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Abstract

In the present work, we define a partial subdivision network ΓS of a given network Γ, by
inserting a new vertex in some selected edges of Γ, so that each of these edges is replaced by two
new edges with conductances that fulfill the Kirchhoff series law on the new network. Then,
we obtain an expression for the Green kernel of the partial subdivision network in terms of the
Green kernel of the base network. For that, we show the relation between Poisson problems
on the partial subdivision network and Poisson problems on the base network. Moreover, we
also obtain the effective resistance and the Kirchhoff index of the partial subdivision network in
terms of the corresponding parameters on the base network. Finally, as an example, we carry
out the computations in the case of a star network in which we have subdivided the even edges.
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1 Introduction

The subdivision graph of a given graph is obtained by dividing each edge into two edges by inserting
one new node. This operation is sometimes called barycentric subdivision of the graph and is
important when studying homeomorphic graphs; see [12]. In the literature, we can find some works
studying parameters such as effective resistances, Kirchhoff Index, or spectra of subdivision graphs;
see [4, 7, 9, 11, 13, 15]. In [8], balanced subdivision graph was studied in order to optimize the largest
eigenvalue of the adjacency matrix. The subdivision of graphs is also used to construct equiarboreal
graphs in [16]. The authors in [6], carried out the study of subdivision of networks. Specifically, we
obtained the expression of the group inverse of the Laplacian matrix of the subdivision network in
terms of the group inverse of the Laplacian matrix of the initial network.

In the present paper, we first introduce the concept of partial subdivision of a network, that
generalizes the usual subdivision network, in the sense that in the case of partial subdivision networks
we only subdivide some selected edges. Moreover, in this work we obtain the expressions for the
group inverse, the effective resistances and the Kirchhoff Index associated with singular Shcrödinger
operators on the partial subdivided network as a function of the corresponding parameters in the
base network. Our approach consists in interpreting a network as an electric circuit, and hence
each selected edge has got assigned a positive number that corresponds with the conductance of
a wire connecting two nodes. In addition, we also consider a weight in the set of vertices, that
reflects the relevance of each node. When we perform the subdivision operation we interpret that
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we introduce a rheostat in every subdivided edge, that is a device that may change the resistance
without opening the circuit in which it is connected. Thus, we decompose each subdivided edge in
two new edges taking into account electrical compatibility of the circuit, specifically, the series sum
rule for resistances. As a consequence, we would get that after the subdivision process, the effective
resistance between any pair of old vertices should remain unchanged except for a normalization
factor.

The results obtained here include the ones obtained in [6], that correspond to the case of
constant weight on the vertex set and when all the edges have been subdivided.

In the whole work, a network is the triplet Γ = (V,E, c) where (V,E) stands for a finite and
connected graph, without loops nor multiple edges; and c : V × V −→ [0,+∞) is a symmetric
function called conductance satisfying c(x, y) > 0 iff x ∼ y which means that {x, y} ∈ E. Let n be
the number of nodes and m the number of edges.

On the other hand, C(V ) is the set of real functions on V . For any vertex x ∈ V, εx ∈ C(V ) is
the Dirac function at x and k ∈ C(V ) defined as k(x) =

∑
y∈V

c(x, y), is the degree of x. The standard

inner product in C(V ) is denoted by 〈·, ·〉; that is, if u, v ∈ C(V ) then, 〈u, v〉 =
∑
x∈V

u(x)v(x). A

real–valued function ω ∈ C(V ) is called weight if ω(x) > 0 for any x ∈ V and in addition ||ω|| = 1.

The sets of weights on V is denoted by Ω(V ). Clearly the unique constant weight on V assigns
1√
n
,

to any vertex of V .
The combinatorial Laplacian or simply the Laplacian of the network Γ is the endomorphism

of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V. (1)

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endomorphism of C(V )
that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu, where qu ∈ C(V ) is defined as
(qu)(x) = q(x)u(x); see for instance [1, 3]. If ω is a weight, then the potential qω = −ωL−1(ω) is
called potential determined by ω. The Doob transform consists in the identity

Lqω(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
, x ∈ V, u ∈ C(V ).

It is well–known that any Schrödinger operator is self–adjoint and moreover it is positive semi–
definite iff there exist ω ∈ Ω(V ) and λ ≥ 0 such that q = qω + λ; see [1]. In addition, Lq is singular
iff λ = 0, in which case 〈Lqω(v), v〉 = 0 iff v = aω, a ∈ R. In any case, λ is the lowest eigenvalue of
Lq and its associated eigenfunctions are multiple of ω.

Throughout this work we will consider only positive semi–definite and singular Schrödinger
operator, Lqω . Then, the operator that assigns to each function f ∈ C(V ) the unique u ∈ C(V ) such
that Lqω(u) = f −〈ω, f〉ω and 〈u, ω〉 = 0 is called Green’s operator. The Green operator is denoted
by Gqω , see [2]. Moreover, the function Gqω : V × V −→ R, defined as Gqω(x, y) = Gqω(εy)(x), for
any x, y ∈ V, is called Green’s function. Observe that Gqω(ω) = 0, and moreover, Gqω is self–adjoint
as a consequence of the Fredholm Alternative and Gqω is a symmetric function.

In [2], the authors introduced a generalization of the concept of effective resistance with respect
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to a weight ω ∈ Ω(V ). Specifically, from the functional on C(V ) defined as

Jx,y(u) = 2

[
u(x)

ω(x)
− u(y)

ω(y)

]
− 〈Lqω(u), u〉, (2)

we defined the generalization of the effective resistance.

