
ARTICLE

Received 16 Jun 2015 | Accepted 23 Oct 2015 | Published 9 Dec 2015

A comprehensive assessment of somatic mutation
detection in cancer using whole-genome sequencing
Tyler S. Alioto1,2,*, Ivo Buchhalter3,4,*, Sophia Derdak1,2, Barbara Hutter4, Matthew D. Eldridge5, Eivind Hovig6,7, Lawrence E. Heisler8,

Timothy A. Beck8, Jared T. Simpson8, Laurie Tonon9, Anne-Sophie Sertier9, Ann-Marie Patch10,11, Natalie Jäger3,12, Philip Ginsbach3,
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As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of

the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs

from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a

benchmarking exercise within the context of the International Cancer Genome Consortium. We compare

sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods

and increasing sequencing depth to B100� shows benefits, as long as the tumour:control coverage

ratio remains balanced. We observe widely varying mutation call rates and low concordance among

analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing

with the artefacts. However, we show that, using the benchmark mutation set we have created, many

issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.
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T
he International Cancer Genome Consortium (ICGC) is
characterizing over 25,000 cancer cases from many forms
of cancer1. Currently, there are 74 projects supported

by different national and international funding agencies. As
innovation and development of sequencing technologies have
driven prices down and throughput up, projects have been
transitioning from exome to whole-genome sequencing (WGS) of
tumour and matched germline samples, supplemented by
transcript and methylation analyses when possible, facilitating
the discovery of new biology for many different forms of
cancer2–10. However, as data from the different projects began to
be collected and centralized (https://dcc.icgc.org/), it became
apparent that there are marked differences in how teams generate
WGS data and analyse it. On the basis of cost, capacity
and analytical experience, it was initially determined that
comprehensive identification of tumour-specific somatic
mutations requires WGS with a minimum of 30� sequence
coverage of each the tumour and normal genomes11 with paired
reads on the order of 100–250 bp in length, depending on the
platform. However, from project to project the sample
preparation, coverage of tumour and normal samples and read
lengths vary. Even more variability exists in the approaches to
identify differences between tumour and normal genomes,
evidenced by the many strategies developed to identify somatic
single-base mutations (SSM)12, somatic insertion/deletion
mutations (SIM) and larger structural changes (rearrangements
and chromosome segment copy number changes)5.

This variation makes comparison of mutation calls across
cancers challenging because of the unknown contributions of
individual pipeline components and parameters on the accuracy
of the calls. Benchmark data sets and analytical tools13–17 have
been developed for variant calling on normal genomes, while
those for cancer have largely focused on SSM detection from
exome sequencing12,18. Benchmarking of mutation calling from
exome data from The Cancer Genome Atlas has raised concerns
about biased inferences and highlights the need for benchmark
data sets19. In our study we set out to investigate the factors that
need to be considered to generate high-quality whole-genome
sequence data and high-confidence variant calls from tumour-
normal pairs, including new sources of bias and pitfalls not
encountered in exome data.

We explored several benchmarking strategies. First, we
evaluated somatic mutation calling pipelines using a common
set of 40� WGS reads of average quality corresponding to a case
of chronic lymphocytic leukaemia (CLL). In a second benchmark,
we evaluated both sequencing methods and somatic mutation
calling pipelines using matched samples from a case of
medulloblastoma (MB, a malignant pediatric brain tumour
arising in the cerebellum20,21) from the ICGC PedBrain Tumor
project. Both cancers exhibit a high degree of tumour purity
(95–98%). For each case, we made available unaligned sequence
reads of a tumour (B40� genome coverage) and its
corresponding normal genome (B30� coverage) to members
of the ICGC consortium, who then returned somatic mutation
calls. In contrast to the approach taken in a recent benchmark of
SSM calling using three simulated tumour genomes22, we have
used the sequence from a real tumour-normal pair and made a
concerted effort to manually curate both SSMs and SIMs
detectable at a sequencing depth 8–10 times in excess of the
standard amount (B300� ). We argue that real, not simulated,
mutations are more useful for dissecting performance of mutation
callers with respect to real genome-wide mutational signatures,
and methods for detecting insertion–deletion mutations, an even
bigger challenge to somatic mutation callers, must also be
benchmarked. Our study has two main results: one, we identify
outstanding issues in somatic mutation analysis from WGS data

and begin to formulate a set of best practices to be adopted more
widely by genome researchers, and, two, we provide two
benchmark data sets for testing or developing new somatic
mutation calling pipelines.

