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An outindependent subgraph of a graph I, with respect to an independent vertex subset C C 1.
is the subgraph ¢ induced by the vertices in 1'\C. We study the case when T is strongly
regular. where the results of de Caen [1998. The spectra of complementary subgraphs in
a strongly regular graph. Ewropean Journal of Combinatorics. 19(5). 559 565 allow us to
derive the whole spectrum of T'¢. Moreover. when € attains the Hoffman- Lovasz bound for
the independence number. ¢ is a regular graph (in fact. distance-regular if T is a Moore
graph). This article is mainly devoted to study the non-regular case. As a main resull. we
| characterize the structure of ' when C is the neighborhood of either one vertex or one edge.
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AMS Subject Classifications: 05C350: 05E30

1. Preliminaries

In this article we address the following question: Let ' = (V. £) be a strongly regular
graph with a given independent set C C I". What can be said about the structure of
the graph T'¢ induced by the vertices in }"\(? The study of T¢. which we call the
outindependent graph. can be motivated. for instance. by the study of some possible
distance-regular graphs. such as the Moore graph with degree 57 and diameter 2.
Moreover. this work could also have some relevance to the study of completely regular
codes. Some known results (see [1.2]). allow us to compute the whole spectrum of ',
and prove that it is a regular graph precisely when the cardinality of C attains the
Hoffman- Lovasz (spectral) bound for the independence number. In fact when such
4 bound is attained in a Moore graph. the corresponding outindependent graph
turns out to be a distance-regular graph. A known example of this fact occurs when
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"= HS (the Hoffman-Singleton graph) and C is a maximum independent set with
IS vertices. in which case I'c = Oy (the “odd graph™ [3] with degree 4 ): see Jeurissen
[4]. The main results of this article. contained in section 3. deal with the case when
['c in a non-regular graph. In particular, some cases where the non-trivial component
of T'¢ is a distance-regular graph are characterized. In the rest of this introductory

section. we summarize some of the background used in our study.

L.1. Graphs and their spectra

Consider the adjacency matrix 4 of a regular graph T' = (V, E) on n = || vertices. with
spectrum

spTi=spd =P, ... X5, (h

where the eigenvalues A, 0 <7 <d, are in decreasing order, Ay > A; > --- > Ay, and
the superscripts denote multiplicities. The set of such eigenvalues is denoted by evT.
and their corresponding eigenspaces are & := Ker(4 —A,J). 0 < i < d. The orthogonal
projections onto the eigenspaces & are represented by the so-called ( principal )
idempotents of A:

n A—-xD (0<i<d).

! j=0(j#0)

where ¢; 1= r[, _o=n(Ai — A;). Given any subset C with r := |C] > 1 vertices. we consider
its normalized characteristic vector e¢ = (/)Y ccen. where e, denotes the
u-th standard unit basis vector in R”. Then. the C-multiplicity of the eigenvalue 2; is
defined by

5 1
¥ S Bobme cecllm = e Cr) = — ‘,‘ 3 ___l 2
me(A;) Eec|| (Eiec.ec) . E (E), (0 <i<d) (2)

wveC

Note that, since e is a unit vector. we have Z};O me(A;) = 1. Moreover. we see from
the above that. if T is connected. the C-multiplicity of Aq is m¢(Xg) = r/n > 0. In partic-
ular. when C is a single vertex w. the {u}-multiplicities of A; correspond to the so-called
“(local) w-multiplicities™ (see [S]). If po(= Ag) > py > --- > p,, represent the eigen-
values in ev " with non-zero C-multiplicities. the (local) C-spectrum of C is

spC 1= {#m.. - “Ilm . u'"/'( } (3)

where m1; := mc(p;). 0 < i < de.and de(< d) is called the dual degree of C. It is known
thats if T is connected. then the eccentricity of C. defined by ecc(C) := max,;-
dist(u. C) = max, ;- min,.¢ dist(w, v). is bounded above by d. (For more details. see
[6.7])

The following theorem is usually known as “the interlacing theorem™ (see. for
instance [2.8]).
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THEOREM 1.1 Let T be a graph with n vertices and cigenvalues 0 >6,>-..>6,.
Let T an induced subgraph of T with m < n vertices and cigenvalues & > & > .. > .
Then the cigenvalues of T interlace the cigenvalues of T that is.

o; > Ei > esx—mai “ = i < IN).
In particular. if T" is an independent set of m vertices then §=0foranyi=1...., n.

and the above gives 6, > 0 > 6,—m+1- Hence. the independence number of T. denoted
by a(I"). always satisfies

al") <min{|{i : 6, > 0}]. |{i : 6; < 0}]). (4
This bound is due to Cvetkovi¢ [9]. (For a discussion of this and other interesting
applications of interlacing. we refer the reader to Haemers [2])
1.2. Characterizing distance-regularity

Let C C 17 be a vertex subset of a regular connected graph I', with ecc(C) = ¢. Then. we
say that T is distance-regular around C if the distance partition V= CyUC,U---UC..
where C; = T{(C) := [{u : dist(u. C) = i}, 1s regular: that is. the numbers

) == L) N Ciyl.  aiu) = D) N Gil. bi(u) = T() N C;y)

where we C. 0 <i<e, depend only on the values of the distance 7. but not on the
choser vertex w. Then. the set C is also referred to as a completely regular ser or
completely regular code. In [6]. the authors obtained the following characterization
of distance-regularity around a set C. in terms of its local spectrum and the number
of vertices at maximum possible distance from C.