Definition 1.1. Given x, y ∈ V , the effective resistance between x and y with respect to ω, is the
value

Rω(x, y) = max
u∈C(V )

{Jx,y(u)}.

When ω is constant we omit the subindex ω. Therefore, R is nothing else than a multiple of
the standard effective resistance of the network.

The following result can be found in [2] and allows us to express the effective resistances in
terms of the solution of a Poisson equation. In particular, these expressions will be useful to prove
the main properties of the effective resistances.

Proposition 1.2. If u ∈ C(V ) is a solution of the Poisson equation Lqω(u) = ω−1(εx − εy), then

Rω(x, y) = 〈Lqω(u), u〉 =
u(x)

ω(x)
− u(y)

ω(y)
.

Therefore, Rω is symmetric, non–negative and moreover Rω(x, y) = 0 iff x = y. In addition,

Rω(x, y) =
Gqω(x, x)

ω2(x)
+
Gqω(y, y)

ω2(y)
− 2Gqω(x, y)

ω(x)ω(y)
.

Notice that, if we label the vertices of Γ, both the Schrödinger operator and the Green operator
can be interpreted as singular matrices and hence, the Green kernel can be identified as the group
inverse of the matrix associated with the Schrödinger operator.

The Kirchhoff Index of a network Γ with respect to a weight is defined as

kω(Γ) =
1

2

∑
x,y∈V

Rω(x, y)ω2(x)ω2(y) =
∑
x∈V

Gqω(x, x) (3)

and gives a measure of the global connectivity of the network. The Kirchhoff index is a descriptor
of the structure of the network and exhibits many interesting interpretations, see [10, 14].

2 The Poisson Problem on Partial Subdivision Networks

Our objective in this section is to relate the solution of any Poisson problem on the partial subdi-
vision network with the solution of an appropriate Poisson problem on the base network. In that
way, we can obtain the solution of problems that have more variables in terms of problems of small
size. In particular, we can obtain the group inverse of a big matrix in terms of the group inverse of
a matrix with smaller size.

A partial subdivision network ΓS = (V S , ES , cS) of a given network Γ = (V,E, c), is obtained
by inserting a new vertex in some edges of Γ, we denote the set of subdivided edges by E′, so that
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each edge {x, y} ∈ E′ is replaced by two new edges, say {x, vxy} and {y, vxy} where vxy is the new
inserted vertex. We denote by V ′ the new vertex set assuming that, vxy = vyx. Thus, V S = V ∪V ′,
the order of the subdivision network is n + |E′|, whereas the size is m + |E′|. When, E′ = E, the
partial subdivision network is nothing else but the so–called subdivision network; see [6]. Given
x ∈ V we denote by S(x) the set of adjacent vertices to x such that {x, y} ∈ E′. Given ω : V → R+

vxy

x

y

c(x, vxy)

c(y, vxy)

Figure 1: A partial subdivision network

a weight; that is, ω(x) > 0 and
∑
x∈V

ω2(x) = 1 in the base network, we now define an extension

of this weight function, ωS : V ∪ V ′ → R+ in such a way that ωS(x) = αω(x) when x ∈ V and
ωS(vxy) = αω(vxy), where ω(vxy) is absolutely arbitrary, except for positivity, for vxy ∈ V ′ and

α2 =
1

1 +
∑

x∈V ′
ω(vxy)2

.

Moreover, according to the well–known rule that express the equivalent resistance of two
resistors connected in series and the expression for the Schrödinger operator, we define the conduc-
tance function cS : V S × V S −→ [0,+∞) by choosing, for every edge in E′, {x, y}, non–null values
cS(x, vxy) and cS(y, vxy) such that

1

ω(x)ω(y)

1

c(x, y)
=

1

ω(x)ω(vxy)

1

cS(x, vxy)
+

1

ω(y)ω(vxy)

1

cS(y, vxy)
, (4)

whereas for every edge in ES \ E′ we define cS(x, y) = c(x, y). The definition of cS cannot be
misunderstood as all the edges in E′ have both kind of vertices, one in V and the other in V ′. Hence,
by the sake of simplicity, it will be denoted as c. Moreover for each edge, there exist infinitely many
different choices of conductances fulfilling (4), so that different choices will lead to different partial
subdivision networks.

In the literature it has been studied the case of subdivision networks for the combinatorial
Laplacian when c(x, y) = c(x, vxy) = c(y, vxy) = 1, that not fulfills the electrical compatibility
condition (4), see ([7, 9, 13, 15]); and the case of arbitrary conductances when all the edges have
been divided, see [6].

Observe that ΓS is also a connected, finite, with no loops, nor multiple edges network.
If LS denotes the combinatorial Laplacian of ΓS , then for any u ∈ C(V S) we have that

LS(u)(x) =
∑

y∈V \S(x)

c(x, y) (u(x)− u(y)) +
∑

y∈S(x)

c(x, vxy) (u(x)− u(vxy)) , for any x ∈ V ;

LS(u)(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) , for any vxy ∈ V ′.
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On the other hand, we consider the potential determined by ωS ,

q′ = −(ωS)−1LS(ωS) = −ω−1LS(ω),

and hence

LSq′(u)(vxy) =
c(vxy, x)ω(x) + c(vxy, y)ω(y)

ω(vxy)
u(vxy)− c(vxy, x)u(x)− c(vxy, y)u(y), vxy ∈ V ′

LSq′(u)(x) =
1

ω(x)

∑
y∈S(x)

c(x, vxy)ω(x)ω(vxy)

[
u(x)

ω(x)
− u(vxy)

ω(vxy)

]
+

1

ω(x)

∑
y∈V \S(x)

c(x, y)ω(x)ω(y)

[
u(x)

ω(x)
− u(y)

ω(y)

]
, x ∈ V.