Results
WGS data generation. We conducted a first benchmark exercise
using WGS data generated from a CLL tumour-normal pair and
then a second using a case of MB. Both tumour types were
expected to have relatively low mutational load and not very
pervasive structural changes: CLL has a few known translocations
and large copy number variants, and MB exhibits a large
degree of tetraploidy but is otherwise typically free of complex
rearrangements. The quality of the CLL data was below today’s
standards but typical for the time it was produced, while the
quality of the MB library preparation and produced sequence
were of high quality. The validation strategies also differed. For
CLL we chose to validate submitted mutations by target capture
and sequencing with two independent platforms (MiSeq and
IonTorrent). This approach was limited by technical issues
inherent to target capture and sequencing on these other
platforms, which led to a low rate of independently validated
mutations. Moreover, the real false-negative (FN) rates were
underestimated because of the limited coverage provided to
participants. For the MB data set, B300� in sequence reads
were generated by five different sequencing centres, which we
joined and used to create a curated set of mutations. The MB
tumour presented with a tetraploid background combined with
other changes of ploidy in chromosomes 1, 4, 8, 15 and 17
(Supplementary Fig. 1), giving us the opportunity to benchmark
performance at lower mutant allele frequencies. Moreover, the
high depth and relatively unbiased coverage of the genome
enabled higher sensitivity in mutation detection leading to a more
inclusive set of curated mutations. For these reasons, we present
here only the results for the MB benchmark.

Evaluation of sequencing library construction methods. Several
different protocols were used for generating sequencing libraries
at the five contributing sequencing centres, which varied in their
reagent supplier, methods for selecting the fragment size of
library inserts and use of amplifying PCR steps (Table 1 and
Supplementary Table 1). Interestingly, these differences resulted
in marked variation in the evenness of coverage genome-wide as
well as in key regions of interest such as exons. PCR-free libraries
were found to give the most even coverage, with very little effect
of GC content on coverage levels (Fig. 1a). Evenness is directly
correlated with coverage of the genome: when we downsampled
each data set to an average 30� tumour and control coverage
(libraries sequenced to less than 28� , L.G and L.H, were
excluded from further analysis), we see that in the best-
performing libraries (L.A and L.B controls), 73–74% of the
genome was covered at or above 25� , while the worst-
performing library (L.F tumour) had only 46% of the genome
covered at this level (Fig. 1b). In general, the coverage distribution
was more even and the percentage of well-covered regions was
higher in the control libraries compared with the tumour
libraries, reflecting the different copy number states of the
tumour. An unusual pattern of GC content distribution in control
library E, however, meant that this was slightly worse than its
tumour counterpart. The percentage of exonic regions covered at
r10� (that is, likely insufficient to accurately call mutations)
also varied, with a range from less than 1% ‘missing’ in the best-
performing libraries to more than 10% in the worst (Fig. 1c),
demonstrating that sequencing library preparation performance
can have a significant impact on the ability to identify coding
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variants in downstream analyses. Performance in other regions of
interest, such as enhancers and untranslated repeats, was similarly
variable (Fig. 1c and Supplementary Fig. 2).

Evaluation of sequencing depth. Combining the sequencing data
generated from each participating centre gave us the opportunity
to investigate a tumour-normal pair with very deep coverage.
After merging each of the individual pairs, the combined tumour
coverage was 314� , and the control 272� . To remove already
identified artefacts (Supplementary Note 1), we excluded the
tumour library from centre E and the slightly contaminated
control library from centre B. For comparison of mutation-calling
metrics at a range of coverage levels, the combined tumour and
normal sets were randomly serially downsampled to 250, 200,
150, 100, 50, 30 and 20� coverage and then analysed using
the standard DKFZ pipeline (MB.I, Supplementary Methods).
The total number of mutations increases when going from 30�
to 50� and further to 100� coverage; however, no striking
increase is seen above this level (at 100� , 95% of the maximum
mutation number are detected, in contrast to only 77% at 30� ;
Fig. 2a and Supplementary Table 2). While the majority of
mutations were called at the 30� level, there were some notable
differences in the number and type of mutations detected as the
coverage increased. The sensitivity for detecting mutations
with lower mutant allele frequencies (that is, subclonal alterations
and/or events happening after polysomic changes but also major
somatic mutations in samples with low tumour cell content) was
much greater with higher coverage, as seen from density plots
of mutations versus allele frequency (AF, Fig. 2b). This effect
was even more striking when considering mutation calls per
chromosome, which clearly shows the difference between low
and high coverage when looking for late-occurring mutations
after whole-chromosome copy number changes (Supplementary
Fig. 3).

Effect of tumour purity on mutation calling. Since MBs tend to
show a very high tumour cell content (usually above 95%, and for
this sample B98%, because of their nature as masses of small,
round, tightly packed tumour cells), the high coverage data
set also provided an opportunity to model the dynamics of
mutation calling with increasing coverage and with increasing
proportions of ‘contaminating’ normal tissue. We found that the
mutation calls with increasing coverage were accurately modelled
with a Michaelis–Menten equation, reaching ‘saturation’ (no or
minimal additional mutations called as coverage increases) at
around 100� (Fig. 2c). The impact of normal cells on SSM

detection could be thought of as a ‘mixed-type inhibition’ of
mutation detection sensitivity, which we examined by mixing
increasing proportions of normal sequence reads (17, 33 and
50%) into the tumour data set and re-calling mutations. Each
curve displayed the same plateau after B100� as the pure
tumour sample; however, the addition of any normal content
meant that the maximum mutation count from the pure tumour
could not be reached, even at 250� total coverage. At 100� , the
detected proportions of mutation calls from the pure sample
were 95%, 90% and 85%, respectively, for 17%, 33% and 50%
‘contamination’ (Fig. 2c). At lower coverage, the normal cell
content had a proportionally larger impact. At 30� , only 92%,
83% or 68% of the calls from the 30� pure sample were called
when adding 17%, 33% or 50% normal reads, respectively
(Supplementary Table 2). For SIMs called using the DKFZ
pipeline, a different picture was observed. SIM calling at present
likely suffers at least as much from low specificity as from low
sensitivity, as indicated by the fact that increasing coverage
actually reduces the number of called variants (that is, the FP rate
decreases; Supplementary Fig. 4).