THEOREM 1.2 Let T = (V. E) be a regular connected graph. 4 vertex subset C C V. with

- i 7 i, ;
rvertices and local spectrum sp C = {ug" > uj" > ... > iy Yis a completely regular
code if and only if the number n,, = |C @ | of vertices at distance d¢ from C is

o ~2 2 =1
g,
70 .
Mye =T e ()
i=0 MiTT;
s e s T T e :
where 71 = [0 00 i — i1, 0 < i < d-.

Moreover, when C consists of a single vertex # and the above condition holds for
any u.-with m; replaced by m;/n. 0 <i < d, the authors [10] showed that we get a
‘quasi-spectral’ characterization of distance-regular graphs:

THEOREM 1.3 A regular connected graph T' = (V. E). with n vertices and spectrum
spP={" >af" > ... > AN s distance-regular if and only if the number n/u) of
vertices at distance d from every vertex u € Vs

niu) =n Z o (6)

where 1; 2= [[Lg en i — 4. 0 < i < d.
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The corresponding result for antipodal distance-regular graphs was proved in [11]:

THEOREM 1.4 A regular connected graph T on n vertices, with cigenvalues Ay >
Av > -o- > Ay ds a r-antipodal distance-regular graph if and only if the distance graph
Uy is constituted by disjoint copies of the complete graph K,. with

=1

Es= 2N Zz} (7)

i=0

where the ti's are defined as above.

1.3. Strongly regular graphs

Recall that a (not necessarily connected) graph [ = (V. E) # K, is (n.k:a. ¢)-strongly
regular if T is k-regular. with n vertices, and every pair of adjacent (respectively. non-
adjacent) vertices have « (respectively. ¢) common neighbors. For the basic theory of
strongly regular graphs we refer the reader to Cameron [12] or Godsil [13]. Note that
" is connected if and only if ¢ #0. In this case. which will be assumed hereafter. " is
a distance-regular graph with diameter =2 and intersection array )=
’.——-_ . . - w .
{k.k —a —1:1.¢}. Consequently. the adjacency matrix A4 of T satisfies the equation

A —(a=c)A— k- = . (8)

whence the eigenvalues of T are Ay = k and the zeros of the (Hoffman) polynomial
H = (1/0)[x* — (a — ¢)x — (k — ¢)] (see [14]):

b.t=(a—cx JZ)/l where A = (a—¢) + 4k — o). 9)

being # > 0 and t < 0. (For a strongly regular graph we follow Godsil’s notation [13]
and let 6.7 stand for A;.A,. respectively.) Moreover. recall that a graph ' with
adjacency matrix 4 and diameter  is distance-regular if and only if there exists
a sequence of (orthogonal) polynomials (p;),.;.,. derp; =i. such that the distance-i
matrix A4; (that is. the adjacency matrix of the distance graph I'; = (}. E;) where
uv € E; if and only if (w.v) =7 1in ) is given by pi(A4). Then the multiplicities of the
eigenvalues of I' or. alternatively. the values of the polynomial p, at evI. are given
by the formulae

7 ) . A
S TopalAo) i) = (=1 EIE/( 0)

i= (-1 .
A Tipa(As) 7;

0<i<d (10)

where m; = [‘[;’m =i Ai — A;l0 see. for instance, Bannai and Ito [I5]. Since for a

(n.k:a. c)-strongly regular graph we have po=1. p; = x. p» = (1/e)(x* — ax — k). and
n = H(k) =1+ k + p-(k). the above gives my =1 (as expected. since I is connected) and

—tn—1)—k 1 : 2k+(n—l)(u~(')) (n
= — u-1- .
b ot > JA
— 1 ko1 2k -1 —c
> :H%:S(n—— 1+ +(”\/Z)(u ()). (12)
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(Note that. in this case. m; and m5 can also be derived as the solution of the system with
equations ny +m-> =n— 1 and m0 + nt = —k.)

Conversely. any regular graph with three distinct eigenvalues A > 6 > 7 is known to
be a (n.k:a. ¢)-strongly regular graph with parameters

nE-Ok—D) a=k+60+1+61. ¢=k+06r. (13)
k+ 6t
The following discussion allows us to exclude some extreme cases from our study.
Let us first consider the value of k — 8+t =k — VA. For a given value of A>3 (the
case kK <2 being trivial). the function A = A(a.¢) = (a — oF & 4(k — ¢). defined in
[0.k — 2] x [1.A]. has absolute maximum A(0.k) = k>, and also A(0.1)=9 in the
case A = 3. and absolute minimum A(k — 2.k) = 4. Thus.