Therefore, for any vxy ∈ V ′ and u ∈ C(V S) we have that

u(vxy)

ω(vxy)
=
LSq′(u)(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
.

Keeping in mind the compatibility equation (4) we can rewritte the expression for LSq′(u)(x) as

LSq′(u)(x) = Lqω(u)(x)−
∑

y∈S(x)

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
LSq′(u)(vxy). (5)

This expression suggests to call contraction of h ∈ C(V S) the function of C(V ), h, defined as

h(x) = h(x) +
∑

y∈S(x)
α(x, y)h(vxy),

where
α(x, y) =

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
.

Observe that,
α(x, y)ω(x) + α(y, x)ω(y) = ω(vxy).

Moreover, we call extension of u ∈ C(V ) with respect to h ∈ C(V S), the function of C(V S), uh,
defined as

uh(vxy) =
h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)u(x) + α(y, x)u(y), vxy ∈ V ′

uh(x) = u(x), x ∈ V

Using these definitions we obtain from (5) that for any u ∈ C(V ) and x ∈ V ,

Lqω(u)(x) = LSq′(u)(x).

This relation allows us to obtain the following result.

Theorem 2.1. Given h ∈ C(V S) such that 〈h, ωS〉 = 0, then 〈h, ω〉 = 0. Moreover, u ∈ C(V S) is a
solution of the Poisson equation LSq′(u) = h in V S iff u = u|V is a solution of the Poisson equation
Lqω(u) = h in V. In this case, the identity u = uh holds.
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Proof. We only have to prove the first statement. For that we show that α 〈h, ω〉 =
〈
h, ωS

〉
as∑

x∈V h(x)ω(x) =
∑
x∈V

h(x)ω(x) +
∑
x∈V

∑
y∈S(x)

α(x, y)h(vxy)ω(x)

=
1

α

∑
x∈V

h(x)ωS(x) +
∑

vxy∈V ′

h(vxy)ωS(vxy)

 .

Next result shows how to obtain the unique solution of a Poisson problem on the partial
subdivision network ΓS orthogonal to ωS .

Corollary 2.2. Given h ∈ C(V S), such that 〈h, ωS〉 = 0, let h ∈ C(V ) be its contraction to V,
u ∈ C(V ) be the unique solution of Lqω(u) = h that satisfies 〈u, ω〉 = 0 and the constant

λ = −
∑

{x,y}∈E′

c(x, y)ωS(vxy)

c(x, vxy)c(y, vxy)

(
h(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

)
Then, u⊥ = uh + λωS is the unique solution of LSq′(u⊥) = h that satisfies 〈u⊥, ωS〉 = 0.

Proof. As two solutions differ on a constant, we have that u⊥ = uh + γωS , γ ∈ R. Then,

0 = 〈u⊥, ωS〉 = 〈uh, ωS〉+ γ = α
∑
x∈V

u(x)ω(x) +
∑

vxy∈V ′

uh(vxy)ωS(vxy) + γ

=
∑

{x,y}∈E′

h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
ωS(vxy) +

∑
{x,y}∈E′

(α(x, y)u(x) + α(y, x)u(y))ωS(vxy) + γ

=
∑

{x,y}∈E′

h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
ωS(vxy) +

∑
{x,y}∈E′

c(x, y)ωS(vxy)

(
u(x)

c(y, vxy)
+

u(y)

c(x, vxy)

)
+ γ,

because 〈u, ω〉 = 0, and the result follows taking γ = λ.
The preceding results allows us to obtain the expression for the Green kernel of a partial

subdivision network in terms of the Green kernel of the base network and some other parameters.
If we let

πS(x) =
∑

y∼S(x)

c(x, y)ωS(vxy)

c(y, vxy)
=

∑
y∼S(x)

α(x, y)ωS(vxy)

and

β =
∑
r,s∈V

Gqω(s, r)πS(r)πS(s) +
∑

{r,s}∈E′

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)
,

we get, in the next result, the desired expression.

Proposition 2.3. Let ΓS be the partial subdivision network of Γ, then for any x, z ∈ V and
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vxy, vzt ∈ V ′, the Green kernel of ΓS is given by

GS
q′(x, z) = Gqω(x, z)−

∑
`∈V

[
ωS(z)Gqω(x, `) + ωS(x)Gqω(z, `)

]
πS(`) + βωS(x)ωS(z),

GS
q′(vxy, z) = α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

−
∑
`∈V

(
ωS(z)α(x, y)Gqω(x, `) + ωS(z)α(y, x)Gqω(y, `) + ωS(vxy)Gqω(z, `)

)
πS(`)

+

(
β − c(x, y)

c(x, vxy)c(y, vxy)

)
ωS(vxy)ωS(z),

GS
q′(vxy, vzt) =

εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ ωS(vzt)ω

S(vxy)

(
β − c(x, y)

c(x, vxy)c(y, vxy)
− c(z, t)

c(z, vzt)c(t, vzt)

)
− ωS(vzt)

∑
`∈V

(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

− ωS(vxy)
∑
`∈V

(
α(z, t)Gqω(z, `) + α(t, z)Gqω(t, `)

)
πS(`)

+ α(x, y)
(
α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t)

)
+ α(y, x)

(
α(z, t)Gqω(y, z) + α(t, z)Gqω(y, t)

)
.

