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    ABSTRACT  

When it is known a priori that some contrasts are negligible in a factorial 

design, their expressions can be used to deduce the missing results. In this 

article we propose a method for using this procedure when, as in the case 

of fractional designs, it is not known which contrasts will be null. The 

method is based on first establishing an interval of possible values 

corresponding to each of the missing results, then identifying which 

contrasts are always null independently of the value of said results.  
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1. Introduction 

In industrial contexts, conducting experiments is usually costly and the resources for carrying 

out experimental designs are often scarce. The seed idea for this paper came about when two 

of the authors were giving training and advice on DEO to a company from the aeronautic sector. 

In it, as part of the optimization of a welding process of a complicated component of a turbine 

it was decided to conduct some experiments. Runs were expensive, the material was an 

expensive titanium alloy and slow, something that interfered the normal production process 

(some experiences of our work with this company were published in Lluís Marco-Almagro et al., 

2014). The first step in a sequential experimentation process was to conduct a two level 

fractional factorial that unfortunately could not be completed. The last two runs could not be 

executed. Among other ways of analyzing the data, we asked the technicians the range of values 
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in which it seemed reasonable to find the response of the two runs not made, and we used 

those intervals as a check on the validity of the conclusions of our analysis. 

When a few years later, we saw the iterative method proposed by Zhou, M. and Goh, TN (2016) 

to save runs in two level factorial designs by detecting the point when carrying out new runs 

will not add relevant information, it made us think about the welding experiment and about 

how important it can be in certain circumstances to be able to decide –before executing all the 

planned runs– whether or not carrying out the missing ones will add any relevant information. 

Zhou and Goh method is based on updating the effect values as the runs are carried out. In 

order to calculate the effects, the missing values are assigned the average of the responses that 

have already been obtained. When the values of the effects stabilize, the experiment has 

finished. In this article we present a more elaborated and precise method based on using the 

experimenter’s technical knowledge of the possible outcome of the runs not yet realized and 

combing this with the responses that are already available.  More specifically, the previous 

knowledge of the experimenter is used to establish – for each run not yet performed – an 

interval in which it is known with certainty what the response would be if it were carried out. 

So, for example, if the response is the performance of a chemical reaction, its value will surely 

be between 0 and 100%. In addition, it is possible that the experimenter can affirm without fear 

of error that under certain conditions the performance will be greater than 30% and less than 

90%. This allows us to estimate the effects for all the possible results of runs not performed and 

to detect those effects that are not significant, regardless of what those results are. The 

proposed method also uses results from the work of Xampeny et al. (2018) showing which runs 

to skip in a two level factorial experiment so that the estimation of their results has the least 

possible influence on the analysis of the effects. 

To estimate the response corresponding to the skipped runs we use the method proposed by 

Draper and Stoneman (1964). The method consists of using the estimates of contrasts that are 

considered negligible a priori, for example interactions of 3 or more factors. The missing values 

are estimated by equaling to zero the algebraic expressions of those contrasts. If you have more 

than one missing value, it is necessary to set up systems of equations and it is a necessary 

condition – although not sufficient – to have as many null contrasts as there are missing values. 

Box (1990) provides a very clear and didactic explanation of how to estimate the missing values 

by using the interactions considered null, doing so by following the original proposal of Draper 

and Stoneman. Goh (1996) also elaborates on the possibility of omitting the executions of as 

many runs as there are contrasts that can be considered null – not only those corresponding to 

3 or more factors interactions, but also other contrasts based on the experimenter’s previous 

knowledge. In this context where contrasts can be considered a priori null, Xampeny et al. 



(2017) have studied which are the runs that, if omitted, can be estimated with the best 

properties.  

Our proposal focuses on designs with 8 and 16 runs. Designs with 32 or more runs are not usual, 

neither in practice nor in the technical literature; furthermore, when experimental designs 

allow for the execution of so many runs, it is not usually in a context of scarce resources. In any 

case, our proposal can easily be generalized to two-level factorial design with any number of 

runs.  