O0<k—-0+t<hk-2. (14)

Moreover. equality on the left occurs when T’ has parameters (2k.k:0.k). which
corresponds to the complete bipartite graph K;; (with eigenvalues k.0, — k). and
in the particular case (10.3:0.1) of the Petersen graph P (with eigenvalues 3.1, —2):
and equality on the right is attained for the parameters (k + 2.Ak:k — 2. k). correspond-
ing to the “cocktail-party graph™ CPy (with eigenvalues k.0, — 2): see Biggs [3]. In any
other case. the strongly regular graphs considered here have eigenvalues satisfying
2 <6 -1 < k. Notice that both K; ; and CP; are instances of complete multipartite
graphs which. as discussed below. will also be removed as “trivial® cases.

A strongly regular graph I' is called imprimitive or trivial if either T or its complement
T (which is also a strongly regular graph) is not connected. It is known that T is trivial
if and only if ' = mK, (m copies of the complete graph on n vertices) or I' = K,
(a multipartite complete graph with m stable n-sets). While the first case has already
been excluded since ¢ =0. the second case occurs if and only if ¢ =k or. equivalently.
#=0. Summarizing. henceforth it is always assumed that T is « non-trivial strongly
regular graph (60 > 0. 6 # k) different from P.

1.4. Independent sets in strongly regular graphs

Let ' = (V. E) be a graph with diameter . For a given integer 1 </ <d. a vertex
subset €' C 1is said to be a T'y-clique (of order r > 1) if C consists of r vertices mutually
at distance h. As a particular case of a more general result. we can find in [14] the
following spectral characterization of a I'j-cligue in a distance-regular graph.

ProrosimioN 1.5 Let T be a distance-regular graph with n vertices. diameter d. spectrum
spl = A" > A" > -+ > A} and distance polynomials (py)y<y<y For any 1 < h < d.
a subset C C Vowith r vertices is a Ty-clique if and only if its C-multiplicities are given by

i lki .
,,,(.u,,:ﬂ(m,-_n&(_l) ©0<i<d.
n Pr(io)

Let us apply the above result to a (connected) (n.A:a. ¢)-strongly regular graph T
with spectrum spI” = {k > @' > "} (no superscript means multiplicity one) given
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by (9). (I11) and (12). Note first that. since such a graph has diameter 2. the maximum
cardinality of a I'>-clique coincides with the maximum possible order of an independent
set. Then. applying the well-known Hoffman Lovasz bound. hereafter denoted by H.
for the independence number « of a regular graph (see [2.16]) we get

n _(k3+(¢'—u—l)k+(')(¢‘—u+ V)

Fr<aEg<H: = e o
=0 = 1 —k/r 2k +c—a+ VA

(15)

where, as before, A = (¢ — ¢)* + 4(k — ¢). Other equivalent expressions for H. obtained
by using (13). are

Ot — kt B

-7
=—(h—-0)=— =
" ('( ) Ot + k

/\'
1 —— (14 1). (16)
¢

Now, by Proposition 1.5, the local multiplicities of an independent set C of T, in terms
of r = |C] and H. are

me(k) = Too, (17)
n
’ 0 .
'wm=ﬂ0+04wijzﬂO+u—n“)
n pa(k) n Ty,
1 k—rt k—tH—r
== — — ). 8
n("“+(, “9—1) 06—t n = (18)
el 1 _ﬁ_l( —THo k+6(n—1) - 0. (19)
n 60—t n e — 1)

where we have used (10). Notice that, as expected, these numbers are non-negative.
In fact, imposing such a condition to the first expression for m(0) we get r < 1—
(p2(k)/p-(6)). This can be shown to be equivalent, in our case of strong-regularity. to
the Hoffman Lovasz bound given by (15) (just use that py = (1/¢) (x> — ax — k)).

2. Outindependent graphs

Let C be an independent r-set of a strongly regular graph I' = (J/, E) as above. Then.
C induces the partition V' = Cy U Cy, where Cy := C and C; = '\ C (if C is maximal:
that is. € is not a proper subset of any other independent set. then this partition is
the “distance partition” around C, and ecc(C) = 1). In this section we derive the main
results about the graph T'c = (Cy, E}), which we call the outindependent graph. induced
by the vertices in C'y. To begin, notice that this graph has |C| = n — r > n — ry, vertices.
where ry represents the minimum of the bounds given in (4) and (15). and
|Ey| = |E] — kr = k(n/2 —r) edges. Moreover, since it is an induced subgraph. the
following result is a direct consequence of the interlacing theorem.