Proof. Suppose z ∈ V, and let hz = εz − ωS(z)ωS . Then, for every x ∈ V

hz(x) = εz(x)− ωS(x)ωS(z)−
∑

y∼S(x)

α(x, y)ωS(vxy)ωS(z)

= εz(x)− ωS(x)ωS(z)−
∑

y∼S(x)

c(x, vxy)ωS(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
ωS(z)ωS(vxy)

= εz(x)− ωS(x)ωS(z)− ωS(z)
∑

y∼S(x)

c(x, y)ωS(vxy)

c(y, vxy)

= εz(x)− (ωS(x) + πS(x))ωS(z),

where πS(x) =
∑

y∼S(x)

c(x, y)ωS(vxy)

c(y, vxy)
.

Hence, from Theorem 2.1, the Poisson problem to solve is Lqω(uz) = hz, and, using the Green
kernel for Γ, we obtain

uz(x) = Gqω(εz)(x)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z) = Gqω(x, z)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z).



8

Then, from Corollary 2.2

GS
q′(vxy, z) =

h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)u(x) + α(y, x)u(y)

−
∑

{r,s}∈E′

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(h(vrs) + c(r, vrs)u(r) + c(s, vrs)u(s))ωS(vxy)

= − ωS(vxy)ωS(z)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

−
∑
`∈V

(
ωS(z)α(x, y)Gqω(x, `) + ωS(z)α(y, x)Gqω(y, `) + ωS(vxy)Gqω(z, `)

)
πS(`)

+ ωS(z)ωS(vxy)
∑

{r,s}∈E′

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
ωS(vrs)

+ ωS(z)ωS(vxy)
∑
r,`∈V

Gqω(r, `)πS(`)πS(r).

On the other hand,

GS
q′(x, z) = uhz

z (x)−
∑

{r,s}∈E′

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)

(
h(vrs) + c(r, vrs)u(r) + c(s, vrs)u(s)

)
ωS(x)

= Gqω(x, z)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z) + ωS(x)ωS(z)
∑

{r,s}∈E′

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)

−
∑

{r,s}∈E′
α(r, s)

[
Gqω(r, z)−

∑
`∈V

Gqω(r, `)πS(`)ωS(z)

]
ωS(vrs)ω

S(x)

−
∑

{r,s}∈E′
α(s, r)

[
Gqω(s, z)−

∑
`∈V

Gqω(s, `)πS(`)ωS(z)

]
ωS(vrs)ω

S(x)

= Gqω(x, z)− ωS(x)ωS(z)
∑
`∈V

[Gqω(x, `)

ωS(x)
+
Gqω(z, `)

ωS(z)

]
πS(`)

+ ωS(x)ωS(z)
∑
r,s∈V

Gqω(s, r)πS(r)πS(s)

+ ωS(x)ωS(z)
∑

{r,s}∈E′

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)
.
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Suppose now vzt ∈ V ′, and let hvzt = εvzt − ωS(vzt)ω
S . Then, for every x ∈ V

hvzt(x) = εvzt(x)− ωS(vzt)ω
S(x) +

∑
y∈S(x)

α(x, y)
(
εvzt(vxy)− ωS(vzt)ω

S(vxy)
)

= −ωS(vzt)ω
S(x) +

∑
y∈S(x)

α(x, y)
(
εvzt(vxy)− ωS(vzt)ω

S(vxy)
)

= −ωS(vzt)ω
S(x) +

∑
y∈S(x)

α(x, y)εvzt(vxy)− ωS(vzt)
∑

y∈S(x)

α(x, y)ωS(vxy)

= −ωS(vzt)ω
S(x) + α(z, t)εz(x) + α(t, z)εt(x)− ω(vzt)π

S(x)

= −ωS(vzt)
(
ωS(x) + πS(x)

)
+ α(z, t)εz(x) + α(t, z)εt(x).

Hence, the Poisson problem to solve is Lqω(uvzt) = hvzt , and, using Green’s kernel for Γ, we obtain

uvzt(x) = −ωS(vzt)
∑
`∈V

Gqω(x, `)
(
ω(`) + πS(`)

)
+ α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t)

= −ωS(vzt)
∑
`∈V

Gqω(x, `)πS(`) + α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t).

Then, the result follows by applying again Corollary 2.2.
If we consider E′ = E; that is, the case of subdivision networks, the above result coincides

except for a constant with [6, Proposition 3.1]. The scalar is due to the fact that in the mentioned
work, we were considering no weights in the vertex set; i.e., ω(x) = 1 for any x ∈ V and hence the
normalization factor appears.

3 Resistance distances

In this section we aim at obtaining the expression for the effective resistances on a partial subdivision
network of a given network Γ. The expression will follow by taking into account the expression for
the effective resistances in terms of Green’s function as stated in Proposition 1.2. Again, the results
coincide except for a constant with [6, Proposition 4.1].