The article is organized as follows. The following section describes the possibilities and 

limitations of estimating missing values through expressions of contrasts that are considered 

negligible. Next section presents the proposed methodology and provides and illustration of its 

operation in 8-run designs by using an example from the book by Box, Hunter and Hunter. In 

the following section we present a different example from Box, Hunter and Hunter to discuss 

the method for saving up to two runs in 16-run designs. Finally, we outline the procedure for 

saving runs and provide some remarks and conclusions.  

2. Estimation of missing values based on negligible contrasts 

As we have already mentioned, the procedure consists of deducing the missing values by 

equating to zero the expressions of the contrasts considered negligible from scratch. For 

example, the book by Box, Hunter and Hunter (2005) presents the calculation of effects through 

a 23 design in which the factors are Temperature (T), Concentration (C) and Catalyst Type (K). 

The response is the performance of the chemical reaction performed under these conditions. 

Table 1 provides the design matrix, enlarged with the columns for all contrasts and the values 

of the responses (𝑦).  

Table 1: Design example of a from Box, Hunter and Hunter (2005) 

Run 
number 

T C K TC TK CK TCK 𝑦 

1 -1 -1 -1  1  1  1 -1 60 

2  1 -1 -1 -1 -1  1  1 72 

3 -1  1 -1 -1  1 -1  1 54 

4  1  1 -1  1 -1 -1 -1 68 

5 -1 -1  1  1 -1 -1  1 52 

6  1 -1  1 -1  1 -1 -1 83 

7 -1  1  1 -1 -1  1 -1 45 

8  1  1  1  1  1  1  1 80 

 



Figure 1 (left) presents the effects in a Normal Probability Plot (NPP) and shows that the 

significant ones are T, C and the interaction TK.  

Let us now suppose that one of the runs has not been carried out due to unforeseen problems 

or intentionally because the available resources allowed for only 7 runs to be carried out. 

Considering the value of the TCK interaction to be negligible, we can write: 

−𝑦1 + 𝑦2 + 𝑦3 − 𝑦4 + 𝑦5 − 𝑦6 − 𝑦7 + 𝑦8 = 0 

And from this expression we can estimate the value of any result based on the others. For 

example, if 𝑦5 is missing we have: 

𝑦̂5 = 𝑦1 − 𝑦2 − 𝑦3 + 𝑦4 + 𝑦6 + 𝑦7 − 𝑦8 = 50 

By calculating the effects with this new value, we obtain the results in Figure 1 (right), in which 

the interaction whose value has been forced to equal zero is not represented because it does 

not represent the variability of the effects.  

 

Figure 1: NPP of the effects obtained with all the results (left) and by estimating one of them (right) 

   

This practice also has some drawbacks. First, there is the fact that estimating the response for 

a run from others responses provokes the appearance of correlation between the effects, they 

stop being independent. In addition, the variance of the estimated response is greater than that 

obtained directly from the experimentation. In a 23 design, if we call 𝜎𝑦
2 the variance of the 

response, it follows immediately from the way the missing response is estimated that its 

variance will be 7𝜎𝑦
2. In turn, this increase inflates the variance of the effects.  

2520151050-5-10

99

95

90

80

70

60

50

40

30

20

10

5

1

Effects (All results obtained experimentally)

P
e
rc

e
n
t

2520151050-5-10

99

95

90

80

70

60

50

40

30

20

10

5

1

Effects (result y5 estimated from TCK=0)

P
e
rc

e
n
t

T T 

TK TK 

C C 



In two level factorial designs, when all runs are conducted all the effects have the same 

variance:  𝑉(effect) =  
4𝜎𝑦

2

𝑁
  where 𝑁 is the total number of runs (see, for example, Box et al. 

2005). For instance, the expression for the 𝑇 main effect is: 

𝑇 =
1

4
(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4 − 𝑦5 + 𝑦6 − 𝑦7 + 𝑦8) 

And from here we get 𝑉(𝑇) =
𝜎𝑦

2

2
. 

Things are different when one run is missing and its response is estimated. For example if 𝑦5 is 

missing, the 𝑇 main effect expression becomes:  

𝑇 =
1

4
[−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4 − ( 𝑦1 − 𝑦2 − 𝑦3 + 𝑦4 + 𝑦6 + 𝑦7 − 𝑦8) + 𝑦6 − 𝑦7 + 𝑦8] 

Where 𝑦5 is estimated, according to the procedure explained above, by the expression between 

parentheses. Operating we get:  

𝑇 =
1

4
(−2𝑦1 + 2𝑦2 − 2𝑦7 + 2𝑦8) 

And thus that 𝑉(𝑇) = 𝜎𝑦
2. Double the value than when all responses are obtained 

experimentally. 