Lemma 2.1 Let C be an independent r-set of a strongly regular graph T with spectrum

spl = {k > 6" > 1"}, Then, the cigenvalues of the outindependent graph T are:

(k=2)&=0"">& 26> > > (20)
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where r < min{my.m>}. (Of course. a zero multiplicity means the absence of the
corresponding eigenvalue.)

Proof  Since I' is supposed to be non-trivial. we have that & > 0 and hence Cvetkovié's
bound (4) yields r < m». Thus. we only need to prove that r < m,. But if we substitute
n=H(l —k/7) into (11). we get

k==
”“:H—z(H_”>H—L

whence r < H < my + 1 and we obtain the desired inequality. since r is an integer. W

From the above proof. note that always r < ry = min{m.H}. The following result
shows that the regularity of I'¢ only occurs when |C] attains the Hoffman-Lovasz
bound. which consequently can only happen if u < m>. Using (12). (13) and (16). this
condition 1s equivalent to

041
Proposimion 2.2 Let T'=(V.E) be a strongly regular graph with spectrum sp =
(k> 0" > 1"} Let C CV be an independent set of r vertices. Then the outindependent
graph T is regular if and only if r = wn. In this case. U¢ is connected and its degree
iséd=hk+rt

Proof  First note that any of the above statements imply that C is a maximal set
and hence ecc(C) = 1. Assume that T'¢ is regular with degree 8. Then T is clearly
distance-regular around C. In particular. C has only two local eigenvalues and. by
using the formulas (17). (18) and (19) for the local multiplicities. we conclude that
r=|C|] = n. Conversely. assume now that |C] attains the Hoffman Lovisz bound:
r = H. Then. by the same formulas. its local spectrum turns out to be

sp C == {Il"'" m; l {/\H n rl—(H ’n)}

and notice that r=w is the unique value of r for which C has only two local
eigenvalues. Then. noting that 7y = 7, = g — . we get

i

5
mymy

i ~ =1 ~a\ —1 5 -1
GlE - ny H H~
Z~~, =H{my+—) =H|—4+—— =1 — H.
— T m n - n(n—H)

so that, from Theorem 1.2, T is distance-regular around C and. in particular ¢
is regular of degree 8. say. By counting the edges between C and J'\C we get
kH = (k — 8)(n — n), whence the degree 6 of T'¢ is as claimed. Finally, from & > 6 — t.
we have, by using Lemma 2.1, that &(=08)> 0> & Thus, § has multiplicity one,
which for a regular graph implies connectivity. |

Most of this proposition can also be proved by using Haemers's method charac-
terizing when the interlacing is ‘tight” (see [2.17] for more details).
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Setting s :=n—r. with r=|C|. let § denote the s x s adjacency matrix of the
outindependent graph I'c. For proving the next result. which will allow us to derive
the whole spectrum of I'c. we consider the vector j=(1.1..... 1) e R" decomposed
as (o ji). with j, e R" and j, € R".

Lemma 2.3 Let C be an independent set with r > 1 vertices in an (n.k:a.c)-strongly
regular graph ' = (V_E). Then the adjacency matrix S of the outindependent graph T

satisfies the equation
(8§ —(k —c+a)S)j, = —(k(a —¢) + cr)j.
Proof Let Cy = C and C, = "\ C. With respect to the partition V' = CyU (. the

adjacency matrix of ' and its square can be written as

0 R R RR' I RS
Ay = y A=

R" | S SR' ] R'R+S"

where R is an r x (n —r) matrix corresponding to the adjacencies from C, to C,.
Then. from (8) we get

RR+S —(a—S—(k—M=cJ, (22)

whence the result follows by multiplying on the right by j; and using the facts that
Rj, = kjy. R jo, = (kI—S8)j,. and ¢(n —r) = k> —(a — )k — (k — ¢) — cr. ]

From the above result we have that

Ji € Ken(S* — (k —c + a)S + (k(a — ¢) + en))
= Ker(S —af) & Ker(§S — BI). (23)

where o and B are possible eigenvalues of ' given by

a_ﬂ:é{k+(u-—(‘):i:\/[k—((l——(‘)]1——4('!‘ - (24)

From these expressions. note that. since r > I, we have a <k and B> a—c =6+ 1.
In the following result we derive the whole ranges of variation of the possible values
of @ and B.