Proposition 3.1. Let ΓS be a partial subdivision network of Γ, then for any x, z ∈ V and vxy, vzt ∈
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V ′, the Effective resistances of ΓS are given by

RS
ωS (x, z) =

1

α2
Rω(x, y),

RS
ωS (vzt, x) =

c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
ω(z)ω(t)

α2ω(vzt)

(
α(z, t)Rω(x, z)

ω(t)
+
α(t, z)Rω(x, t)

ω(z)
− α(t, z)α(z, t)Rω(z, t)

ω(vzt)

)
,

RS
ωS (vxy, vzt) =

c(x, y)

α2c(x, vxy)c(y, vxy)ω(vxy)2
+

c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
1

α2ω(vxy)ω(vzt)

[
α(x, y)α(z, t)ω(x)ω(z)Rω(x, z) + α(x, y)α(t, z)ω(x)ω(t)Rω(x, t)

+ α(y, x)α(z, t)ω(y)ω(z)Rω(y, z) + α(y, x)α(t, z)ω(y)ω(t)Rω(y, t)
]

− α(x, y)α(y, x)ω(x)ω(y)

α2ω(vxy)2
Rω(x, y)− α(z, t)α(t, z)ω(z)ω(t)

α2ω(vzt)2
Rω(z, t), for any vxy 6= vzt.

Proof. Suppose that x, z ∈ V , then

RS
ωS (x, z) =

GS
q′(x, x)

[ωS(x)]2
+
GS

q′(z, z)

[ωS(z)]2
− 2

GS
q′(x, z)

ωS(x)ωS(z)

=
1

[ωS(x)]2

(
Gqω(x, x)− 2ωS(x)

∑
`∈V

Gqω(x, `)πS(`)
)

+
1

[ωS(y)]2

(
Gqω(y, y)− 2ωS(y)

∑
`∈V

Gqω(y, `)πS(`)
)

− 2
1

ωS(x)ωS(y)

(
Gqω(x, y)−

∑
`∈V

(
ωS(x)Gqω(y, `) + ωS(y)Gqω(x, `)

)
πS(`)

)
=
Gqω(x, x)

[ωS(x)]2
+
Gqω(y, y)

[ωS(y)]2
− 2

Gqω(x, y)

ωS(x)ωS(y)
=

1

α2
Rω(x, y).

Moreover, if x ∈ V and vzt ∈ V ′, then

RS
q′(x, vzt) =

GS
q′(x, x)

[ωS(x)]2
+
GS

q′(vzt, vzt)

[ωS(vzt)]2
− 2

GS
q′(x, vzt)

ωS(x)ωS(vzt)
,
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where from Proposition 2.3

GS
qω(x, x)

ωS(x)2
=
Gqω(x, x)

ωS(x)2
− 2

ωS(x)

∑
`∈V

Gqω(x, `)πS(`) + β,

GS
q′(vzt, vzt)

ωS(vzt)2
=

c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2
− 2

c(z, t)

c(z, vzt)c(t, vzt)

− 2

ωS(vzt)

∑
`∈V

(
α(z, t)Gqω(z, `) + α(t, z)Gqω(t, `)

)
πS(`)

+
α(z, t)2Gqω(z, z) + 2α(z, t)α(t, z)Gqω(z, t) + α(t, z)2Gqω(t, t)

ωS(vzt)2
+ β

GS
q′(vzt, x)

ωS(vzt)ωS(x)
=
α(z, t)Gqω(z, x) + α(t, z)Gqω(t, x)

ωS(vzt)ωS(x)
− c(z, t)

c(z, vzt)c(t, vzt)
+ β

−
∑
`∈V

(α(z, t)Gqω(z, `)

ωS(vzt)
+
α(t, z)Gqω(t, `)

ωS(vzt)
+
Gqω(x, `)

ωS(x)

)
πS(`).

Summing up

RS
ωs(x, vzt) =

c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2
+
Gqω(x, x)

ωS(x)2
+
α(z, t)2Gqω(z, z)

ωS(vzt)2
+
α(t, z)2Gqω(t, t)

ωS(vzt)2

+
2α(z, t)α(t, z)Gqω(z, t)

ωS(vzt)2
− 2

α(z, t)Gqω(z, x) + α(t, z)Gqω(t, x)

ωS(vzt)ωS(x)

=
c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2

+
Gqω(x, x)

ωS(x)2

(
α(z, t)ω(z)

ω(vzt)
+
α(t, z)ω(t)

ω(vzt)

)
+
Gqω(z, z)

ωS(z)2

(
α(z, t)ω(z)

ω(vzt)
− α(t, z)α(z, t)ω(z)ω(t)

ω(vzt)2

)
+
Gqω(t, t)

ωS(t)2

(
α(t, z)ω(t)

ω(vzt)
− α(t, z)α(z, t)ω(z)ω(t)

ω(vzt)2

)

+
2α(z, t)α(t, z)ω(z)ω(t)

ωS(vzt)2
Gqω(z, t)

ω(z)ω(t)
− 2

α(z, t)ω(z)

ωS(vzt)

Gqω(z, x)

ωS(x)ω(z)
− 2

α(t, z)ω(t)

ωS(vzt)

Gqω(t, x)

ωS(x)ω(t)

=
c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2

+
α(z, t)ω(z)

α2ω(vzt)
Rω(x, z) +

α(t, z)ω(t)

α2ω(vzt)
Rω(x, t)− α(t, z)α(z, t)ω(z)ω(t)

α2ω(vzt)2
Rω(z, t).

The last case, follows by performing similar calculations.
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Proposition 3.2. Let ΓS be the partial subdivision network of Γ, then the Kirchhoff index of ΓS is
given by

kS
ωS (ΓS) = kω(Γ) +

∑
x∈V

πS(x)

ωS(x)
Gqω(x, x)−

∑
{x,y}∈E′

α(x, y)α(y, x)ω(x)ω(y)Rω(x, y)

+
∑

{x,y}∈E′

c(x, y)

c(x, vxy)c(y, vxy)
− β.