The correlation presented by the effects as well as their increase in variance make it difficult to 

identify the active effects. It must also be borne in mind that while the existence of one 

negligible contrast is always sufficient to estimate a single missing value, when the number of 

missing values is bigger than one the number of negligible contrasts necessary to estimate them 

may be bigger than the number of missing values.  

Xampeny et al. (2017) have studied these drawbacks, showing that the greater the ratio of 

available contrasts in relation to results to be estimated, the lower the variance of the latter. 

They also show that when the variance of the effects is low, they also tend to have a low 

correlation between them. So, the problem can be reduced to minimize the increment in the 

variance of the effects. As said, this is achieved by having the greatest possible number of 

contrasts that can be considered null.  

This article is directed at facilitating the estimation of one missing value in designs with 8 runs 

and up to two in designs with 16 runs even when there are no contrasts that can be considered 

negligible from scratch. Of course, the procedure is easy to generalize to any number of missing 

values, but the increase in the variance of the effects may compromise the validity of the 



conclusions obtained. Already in 1990 Box said: “Usually, I would start to feel uncomfortable 

with the analysis when there was more than one missing observation in an eight-run 

experiment, or more than two observations missing from a 16-run experiment”. 

3. Eight-run design. Saving one run 

Box, Hunter and Hunter (2005) present a 27−4 design to study how a set of 7 factors affect the 

time a cyclist takes to climb a hill. The factors are related to the condition of the bicycle and also 

of the cyclist. They are found in Table 2 together with the response.  

Table 2: 27−4 design to study how 7 factors affect a response (Box, Hunter and Hunter, 2005) 

Run 
Number 

Seat 
Up/Down 

A 

Dynamo 
Off/On 

B 

Handlebars 
Up/Down 

C 

Gear 
Low/Medium 

D (=AB) 

Raincoat 
On/off 

E (=AC) 

Breakfast 
Yes/No 
F (=BC) 

Tires 
Hard/Soft 
G (=ABC) 

Climb Hill 
(sec) 

𝑦 

1 - - - + + + - 69 

2 + - - - - + + 52 

3 - + - - + - + 60 

4 + + - + - - - 83 

5 - - + + - - + 71 

6 + - + - + - - 50 

7 - + + - - + - 59 

8 + + + + + + + 88 

 

The contrasts are calculated as before with the only difference that since it is a fractional design 

each contrast represents the sum of several effects. The string of effects associated to each 

contrast provides what is called the alias structure. We ignore it here, as this is not relevant to 

the topic at hand. For example, the contrast associated to the main effect of factor A represents 

the sum of 16 effects and it is calculated as: 

𝑙𝐴 =
1

4
(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4 − 𝑦5 + 𝑦6 − 𝑦7 + 𝑦8) 

The values obtained for each contrast are: 

𝑙𝐴 = 3.5 ;    𝒍𝑩 = 𝟏𝟐. 𝟎;   𝑙𝐶 = 1.0;   𝒍𝑨𝑩 = 𝟐𝟐. 𝟓;  𝑙𝐴𝐶 = 0.5;   𝑙𝐵𝐶 = 1.0;   𝑙𝐴𝐵𝐶 = 2.5 

. Based on the variability obtained in previous experiments, it can be deduced that only the 

contrasts 𝑙𝐵  and 𝑙𝐴𝐵 (in bold) are statistically significant.  

Let us suppose that by randomizing the run order, run number 5 appears in last place and the 

cyclist does not have time to perform it. We can establish a range of values within which it is 



reasonable to consider that its response will lay. The responses of previous runs together with 

the knowledge and experience of the experimenter can help to establish this interval. An 

automatic criterion can also be applied based on the values already obtained. For example, if 

𝑀 is the maximum value of the results obtained and 𝑚 is the minimum value, the interval could 

be: [𝑚 − 𝑘(𝑀 − 𝑚), 𝑀 + 𝑘(𝑀 − 𝑚)], with 𝑘 being a value of the order of 0.2. We have 

analyzed several examples from the literature, and have found that this value is rarely 

exceeded. In any case the experimenter can choose to be more conservative and use a bigger k 

value. Naturally, if the extremes are outside the range of possible values (for example, they go 

beyond 100% in the performance of a chemical reaction) the minimum/maximum possible 

values will be used.  