Lemma 2.4 Ler C be an independent set with r> 1 vertices in an (n.k: a. ¢)-strongly
regular graph T with eigenvalues k > 6 > t. Then the values of a and B given above satisfy
the following inequalities:

k>a>hk+1>0>B>0+r1:; (25)

and equalities occur if and only if r = n.
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Proof  Since it is always assumed that k —60+17>0. we only need to prove that
a>k+rtand B<6. and what happens in case of equality. For all this. consider the
following simple computations. where we use again (15) and (16):

2a=k+a—c+ \/(/\' +a—c) — 4k(a — ¢) — 4er

2k+0+T+\/(k+6+1) — k(6 + 1) — 4en

=k+0+ 1+ \/(k—0—1) + 41k — )

=k+0+T+\/(k—0+71)7 =2k + 1),

B=k+a—c-— \//(l\' +a—c¢) — dk(a - ) —4er
<k+0+t—\/(k—0+1) =20. ]

Let p be the monic polynomial generating the ideal / := {¢ € R[] : ¢(8)(j;) = 0}. From
the fact that p divides the minimum polynomial of § and that p¢ := (v — a)(x - B)
belongs to 1. we have the following options for p:

(@) p=x—aor p=yx—pB Then Sji = aj; or §j; = Bj,. and ¢ would be §-regular
with degree @ or 8. respectively. But the second option is not possible since. other-
wise. from Lemma 2.1 and (25) we would have B =§&, > 6 > B. so that g =é:
Whereas. using Proposition 2.2, it should be § — B =k + 1> 6. a contradiction.
Therefore it must be the first case. and [ 1s regular with degree «. (Conversely.
note that. if ¢ is regular. then the polynomial p has degree one and. according
to the above. p = v —a.) Of course. this case coincides with the situation studied
in Proposition 2.2, where r = n. and hence o — k + T is a simple eigenvalue.

(b) p = (x—a)(x — B). In this case. & and B are eigenvalues of S, I is non-regular,
7 < H and. since @ > 6. we have that & = a has also multiplicity one.

From this and Lemma 2.1. one can prove the following theorem. which is a direct
consequence of the results of de Caen [1] relating the spectra of complementary induced
subgraphs in a strongly regular graph.

THEOREM 2.5 Let C be an independent r-set of an (n.k: a. c)-strongly regular graph T’

(not trivial and different from P). with corresponding outindependent graph Te. Let
and B be real numbers given by (24). Then.

sple={a>0"">B8>@O+1) "> ==
Here we discuss in a more detailed way the different possibilities. depending on

the regularity and connectivity of I'c. The regular case (a) has been most studied
and. basicallv. the new results presented here concern the non-regular case (b).

2.1. The regular case

Let us first assume that we have case (a). Then. ' is a connected regular graph with
spectrum

sple={k+tv>@m ", 94+ 5 e 2 Hy (26)

.




10 M. A. Fiol and E. Garriea

As stated. this situation can only occur if m> > u. In particular. for those strongly
regular graphs with 7> = H it turns out that the outindependent graph T'c.. with
|Cl = H. Is again a strongly regular graph with spectrum

sple={h+1>0m M 5 (94 iy, (27)

An interesting example of this situation is obtained when T is the complement of
the triangular graph T(1) := L(K,) (that is, the line graph of the complete graph on ¢
vertices: see [3]). Then the vertices of (1) :=T() correspond to the 2-subsets of the
set {1.2..... 1. two vertices being adjacent when their corresponding subsets have
void intersection. Thus I'(7) is a (strongly regular) graph on n = (') vertices with

spectrum
1—2
sp(r) = {( 5 ) 1G~ 3 — l)’*'} (28)

provided that 7> 4. For instance. I'(4) is constituted by three copies of K, and
I'(5) = P. Thus, as we require our strongly regular graphs to be non-trivial and distinct
from P, we assume hereafter that 7 > 6. Notice that [(7) clearly has a maximum
independent set C with H = 7 — | vertices: just take {1.7). {2, ..., {t = 1.1}. Then. by
(27) the spectrum of the corresponding outindependent graph is

spl()¢ = {(’:') — 143, 16-2+2 (g _ 1)"3}

= [(I:’) ()1 (4—1)’":} =spl(r—1).
as expected.

Let us see that the converse result also holds. First. any strongly regular graph I’
whose Hoffman - Lovisz and Cvetkovic's bounds coincide must have degree k satisfying
equality in (21). Moreover. if we assume that such a T has an independent set C attain-
ing these bounds. and that the outindependent (strongly regular) graph ' has the same
property as I" (that is. its Hoffman Lovasz bound equals that of Cvetkovic¢). it turns out
that &= I. Then. taking into account that T must also be an integer. we conclude that
the spectrum of I is as in (28). This means that the complement of T has the same
spectrum as the triangular graph 7(7). But it is known that triangular graphs are
characterized by their Spectrum, except for the case =8 where there exist three
more distinct graphs, 77(8). T7(8) and T"(8). cospectral with 71(8). called the Chang
graphs: see [18-21]. (Obviously. the complements of all three Chang graphs have
H=m> =7, as T(8) has. but the maximum independent set of 77(8) consists only
of 6 vertices. and the maximum independent sets of both T"(8) and T7(8) have only

3 vertices.) Summarizing. we arrive at the following conclusion:

Prorosition 2.6 The onlv infinite sequence of strongly regular graphs with every “som
being an outindependent graph of its *father” are the complements of the triangular graphs.
The study of the general case m2 > H seems to be much more involved and. in

general. the regular outindependent graphs L are not distance-regular. In fact.
we only know one case where this occurs. This is the case of Moore graphs: that is.
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the Petersen graph P. the Hoffman Singleton graph HS. and the (possible) Moore
graph with degree 57 and diameter 2. here denoted by Y. We will concentrate on the
most interesting case Y. although the reasoning can also be applied to HS (whereas
P has already been excluded as a simple extreme case).