Proof. It is enough to compute the trace of Green’s function.

kS
ωS (ΓS) =

∑
x∈V

[
Gqω(x, x)− 2ωS(x)

∑
`∈V

Gqω(x, `)πS(`) + βωS(x)2
]

+
∑

{x,y}∈E′

[ c(x, y)

c(x, vxy)c(y, vxy)
− ωS(vxy)2

(
2

c(x, y)

c(x, vxy)c(y, vxy)
− β

)
− 2ω(vxy)

∑
`∈V

(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

+ α(x, y)2Gqω(x, x) + 2α(x, y)α(y, x)Gqω(x, y) + α(y, x)2Gqω(y, y)
]

= kω(Γ) + β +
∑
{x,y}∈E′

[ c(x, y)

c(x, vxy)c(y, vxy)
− 2

c(x, y)ωS(vxy)2

c(x, vxy)c(y, vxy)

]
− 2

∑
x,`∈V

Gqω(x, `)πS(x)πS(`)

+
∑

{x,y}∈E′

[
α(x, y)2Gqω(x, x) + 2α(x, y)α(y, x)Gqω(x, y) + α(y, x)2Gqω(y, y)

]

= kω(Γ) +
∑
x∈V

Gqω(x, x)
πS(x)

ωS(x)
−

∑
{x,y}∈E′

α(x, y)α(y, x)ω(x)ω(y)Rω(x, y)

+
∑

{x,y}∈E′

c(x, y)

c(x, vxy)c(y, vxy)
− β.

4 Example: Partial subdivision of a Star

Let us consider S2n = (V,E, c), the Star network with vertex set V = {x0, x1, . . . , x2n} and positive
conductances

c(x0, x2j) = aj , c(x0, x2j−1) = a′j

for j = 1, . . . n and c(xi, xj) = 0 otherwise. We define SS
2n = (V ∪ V ′, cS), the partial subdivision

network of S2n where V ′ = {x0 2i, |i = 1, . . . , n} and

cS(x0 2i, x0) = c0 i > 0, cS(x0 2i, x2i) = ci 0 > 0
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for i = 1, . . . , n and cS(xi, xj) = c(xi, xj) otherwise. See, Fig. 2.

x2n

x1

x2

x3

x4

x5

x0

an

a′1

a1

a′2a2

a′3

x2n

x1

x2

x3

x4

x5

x0

x0 2n

x0 2

x0 4

Figure 2: The Star network (left) and a partial subdivision (right)

Let ω : V → R+ be a weight on S2n and we define an extension of this weight function
ωS : V ∪ V ′ → R+ as mentioned in the introduction. In order to simplify the notation, the weight
function SS

2n will be denoted
ωS(xj) = ωj , ωS(x0 2i) = ω0 2i

for any j = 0, . . . , 2n, i = 1, . . . , n. The compatibility condition (4) reads

ω0 2i

ai
=
ω2i

c0 i
+
ω0

ci 0
.

Let us assume constant weight for the Star network ω(xi) =
1√

2n+ 1
, for any i = 0, . . . , 2n,

and we assign a positive constant γ to the weight of the new vertices. Thus,

ωS(xi) = ωi =
α√

2n+ 1
, ωS(x0 2i) = ω0 2i = αγ.

In this case, α2 =
1

1 + nγ2
. Moreover, we assume equal conductance for each pair of new edges, this

is, ci 0 = c0 i for any i = 1, . . . , n. Then, according to expression (4), the following equality holds

ai
c0 i

=
ai
ci 0

=
1

2
γ
√

2n+ 1.

Moreover, the parameters are

α(x0, x2i) =
c0 i ω0 2i

c0 iω0 + ci 0ω2i
=

ai
c0 i

=
1

2
γ
√

2n+ 1,

πS(x0) =
n∑

i=1

c0 i ω
2
0 2i

c0 iω0 + ci 0ω2i
=

n∑
i=1

ai ω0 2i

ci 0
=
n

2
αγ2
√

2n+ 1,

πS(x2i) =
ai ω0 2i

c0 i
=

1

2
αγ2
√

2n+ 1.

If we denote

Q =
1

2n+ 1

n∑
j=1

(
1

aj
+

1

a′j

)
,
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the expression for the Green function and the effective resistance of the Star network is, see [5]

G(x0, x0) =
1

2n+ 1
Q, G(x`, xk) =

1

2n+ 1

(
Q− 1

c(x0, x`)
− 1

c(x0, xk)

)
G(x0, xk) =

1

2n+ 1

(
Q− 1

c(x0, xk)

)
, G(xk, xk) =

1

2n+ 1

(
Q− 2

c(x0, xk)

)
+

1

c(x0, xk)
,

and
R(x0, xk) =

2n+ 1

c(x0, xk)
, R(x`, xk) = (2n+ 1)

(
1

c(x0, x`)
+

1

c(x0, xk)

)
,

where ` 6= k and l, k = 1, . . . , 2n.

Moreover, under the previous assumptions, the expression for the Kirchhoff index is

k(S2n) = 2nQ.

