= 0.001 demarks the boundary of area of the 

precision-recall curve above which savings > 0. Optimal PR threshold provides the highest savings (P 

= 0.54, R = 0.83, Savings = 47%). Horizontal dotted line at P=0.2 denotes savings of a random classifier, 

note that this precision value is equal to the prevalence of the PreAD population. 
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Figure 5: (a) Example ROI DTI connections to Pallidum as feature-pairs in the multimodal vector for 

machine learning. (b) Ranked list of most connected ROIs according to weighted sum of features 

from the SCM matrix based on the training set ADNI. Weights are provided by the LR decision 

function. (c) ROC analysis of the method performance for 30, 44, and 55 top ranking features for the 

multimodal T1+DTI feature vector based on validation dataset HCB. (d) SavingsCOST as a function of 

precision-recall calculated based on  the optimal number of features (n = 45) calculated on the 

validation dataset HCB. Color scale and dashed contour lines indicate savings. Contour line with 

savings= 0.001 demarks the boundary of the meaningful area of the precision-recall curve below 

which all savings= 0. Optimal P vs R pairing provides the highest savings (P = 0.85, R = 0.60, 

SavingsCOST = 49%). Horizontal dotted line at P=0.2 denotes savings of a random classifier. 

  

  