If it exists. our Moore graph Y has intersection array «(Y) = {57.56: 1. 1}, so that it
1s a strongly regular graph with parameters ¢=0 and ¢=1. Consequently. its
eigenvalues are k =57. 6=7. t = —8. and its order is n =k’ 4+ 1 = 3250. Its whole
spectrum is spY = {57. 71729 — 8" and its distance polynomials are po=1.p = x.
p> = x- — 57. The Hoffman Lovasz bound (15) yields now r < n = 400. Then. if Y¢
1s non-regular (1 < r < 400). we conclude from Theorem 2.5 that it has spectrum

sple=fas= T2 = <]" & 31207

where. by (24). @ =28+ 841 —r € (49.57) and B =28 — V841 —r. (The above
spectrum was also found by Schwenk [22] when C is a subset of a vertex or edge
neighborhood.) In this case, Y 1s always connected (with diameter 3 < d < 4),
except for the two cases described in the following result.

ProrosiTioN 2.7 Let C. r=|C|. be an independent set of the Moore (57.2)-graph
Y = (V. E). with 1 <r < u. Then the outindependent graph Y is non-connected if and
only if either C = T'(u) or C = T(uv). where u € V and uv € E.

Proof  From (32) and (40). we must look for an even integer 42 < /i < 56. such that
Sh divides (h + 58)(1 + 72)( + 42). So the only possible values are =354 and h =56,
with associated parameters

56 B=0 r=57 n =3192 m=1,
a=35y B=1 r=112 m=3136 n =2,
corresponding to the two feasible options € = I'(v) and C = ['(uv). respectively. W

A much more interesting consequence is obtained when Y is regular. the case
|C] = n. In this case. the spectrum of I'c is feasible for a distance-regular graph of
diameter 3 and girth 5. Therefore. by a result of Brouwer and Haemers [23]. we get
the following proposition (which can also be proved from our characterization
Theorem 1.3).

Provosition 2.8 When C attains the Hoffman-Lozdsz bound. the outindependent
subgraph Y¢ of the possible Moore (57.2)-graph Y is a distance-regular graph with
order n=2850. degree § =49, diameter d = 3. and intersection array

UY ) = {49.48.8: 1.1.42}.

As already mentioned. the same reasoning can be used to prove that the outindepen-
dent graph H(S¢) of the Hoffman Singleton graph HS. when |C| =1 = 15, is the
(distance-regular) odd graph Oy. In the vein of the results of Theorem 3.1. we suspect
that. in fact. the Moore graphs T and HS are the only strongly regular graphs (with
H < m»>) whose regular outindependent graph is distance-regular.
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3. The non-regular case

Suppose now that we have case (b). Thus. I'c is not regular. 1 < r < # and. from (25).

a>kdr>0= 8 Let T Fav- - [ denote the connected components of Te. Let S;
be the adjacency matrix of ¢ and j' = (l..... 1) € R" the part of j, corresponding to

Ic. 1 <i <1t Then the matrix S can be written as a block diagonal matrix with blocks
S and the spectrum of S is the union of the spectra of the matrices S;. Then. consider-
ing that @ and B are simple eigenvalues. there exists a unique submatrix. say Sj. such
that one of the two following subcases occurs:

(bl) r=1 and j' € Ker(S), —al)) ® Ker(S; — ). In this case. the outindependent
graph T'¢ = ['¢, turns out to be connected . and its spectrum 1s

sple=ta>0"">p>@O+0 " >0} (29)

(b2) =2 and j' e Ker(S, — aly). j: e Ker(S; — BI;). Now T¢. with the same
global spectrum as in (29). consists of nwo regular components. T'¢, and Te..
with respective degrees @ and B.