In order to obtain the Green function for the partial subdivision network of the Star, we first
compute β, that in this case is

β = G(x0, x0)π(x0)
2 + 2

n∑
i=1

G(x0, x2i)π(x0)π(x2i)

+

n∑
i,j=1

G(x2i, x2j)π(x2i)π(x2j) +

n∑
i=1

aiω
2
0 2i

c(0, 2i)c(2i, 0)

=
1

4
n2α2γ4Q+

2

4
n2α2γ4Q− 2n

4
α2γ4

n∑
i=1

1

ai
+

2

4
α2γ4

n∑
i<j,i=1

[
Q− 1

ai
− 1

aj

]

+
1

4
α2γ4

n∑
i=1

[
Q− 2

ai

]
+

2n+ 1

4
α2γ2

n∑
i=1

1

ai
+

n∑
i=1

aiω
2
0 2i

c(0, 2i)c(2i, 0)

= n2α2γ4Q+
α2γ4

2

n∑
i=1

1

ai
.

Proposition 4.1. The Green function for the partial subdivision network of the Star network S2n
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has the following expression according to the different vertices involved

GS
ωS (x0, x0) =

α4

2n+ 1
Q+ α2γ2fev

n∑
i=1

1

ai
,

GS
ωS (x0, x2i) = GS

ωS (x0, x0)− fev
1

ai
, GS

ωS (x0, x2i−1) = GS
ωS (x0, x0)− fodd

1

a′i
,

GS
ωS (x2i, x2j) = GS

ωS (x0, x0) + εx2i(x2j)
1

ai
− fev

(
1

ai
+

1

aj

)
,

GS
ωS (x2i, x2j−1) = GS

ωS (x0, x0)− fev
1

ai
− fodd

1

a′j
,

GS
ωS (x2i−1, x2j−1) = GS

ωS (x0, x0) + εx2i(x2j)
1

a′i
− fodd

( 1

a′i
+

1

a′j

)
,

GS
ωS (x0, x0 2i) = γ

√
2n+ 1

(
GS

ωS (x0, x0)− fsub
1

ai

)
,

GS
ωS (x2i−1, x0 2j) = γ

√
2n+ 1

(
GS

ωS (x0, x0)− fodd
1

a′i
− fsub

1

aj

)
,

GS
ωS (x2i, x0 2j) = γ

√
2n+ 1

(
GS

ωS (x0, x0) +
1

2
εx2i(x2j)

1

aj
− fev

1

ai
− fsub

1

aj

)
,

GS
ωS (x0 2i, x0 2j) = γ2(2n+ 1)

(
GS

ωS (x0, x0) +
1

2
εx2i(x2j)

1

aj
− fsub

( 1

ai
+

1

aj

))
,

where

fodd =
α2

2n+ 1
, fev =

2 + α2γ2

2(2n+ 1)
and fsub =

1 + (n+ 1)α2γ2

2(2n+ 1)
.

Proof. We compute only some cases by using the results given in Proposition 2.3.

GS
ωS (x0, x0) = G(x0, x0)− 2

∑
`∈V

ω0G(x0, x2i)π
S(`) + βω2

0

=
α4

2n+ 1
Q+

α2γ2(2 + α2γ2)

2(2n+ 1)

n∑
i=1

1

ai
.
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GS
ωS (x0, x2i) = G(x0, x2i)−

n∑
j=1

[
ωS(x2i)G(x0, x2j) + ωS(x0)G(x2i, x2j)

]
πS(x2j)

− ωS(x2i)G(x0, x0)π
S(x0)− ωS(x0)G(x2i, x0)π

S(x0) + βωS(x0)ω
S(x2i)

=
1

2n+ 1

(
Q− 1

ai

)
− nα2γ2

2(2n+ 1)
(2Q− 1

ai
)

− α2γ2

2(2n+ 1)

n∑
j=1

(
Q− 1

aj

)
− α2γ2

2(2n+ 1)

n∑
j=1

(Q− 1

ai
− 1

aj
)− α2γ2

2

1

ai

+

(
n2α2γ4Q+

α2γ4

2

n∑
i=1

1

ai

)
α2

2n+ 1

=
α4

2n+ 1
Q+

(
− 1

2n+ 1
+
nα2γ2

2n+ 1
− α2γ2

2

)
1

ai
+
α2γ2(2 + α2γ2)

2n+ 1

n∑
j=1

1

aj

=
α4

2n+ 1
Q− 2 + α2γ2

2(2n+ 1)

1

ai
+
α2γ2(2 + α2γ2)

2(2n+ 1)

n∑
j=1

1

aj
.

The expression for the Green function for positions involving new vertices are

GS
ωS (x0, x0 2i) =

1

2
γ
√

2n+ 1
(
G(x0, x0) +G(x0, x2i)

)
−
(αγ

2

(
G(x0, x0) +G(x2i, x0)

)
+ αγG(x0, x0)

)1

2
nαγ2

√
2n+ 1

−
n∑

j=1

(αγ
2

(
G(x0, x2j) +G(x2i, x2j)

)
+ αγG(x0, x2j)

)1

2
αγ2
√

2n+ 1

+

n2α4γ4Q+
α2γ4

2

n∑
j=1

1

aj
− γ2(2n+ 1)

4

1

ai

 α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q− γ(1 + (n+ 1)α2γ2)

2
√

2n+ 1

1

ai
+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
j=1

1

aj
.

For i 6= j,
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GS
ωS (x2i, x0 2j) =

1

2
γ
√

2n+ 1
(
G(x0, x2i) +G(x2j , x2i)

)
−
(αγ

2

(
G(x0, x0) +G(x2j , x0)

)
+ αγG(x2i, x0)

)1

2
nαγ2

√
2n+ 1

−
n∑

k=1

(αγ
2

(
G(x0, x2k) +G(x2j , x2k)

)
+ αγG(x2i, x2j)

)1

2
αγ2
√

2n+ 1

+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

aj

)
α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q− γ(2 + α2γ2)

2
√

2n+ 1

1

ai
− γ(1 + (n+ 1)α2γ2)

2
√

2n+ 1

1

aj
+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
k=1

1

ak
.