By applying the automatic criterion, in our case the interval would be established between 42.4 

and 95.6 seconds. But let us be more conservative and consider the value to lie somewhere 

between 40 and 100. In that interval, we place 101 equidistant values (in our case: 40, 40.6, ..., 

100), and for each of them we calculate the values of the contrasts. For example, with the first 

of them, 𝑦5 = 40, the values of the contrasts are: 

𝑙𝐴 = 11.25 ;    𝑙𝐵 = 19.75;   𝑙𝐶 = −6.75;   𝑙𝐴𝐵 = 14.75;  𝑙𝐴𝐶 = 8.25;   𝑙𝐵𝐶 = 8.75;   𝑙𝐴𝐵𝐶 = −5.25 

Next we identify which are statistically significant. We will use Lenth’s method, which is a 

general method and probably the best known and most used. This method consists of 

estimating the standard deviation of the effects based on the fact that if 𝑋~𝑁(0, 𝜎2), the 

median of |𝑋| equals 0.645𝜎 and therefore 1.5 · median|𝑋| = 1.01𝜎 ≅  𝜎. Considering that 

𝜅𝑖  (𝑖 = 1, … , 𝑛) are the values of the effects of interest and that their estimators 𝑐𝑖  are 

distributed according to a 𝑁(𝜅𝑖 , 𝜎𝑒𝑓
2 ), Lenth defines  𝑠0 = 1.5 · median|𝑐𝑖| and calculates a new 

median by excluding the estimated effects with |𝑐𝑖| > 2.5𝑠0. By doing so he expects to exclude 

the effects with 𝜅 > 0 and use the others to calculate the so-called Pseudo Standard Error:  

𝑃𝑆𝐸 = 1.5 ∙ median
|𝑐𝑖|<2.5𝑠0

|𝑐𝑖| 

From this 𝑃𝑆𝐸, a margin of error (𝑀𝐸) can be calculated. For a 95% confidence level it will be 

𝑀𝐸 = 𝑡0.975,𝜈 · 𝑃𝑆𝐸.  If |𝑐𝑖| > 𝑀𝐸 the effect 𝑐𝑖  is considered active. 

In the original article (Lenth, 1989), it is proposed that 𝜈 = 𝑛/3 where 𝑛 is the number of effects 

considered, obtaining the values of 3.76 and 2.57 for 𝑡 in designs with, respectively, 8 and 16 

runs. However, several authors have shown that these values produce type I errors (considering 

a contrast significant when in reality it is not) with an error probability that is clearly lower than 

the intended 5%; furthermore, there is the negative consequence of a higher probability of type 

II error (considering a contrast not significant when it actually is). For example, Loughin (1998) 

proposes 𝑡 =2.300 and 2.152 for 8- and 16-run designs; Ye and Hamada (2000) propose very 



similar values (2.297 and 2.156); while Fontdecaba et al. (2015) propose using 𝑡 = 2 in designs 

with both 8 and 16 runs. Here we use their proposal because it is the one that generally presents 

the best results and also because being the one that proposes a lower value of t is the most 

demanding when declaring an effect as non-significant. So it is the most conservative with 

respect to our methodology. Additionally, we have verified that the results are very similar to 

those obtained using the values of Loughin and of Ye and Hamada.  

From the contrast values obtained with 𝑦5 = 40, we get 𝑃𝑆𝐸 = 13.125, and since all the 

contrast values are within the interval 0 ± 2 · 𝑃𝑆𝐸, none will be significant in this case. Figure 

2 shows which values of 𝑦5 are significant for each of the contrasts after scanning the 101 values 

in which we have divided the range of possible values.  