In what follows we analyze the possible situations in the second subcase. Let
C¢, = (V). E>) and T, = (Va. Ey) the two regular components with respective degrees
a > B (a > 60> ). which are the roots of the polynomial p¢ = X —(k+a—c)x+
k(a—c¢)+cr. Since A" =(k—a+ ¢)* — 4¢r is the discriminant of such a polynomial.
we see. from A’ = (@ — B). that A’ is a perfect square. say. A’ = h*. with h a positive
integer (with the same parity as kK +a¢ —¢ = k + 6 + 7). This implies that the number
of independent vertices must be of the form

r=

1 s R
4—({(/{——(:4—(')‘ —/l',. (30)

Let us write the involved parameters in terms of A. 6. 7 and /.
1
(13) c=k+6t. a=k+0+t+6t. n=—(k—0)k—1)
n
1
(24) a.p=z(k+0+Txh)
1 1
(30) r= 1—(1\' —O—1+ Mk —0—1—h) =—(k—a)k—B).
C &

Moreover. setting 1, := |17 and > := [172]. the computation of these cardinalities and
the number of edges between Cy = C and C; = V'\C vields the linear system with
unknowns n; and n:

ny+n=n—r

(k —a)m + (kK — B> =rk
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with solutions

I
n = —(—ﬂ(n — 1)+ k(n—=2r))

—’(/1+I\ —0—)h+k+6—Dh+k—-60+1)

She

1
ns = —(a(n —r)—k(n —2r))
h

|
:V—(h——/\'+9+r)(h—k+9——t)(h—k—9+r).
e

Furthermore. the spectrum
sple = {a' > @M " > ﬁ' > (60 + t)"' > ¢

decomposes into

spTe, =le' > 60" >0+ B e Y
spTe. =18 > O+ > ')

witho<i<r—land 0 <j<m>—r.

Then. from the computation of the traces of I = Sﬂ .S, and S‘ we get the following

constraints for 7 and j:

i+j=m—1
@+0vi+ti=-B
O+ i+ T)i=Bn— B (36)
The compatibility of this linear system requires that
I+t + vt +yih+ v =0. (37)
where
vy = —27° 4 261,
po =20 — 2Kk = 26Pt — 26" + 8kt — 27 — 2kOT + 6kT> + 407",
v = 8kTt —20°T — 2k710 — 8K T + AT — 2007 + 27¢ + 4kT + 2077 — 6k T,

vo =20 +2k%0t — 42120 — 20°k2T + 2kO* T + 2kOT — 2kt — 2001 —
LR 40+ 200K = 2k — 2427 — 20%kT + 26t

Moreover. the fourth degree polynomial (37) factorizes as

(h—k+6+ r)(l:—k—0+r)(ll:—3(r:—91’+r—k)l:+21"+t3+2kr+2kr:

_ 20T+ kT — 6 + 2k01).
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However. from (24). the root k — 6 — T is not acceptable. since we would have a = k:
neither is the root k + 6 — t which would imply B = t (note that. in both cases. (34)
would give 1, =0). Consequently, the only possible values of /i are the integral roots
of the polynomial

Q=i —-AT —0r+1—kh+ 20 4+ T 4 kT4 2kT =200 T+ kT — 6 + 2k6T (38)
which satisfies
Ok —-60+1) —4c(k—0+1)>0. Q(—k—()—t—2()t) =4ar(t+ 1) > 0.
and has discriminant
A" = MOT — 200 + T+ 20°T — 207 + 6 — kT’ — 4kT). (39)

Note that. from the definition of strong regularity. the degrees a.f must satisfy
k—a>c.k—B>ca>aand B> a. Therefore.

k> —Hr:/\'——cza>9>ﬂZcI:k+0+r+HrzO.
Translating these inequalities to constraints on /1 we get
k—O+1<h<—-k—0—1—201 (40)

With all the above. we now go back to (35) for studying the distinct cases depending
on the number of different eigenvalues in sp |

Case 1 Let i=0.j=0. Then V7 is just the trivial graph with one vertex. =0 and
iy =1. Therefore. h=k+6+71— B=k+0+tanda=h+p= hi. The inequalities
(40) become k—0+t<k+O0+T= —k—6—1—20t. whence (a=)k+6+71+
gt < 0. that is « =0. The relevant parameters arc:

a=0. ¢=k—h r=k. m=n—-k-1 m=1. a=h pB=0.

Of course. if V> = {u}. then the r(= k) independent vertices are those adjacent to u.
that is. C = T'(u). In this case we want to decide whether the connected component
[, — induced by the vertex set C,=V\(CU{u}) - isa distance-regular graph or
not. To this end. let I' have parameters (n.k:0.¢). Then. evI¢ = {mo >
Wy > o > ua} with

" l ﬁ_——-—-w
wo =k —c¢. p2=—c .3 =8. t:—(;:t;v’('-+4k—4<'. (41)

In particular. T¢, is connected and regular of degree kA —c¢. The partition "=
{1} U T(u) U Ta(w). subdivided by considering the vertices at a given distance from an
arbitrary vertex v of Cy. gives the scheme of figure 1.
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)

C=I'(u)

Iﬂ(\l:lﬂ:(u)

0 0

Figure 1. Intersection diagram of T with « =0.

where we have used the combinatorial properties of ', as an (n.k:0,c¢)-strongly
regular graph. From this diagram we then conclude the following.

e The number of vertices of (I'¢;):(v) s

1y

N=—— |
! k—c+1

e In the graph T'¢, the x+ 1 vertices of (I'¢,);(v) U {v} are mutually at distance 3 since
the ¢ vertices adjacent to every pair of vertices are all in T'y(u). Therefore,

[e, 18 (7\—_-":?) — antipodal. (42)

Notice that the number of antipodal classes is s =k — ¢+ 1.
Then. by (42) and Theorem 1.4, the graph I'¢, is distance-regular if and only if

I 3
;ZE:/\'—('WL 1.
;

= i=0

But. from (41). we obtain Zfﬂ,(m./m) = 2k. and the above yields the equation

k =k — ¢+ 1. Hence. ¢ = 1 and we have proved part (a) of Theorem 3.1 below.