When i = j we get a similar expression

GS
ωS (x2i, x0 2i) =

1

2
γ
√

2n+ 1
(
G(x0, x2i) +G(x2i, x2i)

)
−
(αγ

2

(
G(x0, x0) +G(x2i, x0)

)
+ αγG(x2i, x0)

)1

2
nαγ2

√
2n+ 1

−
n∑

k=1

(αγ
2

(
G(x0, x2k) +G(x2i, x2k)

)
+ αγG(x2i, x2k)

)1

2
αγ2
√

2n+ 1

+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

ai

)
α2γ√
2n+ 1

=
γ√

2n+ 1
Q+

γ(n− 1)√
2n+ 1

1

ai
− nγ3α2

√
2n+ 1

Q+
3nγ3α2

4
√

2n+ 1

1

ai

− nγ3α2

√
2n+ 1

Q+
γ3α2

√
2n+ 1

n∑
k=1

1

ak
− 3(n+ 1)γ3α2

4
√

2n+ 1

1

ai

+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

ai

)
α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q+
γ(4(n− 1)− 2(n+ 2)α2γ2)

4
√

2n+ 1

1

ai
+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
j=1

1

aj
.

For positions that involve only new vertices, we get
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GS
ωS (x0 2i, x0 2j) = −α

2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+ βα2γ2

− nα2γ4(2n+ 1)

4
(2G(x0, x0) +G(x2i, x0) +G(x2j , x0))

− α2γ4(2n+ 1)

4

n∑
k=1

(2G(x0, x2k) +G(x2i, x2k) +G(x2j , x2k))

+
γ2(2n+ 1)

4
(G(x0, x0) +G(x0, x2j) +G(x2i, x0) +G(x2i, x2j))

= −α
2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+ n2α4γ6Q+

α4γ6

2

n∑
k=1

1

ak

− nα2γ4

4

(
4Q− 1

ai
− 1

ai

)
− α2γ4

4

n∑
k=1

(
4Q− 4

ak
− 1

ai
− 1

aj

)
− α2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+
γ2

4

(
4Q− 1

ai
− 1

aj

)

= α4γ2Q−
γ2
(
1 + (n+ 1)α2γ2

)
2

(
1

ai
+

1

aj

)
+
α2γ4(2 + α2γ2)

2

n∑
k=1

1

ak
.

GS
ωS (x0 2i, x0 2i) =

γ2(2n+ 1)

4

1

ai
− α2γ4(2n+ 1)

2

1

ai
+ βα2γ2

− nα2γ4(2n+ 1)

4
(2G(x0, x0) + 2G(x2i, x0))

− α2γ4(2n+ 1)

4

n∑
k=1

(2G(x0, x2k) + 2G(x2i, x2k))

+
γ2(2n+ 1)

4
(G(x0, x0) + 2G(x0, x2i) +G(x2i, x2i))

=
γ2(2n+ 1)

4

1

ai
− α2γ4(2n+ 1)

2

1

ai
+ n2α4γ6Q+

α4γ6

2

n∑
k=1

1

ak
− nα2γ4

4

(
4Q− 2

ai

)

− α2γ4

4

n∑
k=1

(
4Q− 4

ak
− 2

ai

)
− α2γ4(2n+ 1)

2

1

ai
+
γ2

4

(
4Q− 4

ai

)
+
γ2(2n+ 1)

4

1

ai

= α4γ2Q−
γ2
(
2n− 1− 2(n+ 1)α2γ2

)
2

1

ai
+
α2γ4(2 + α2γ2)

2

n∑
k=1

1

ak
.
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The remaining cases will follow by performing similar computations.
Finally, we obtain the Kirchhoff index for the partial subdivision of the Star.

Proposition 4.2. Let SS
2n be the partial subdivision network of the star S2n, then the Kirchhoff

index of SS
2n is given by

kS
ωS (SS

2n) = n(2 + α2γ2)Q+
γ2

2

(
2n− 1− α2γ2

) n∑
i=1

1

ai
.

Proof. Taking into account Proposition 3.2

kS
ωS (SS

2n) = k(S2n) +
∑
x∈V

G(x, x)
π(x)

ωS(x)
−
∑

x,y∈F
α(x, y)α(y, x)ωS(x)ωS(y)R(x, y)

+
∑

{x,y}∈E′

c(x, y)

c(x, vxy)c(y, vxy)
− β

= 2nQ+
nγ2

2
Q+

nγ2

2
Q− γ2

n∑
i=1

1

ai
+
γ2

2
(2n+ 1)

n∑
i=1

1

ai

− γ2(2n+ 1)

4

n∑
i=1

1

ai
+
γ2(2n+ 1)

4

n∑
i=1

1

ai
− n2α2γ4Q− α2γ4

2

n∑
i=1

1

ai

=
(
2n+ nγ2 − n2α2γ4

)
Q+

γ2

2
(2n− 1− α2γ2)

n∑
i=1

1

ai
.

As expected, the Kirchhoff Index of the partial subdivided Star takes the minimum value for
γ approaching zero; this can be interpreted as no subdivision has been performed in the initial
network S2n. Actually, kSωS (SS

2n) attains a minimum for γ = 0.
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