 

 

Figure 2: Range of values for the missing result (in red) and in which the contrast is significant 

  
The contrasts that contain the effects 𝐶, 𝐴𝐶, 𝐵𝐶 and 𝐴𝐵𝐶 are not significant, regardless of the 

value that 𝑦5 takes; therefore, their expressions can be used to estimate the missing value. By 

equating to zero their expressions, we have: 

𝑦̂5(𝐶) = +𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 − 𝑦6 − 𝑦7 − 𝑦8 

𝑦̂5(𝐴𝐶) = +𝑦1 − 𝑦2 + 𝑦3 − 𝑦4 + 𝑦6 − 𝑦7 + 𝑦8 

𝑦̂5(𝐵𝐶) = +𝑦1 + 𝑦2 − 𝑦3 − 𝑦4 − 𝑦6 + 𝑦7 + 𝑦8 

𝑦̂5(𝐴𝐵𝐶) = +𝑦1 − 𝑦2 − 𝑦3 + 𝑦4 + 𝑦6 + 𝑦7 − 𝑦8 

As shown in Xampeny et al. (2017), the best estimator will be the average of the values obtained 

from each of the null contrasts. In this case: 

𝑦̂5 =
1

4
4 · 𝑦1 = 69 



Therefore, the Var( 𝑦̂5) = Var( 𝑦1) = 𝜎𝑦
2. Curiously, in this occasion, the effects will have the 

same variance as if all runs would have been conducted. 

Table 3 shows which ones are the null interactions (contrasts) and the estimate obtained for 

the missing value depending on what it is. Figure 3 shows the values of the contrasts depending 

on what the missing response is (the number 0, with a darker gray bar represents the value 

when there is no missing response).  

 
Table 3: Interactions that are null and the estimated value based on the missing response 

Missing 
result 

Null interactions for all possible 
values of missing result 

Omitted run estimation (current value) 

 C, AC, BC, ABC 71 (69) 

 C, AC, BC, ABC 50 (52) 

 C, AC, BC 62 (60) 

 C, AC, BC 86. 3 (83) 

 C, AC, BC, ABC 69 (71) 

 C, AC, BC, ABC 52 (50) 

 C, AC, BC 57 (59) 

 C, AC, BC 84. 7 (88) 

  

 

 
Figure 3: The contrast values obtained according to the missing run (in standard order). The value 0 

represents situations in which no run is missing. 

  

It can be observed that regardless of which run is not carried out, the conclusions will be the 

same as if all runs have been conducted.  
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4. Sixteen-run design. Saving up to two runs 

In 8 run designs, there are only 7 contrasts available; while 16 run designs have 15. By having 

more contrasts, it is expected that there will also be a greater number of them that are 

negligible, such that the value of a missing result can be estimated with greater precision than 

in designs with 8 runs. In addition, with a bit of luck you can also estimate two missing results 

without the conclusions being affected. If there is no luck, one more run will have to be done; 

and if you have very bad luck you will have to do them all.  

We continue with the text of Box, Hunter and Hunter (2005), in which a 25−1 design is presented 

for studying the performance of a chemical reaction based on 5 factors (A: Feed rate, B: Catalyst, 

C: Agitation rate, D: Temperature, E: Concentration). Table 4 contains the design matrix along 

with the values of the response and the effects obtained.  

Table 4: Design matrix and estimated effects (significant ones in bold) from the 25−1 chemical experiment 

Run A B C D  
E  

(=ABCD) 
y             

(% reacted) 
  

Effects 
 

1 – – – – + 56   𝐼(+𝐴𝐵𝐶𝐷𝐸) = 62.25  
2 + – – – – 53   𝐴(+𝐵𝐶𝐷𝐸)  = −2.0  
3 – + – – – 63   𝑩(+𝑨𝑪𝑫𝑬) = 𝟐𝟎. 𝟓  
4 + + – – + 65   𝐶(+𝐴𝐵𝐷𝐸)  = 0.0  
5 – – + – – 53   𝑫(+𝑨𝑩𝑪𝑬) = 𝟏𝟐. 𝟏𝟓  
6 + – + – + 55   𝐴𝐵(+𝐶𝐷𝐸)   = 1.5  
7 – + + – + 67   𝐴𝐶(+𝐵𝐷𝐸)  = 0.5  
8 + + + – – 61   𝐴𝐷(+𝐵𝐶𝐸)  = −0.75  
9 – – – + – 69   𝐵𝐶(+𝐴𝐷𝐸)  = 1.5  