Case 2 Leti=0.j>1. Then ', = K,,, and we would have t = —1. contradicting that
} [ is not trivial.

Case 3 Let i>1. j=0. Then the first equation of system (36) vields n > 2.

By I'c. = K,. we get B=n—1>0 and 6+ 7= —1. Thus. substituting 7= —1— 0

into (38) and (40) the following conditions for /i are obtained:

0= =226 +20—kh—1—40—46" + k> = 0.
k=1=20<h=—k+1+20+20°
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Furthermore. the discriminant of the second degree equation 1S
A" =20 +20—k+ 1) =k + 2k = 40 — x1)(0 — x2)(60 — x3)(0 — x3).

with x; > x> > 0 > x3 > vy and

Ny s = —é+%\,’f’l + (s/Ti \/Z——Z)

Then A” would be non-negative for either 0 <6 < x> or 6 > x;. In the first case.

h<—k+14+20+20 <—k+14+2x2+293 =—k(k—2) <0,

whence this option is not possible. pa — :
Now assume that @ > v;. which is equivalent to 20+ 1 > \/l + (Vk + Vk=2)".
From 6 = (1/2)(—1 + V1 ¥ 3k — 4¢) we would have the inequality

V1+4A——4(~z\/1+(ﬂ+\/k-2)',
whence
3(.5/\.“‘\ﬁ\-(/\-'.fijz3+/\-—2—\//\'(/\-—2):3+\/T—"E(\//\»—'z—ﬂ) = 3.

Therefore. c=1. a = ¢ + 60 + t =0, and T is a Moore graph. The polynomial Q is now
0 =" —-2k—-2h+ k2 — 4k + 3. with roots h =k — 1 and i = k — 3. The root k —1

gives =0 and i=0. a contradiction. For h = k — 3 we obtain the parameters
a=0. ¢c=1. r=2k-2, m=n=2k, m=2, a=k-2, B=1

The graph T, is K and. if V> = {u, v}, the independent set is C = ['(uv) := 'y ({u, v}):
that is. the set of vertices at distance one of edge wv. Therefore. the graph T’ is either
the Hoffman Singleton graph with parameters (50.7:0.1) or the possible Moore
graph with parameters (3250,57:0.1). Setting k = (1/4)(r* —3) with r=5.15, we
then have

3 e /320 ==y (+3) (/32N =51+ 1) (1=3)
-_5 I v —f
spCe = £ - 1—1 (L2R—3) —1
spl ¢, = 4 > Y >—1 = ] )
- = i

For every vertex w of I'¢, we get

mw) =k —=1-r)—1—(k=2)—(k—=2)k—3)=2k—4

.4y -]
— T | S

m E ) =s(F -9 =2%-4
=0 nym; -

allows us to demonstrate part (b) of Theorem 3.1.

which. together with




~
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Case4 Leti>1.j>1.Then I'c. would be a strongly regular graph with eigenvalues .
w, =60+ tand > = . But the inequalities

0<B—my+u=p—0—1t+t=—-60<0.

obtained from (14) and (25). compel us to exclude this case.

As a conclusion of the previous case-by-case study. we now have the following result.
whose “if 77 parts are well-known (see. for instance. [3.13.18]).

THEOREM 3.1 Let C C V be an independent set of an (n,k:a.c¢)-strongly regular graph
' = (V.E). Then the following statements hold.

() When C = T(u), the non-trivial component U¢, of the outindependent graph U'c— or
the graph induced by the vertices at distance two from u — is a distance-regular
graph if and only if T is a Moore graph. In this case. TU¢, is an antipodal
(k — D)-cover of the complete graph K. with intersection array

ile)=tk—=Lk=2 1. Lk=1}). ke{1.57).

(b)Y When C = T(uv). with uv € E. the component U¢, being different from Ky of the
outindependent graph U — or the graph induced by the vertices at distance two
from wuv — is a distance-regular graph (with diameter three) if and only if T is a
Moore graph. In this case. the intersection array is

Ule) =tk —-2.k=-3.2:1. 1Lk -3}, ke{757).

A last comment concerning case (a): From the results of Gardiner er al. [24]. it was
already known that if the vertices at distance two from a vertex in a strongly regular
graph induce a distance-regular graph. then it is antipodal.
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