10 + – – + + 45   𝑩𝑫(+𝑨𝑪𝑬) = 𝟏𝟎. 𝟕𝟓  
11 – + – + + 78   𝐶𝐷(+𝐴𝐵𝐸)  = 0.25  
12 + + – + – 93   𝑨𝑩𝑪(+𝑫𝑬) = −𝟗. 𝟓𝟎  
13 – – + + + 49   𝐴𝐵𝐷(+𝐶𝐸)   = 2.25  
14 + – + + – 60   𝐴𝐶𝐷(+𝐵𝐸)  = 1.25  
15 – + + + – 95   𝐵𝐶𝐷(+𝐴𝐸)  = 1.25  
16 + + + + + 82   𝑨𝑩𝑪𝑫(+𝑬)  = −𝟔. 𝟐𝟓  

 

Let us suppose that runs 5 and 10 could not be performed but we know that the performance 

will be equal to or greater than 40% and, of course, equal to or less than 100%. By scanning the 

values of 𝑦5 and 𝑦10, in the same way as for a single missing value, and calculating the effects 

and analyzing their statistical significance, we obtain the graph in Figure 4, where the red zones 

correspond to combinations of the values 𝑦5 and 𝑦10, for which the effect indicated is 

significant.  



 

Figure 4: Significant effects (red zone) depending on the values of the missing results.  

   
The contrasts that contain the effects 𝐴, 𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐶𝐷 and 𝐴𝐶𝐷 are null for any combination 

of values for 𝑦5 and 𝑦10 within the range where they can conceivably be found. The number 

included in each square indicates the proportion of the surface in which the effect appears to 

be significant. When this value is very low (for example, less than 0.01) this effect could also be 

considered null.  

Estimating two missing responses must be done through a system of two equations, each one 

based on an interaction. However, not all the systems that can appear are consistent. For 

example, from the interactions of 𝐴 and 𝐴𝐵 equaled to zero, we obtain an inconsistent system 

of equations. However, with 𝐴 and 𝐴𝐶, we have: 



From 𝐴:    𝑦̂5 − 𝑦̂10 = −𝑦1 + 𝑦2 − 𝑦3 + 𝑦4 + 𝑦6 − 𝑦7 + 𝑦8 − 𝑦9 − 𝑦11 + 𝑦12 − 𝑦13 + 𝑦14 − 𝑦15 + 𝑦16 = 

                                    =  −8 

From 𝐴𝐶: 𝑦̂5 + 𝑦̂10 =     𝑦1 − 𝑦2 + 𝑦3 − 𝑦4 + 𝑦6 − 𝑦7 + 𝑦8 + 𝑦9 + 𝑦11 − 𝑦12 − 𝑦13 + 𝑦14 − 𝑦15 + 𝑦16 = 

                                   = 102  

In matrix notation: 

(
1 −1
1    1

) (
𝑦̂

5

𝑦̂
10

) = (
−8
102

) 

From which 𝑦̂5 = 47 and 𝑦̂10 = 55 are obtained. Notice that to be able to solve the system of 

equations, the matrix of the coefficients of the missing values must be invertible; that is, their 

columns must be linearly independent. 

With the 6 contrasts found to be null we can set up 15 systems of two equations, but only 9 are 

consistent for estimating the values of the missing responses 𝑦5 and 𝑦10. Table 5 allows us to 

deduce which contrasts can be used to formulate compatible systems and it also indicates, in 

each case, the estimates obtained for the example. For the system to be compatible, it is 

necessary that the two missing values have a different background color. 

  



Table 5: Identification of systems of equations that allow deducing the values of y5 and 𝑦10. 

 

 
𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 𝑦11 𝑦12 𝑦13 𝑦14 𝑦15 𝑦16  𝑦5 𝑦̂10 

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  
- - 

AB  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  
47 55 

AC  1 -1  1 -1 -1 1 -1  1 1 -1  1 -1 -1  1 -1  1  

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  
48 56 

AD  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  
46 54 

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  
- - 

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  

AB  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  
49 53 

AC  1 -1  1 -1 -1  1 -1  1  1 -1  1 -1 -1  1 -1  1  

AB  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  
50 54 

AD  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  

AB  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  
48 52 

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  

AB  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  
- - 

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  

AC  1 -1  1 -1 -1 1 -1  1  1 -1  1 -1 -1  1 -1  1  
- - 

AD  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  

AC  1 -1  1 -1 -1 1 -1  1  1 -1  1 -1 -1  1 -1  1  
- - 

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  

AC  1 -1  1 -1 -1 1 -1  1  1 -1  1 -1 -1  1 -1  1  
50 52 

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  

AD  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  
- - 

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  

AD  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1 -1  1  
51 53 

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  
49 51 

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1  

Mean estimates 
 

  48.7   53.3 
 

 

A situation could occur in which it is impossible to deduce the values of two missing responses. 

For example, if the two omitted runs are 8 and 12, the contrasts that appear null for any value 

of the missing responses are 𝐴, 𝐶𝐷, 𝐴𝐶𝐷 and 𝐵𝐶𝐷. Table 6 shows that all systems of two 

equations that can be considered with these interactions for deducing the values of 𝑦8 and 𝑦12 

are inconsistent. It can also happen that no compatible system can be set up with the null 

interactions found, as in our example when the missing values are 𝑦1 and 𝑦6, despite the fact 

that we have 7 null interactions (𝐴, 𝐶, 𝐴𝐵, 𝐴𝐷, 𝐵𝐶, 𝐶𝐷, 𝐵𝐶𝐷) and therefore the possibility of 

constructing 21 systems of two equations. Finally, we have another possible situation that 



would occur if the missing values were 𝑦6 and 𝑦7, in which case no contrast is null in all the 

combinations of possible values, so these values could not be estimated either.  

Table 6: If the missing values are 𝑦8 and 𝑦12, all the systems that can be formulated are inconsistent.  

 
𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 𝑦11 𝑦12 𝑦13 𝑦14 𝑦15 𝑦16   

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1   

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1   

A -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1   

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1   

A  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1 -1 -1  1   

BCD -1 -1  1  1  1  1 -1 -1  1  1 -1 -1 -1 -1  1  1   

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1   

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1   

CD  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1   

BCD -1 -1  1  1  1  1 -1 -1  1  1 -1 -1 -1 -1  1  1   

ACD -1  1 -1  1  1 -1  1 -1  1 -1  1 -1 -1  1 -1  1   

BCD -1 -1  1  1  1  1 -1 -1  1  1 -1 -1 -1 -1  1  1   

 

In 16-run designs there are 120 possible combinations of 2 missing responses. In our example, 

in which the criterion establishes that the responses will be between 40 and 100, only 66 of 

those values can be estimated. It is not possible for the other 54 because either the systems 

that can be formulated are inconsistent or no contrast appears to be null, something that only 

happens with the pair of missing values 𝑦6 and 𝑦7, as mentioned previously.  

If we take a certain risk and consider that the contrast is null when we have a very small surface 

corresponding to value combinations that cause the effect to be active, as in the case of the 

effects 𝐶 (0.002), 𝐴𝐵𝐷 (0.0036) or 𝐵𝐶𝐷 (0.004) (see Figure 4), then more null contrasts are 

available and a larger number of pairs of missing values can be estimated. By placing the 

threshold at 0.05, we can estimate the values for of 108 out of the 120 possible pairs of missing 

values. Among the pairs whose values we can now estimate, we find those discussed above: 𝑦8 

and 𝑦12 as well as 𝑦6 and 𝑦7. Figure 5 shows the number of times that each effect appears to 

be significant in those 108 pairs of missing responses. The maximum variance of the effects 

turns out to be, in this case, 0.3𝜎𝑦
2. It would be 0.25𝜎𝑦

2 if there were no missing values. In the 

108 cases (that is, in all of them), we can identify as significant the same effects that were 

considered to be so when using all the results obtained experimentally, although it is also true 

that in 24 cases some effect is considered significant that does not appear to be so when using 

the experimentally obtained results (Figure 5).  



 

 
Figure 5: Number of pairs of missing values in which the effects appear to be significant (in bold) 

The combination of missing results 𝑦1 and 𝑦6 are found among the 12 that still cannot be 

estimated. In this case there would be no choice but to conduct one more run, and the last one 

can definitely be omitted. For example, if 𝑦1 is carried out and 𝑦6 is left to be estimated, the 

results in Figure 6 are obtained, where the red intervals indicate the values of 𝑦6 in which the 

effect is significant.  

 

 

Figure 6: Intervals of values of y6 (red color) in which the effect is significant 

Table 7 contains the estimates of 𝑦6 obtained from each of the contrasts considered null, and 

the average of all of them which is the best estimate and the one used. The maximum variance 

that is obtained for the effects is 0.278𝜎𝑦
2 and the conclusions that are obtained using the 

estimated value of 𝑦6 are identical to those using the original value (Figure 7).  

A                      B           C                           D            AB                  AC         AD            BC       BD        CD     ABC    ABD    ACD    BCD   ABCD 



Table 7: Estimated values for 𝑦6 from each of the interactions considered null  

Contrast: 𝐴 𝐶 𝐴𝐵 𝐴𝐶 𝐴𝐷 𝐵𝐶 𝐶𝐷 𝐴𝐶𝐷 𝐵𝐶𝐷  Mean 
𝑦̂6: 71 55 67 51 49 67 57 65 45  58.56 

 

 

Figure 7: Analysis of the contrasts in NPP using all the results obtained from the experimentation 

(left) and with the estimated value for y6 (right) 

  

5. Summary and conclusions 

Next, we define the steps to follow for running the experiment and analyzing the results 

sequentially, which on many occasions will allow omitting one run in 8-run designs and up to 

two in 16-run designs. The steps to follow are: 

1. Randomize the execution order of the runs.  

2. Perform the first 7 in 8-run designs or the first 14 in 16-run designs.  

3. Establish an interval in which the results of runs not performed are believed to be. An 

automatic criterion can also be established based on the results that have already been 

obtained (Section 3).  

4. Perform a scan of the missing values within the intervals being considered. For each value or 

combination of values, identify what the significant effects are. This scan can be done with 
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the help of a small program constructed using the statistical software R (R Core Team, 2016), 

and it can graphically represent the results obtained just as they are in this article.  

5. Identify the contrasts that are not significant, independently of the value of the missing 

result (8-run designs) or results (16-run designs).  

6. Use the contrasts that always appear to be non-significant for estimating the values of the 

missing results. In the event that there is no contrast that always appears to be non-

significant, we can set a threshold for the percentage of values that lead to the contrast being 

significant and below which it can be considered null. If establishing a reasonable threshold, 

for example 5%, no null contrasts appear there will be no choice but to perform a new run.  

7. In 16-run designs, if there are less than two non-significant contrasts or there are two or 

more but the system of equations to estimate them is inconsistent, then there will be no 

choice but to perform a new run. With the 15 runs performed, the procedure must be 

repeated with the hope that there is at least one contrast that can be considered negligible.  

8. Finally, in view of the results obtained in the analyzed examples – and as a rule of thumb – if 

the variance of the effects exceeds 0.67𝜎𝑦
2 in 8-run designs 8 or 0.33𝜎𝑦

2 in 16-run designs 

(33% increases in both cases), it is prudent to perform a new run to lower this variance and 

increase the probability that the conclusions are exactly the same as if all the runs had been 

performed.  

The proposed method expands on the method of Draper and Stoneman, as it allows estimating 

the response in runs that have not been performed even in cases where no contrast can be 

considered a priori negligible. As in the method proposed by Zhou and Goh (2016), this method 

is applied with the aim of reducing the number of runs and it also uses the previous knowledge 

about the experimental system. However, the method proposed here has a solid rationale base, 

makes a more intense and better use of the experimenter previous knowledge and also 

provides a clear guideline of when a new run is needed and when the available information 

makes it unnecessary.  

This method can also be used to improve estimates when it comes to designs in which it is 

known a priori that some contrasts will be null, typically in complete designs. Indeed, there will 

most likely be more null contrasts than those that are known a priori, and our procedure allows 

experimenters to detect them. Having a greater number of contrasts that can be considered 

null allows estimating the missing values with less variance and, therefore, having greater 

certainty that the conclusions will not be affected by having performed a smaller number of 

runs.  
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