Effect of tumour to normal sequencing depth ratio. We
investigated the effect of tumour-normal coverage ratios on
variant calling to assess whether increasing coverage of the
tumour alone is sufficient to increase mutation detection
sensitivity. The 250� tumour genome was therefore compared
with control genomes at 200, 150, 100, 50 and 30� coverages.
Down to the 150� level, few differences are seen in the
mutations called when compared with the 250� /250� standard
(Supplementary Fig. 5a,b). At lower control coverage levels, a
notable increase is observed in the overall number of mutations
reported because of a sharp rise in those called with a low allele
fraction. Since these mutations are not called in the 250� versus
250� set, it is almost certain that they are sequencing artefacts
arising in a very small proportion of calls, which appear to be
somatic when the control coverage is insufficient to show the
same phenomenon. These new calls are dominated by a T4G
base change arising in a particular sequence context (GpTpG,
Supplementary Fig. 5c). Indeed, performing a motif analysis on
the wider context of these changes revealed that the majority
occur at a thymine base within a homopolymer run of guanines
(Supplementary Fig. 5d). Keeping the ratio of tumour:normal
coverage closer to one therefore appears to play a role in main-
taining the accuracy of mutation calling with standard pipelines,
since any systematic artefacts are then balanced out in both the
tumour and control data sets. While it may be possible to

Table 1 | Summary of medulloblastoma tumour-normal pair library construction and sequencing.

Library Starting
DNA (lg)

Fragment
Size (bp)

Size selection Library protocol PCR
cycles

Sequencing
machine

Chemistry
(Illumina)

Depth (� )
control:tumour

L.A 4 B400 2% Agarose gel KapaBio 0 HiSeq 2500
HiSeq 2000

MiSeq

V1 (RR)
V3
V2

29.6 : 40.5

L.B 1 B400 2% Agarose gel,
Invitrogen E-gel

TrueSeq DNA 10 HiSeq 2000 V3 44.9 : 62.8

L.C 2.5 B500 2% Agarose gel NEBNext 12 HiSeq 2500
HiSeq 2000

V1 (RR)
V3

58.9 : 66.8

L.D 1 B550 Agarose gel TrueSeq DNA 10 HiSeq 2000 V3 35.3 : 39.1
L.E 2.8 B620 1.5% Agarose gel

pippin
NEBNext 0 HiSeq 2000 V3 40.5 : 60.4

L.F 1 B400 AMPureXP beads NEBDNA 10 HiSeq 2000 V3 38.7 : 37.9
L.G 1 B350 AMPureXP beads TrueSeq DNA

PCR-Free
0 HiSeq 2000 V3 19.4 : 19.3

L.H 0.5 B175 AMPureXP beads SureSelect WGS 10 HiSeq 2500 V3 28.7 : 26.5
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apply additional filters to account for the new false positives (FPs)
seen in unbalanced comparisons, this would potentially come at
the cost of a reduced sensitivity for detecting true mutations
with low allele frequencies (that is, tumour subpopulations),
which are of particular interest when increasing sequencing
coverage depth.

Curation of a Gold Set of somatic mutations. We used the high-
coverage (314� :272� ) data set from the sequencing benchmark
to curate a Gold Set of verified somatic mutations (Methods).
Gold Set mutations were classified (Table 2) according to the
potential issues that may lead to an incorrect call: Tier 1 muta-
tions have a mutant AFZ10%, Tier 2 mutations have AFZ5%,
Tier 3 includes all verified mutations supported by unambiguous
alignments, while Tier 4 includes additional mutations with more
complicated or ambiguous local alignments and Tier 5 includes
those with unusually high or low read depth.

The MB Gold Set had a total of 1,620 bona fide mutation calls
across all tiers (Table 2), with 962, 1,101, 1,255 and 1,263 SSMs in
Tiers 1, 2, 3 and 4, respectively, and 337 and 347 SIMs in Tiers 1
and 4, respectively. The mutational load of this tumour was B0.5
mutations per Mbp. Of these, there were eleven exonic SSMs
(seven missense, three synonymous and one early stop) and one
splice site mutation. We found that 32% of SSMs are in
RepeatMasked sequence, 9% in tandem repeats (4% in homo-
polymer tracts) and 4.4% adjacent to tandem repeats. About a
quarter of SSMs (27%) exhibits a mutant AF in the tumour of less
than 10%, with 6% being very close to the alternate AF in the
normal sample (Supplementary Table 3). For curated SIMs, 83%

fall in tandem repeats (71% in homopolymers; Supplementary
Table 4).

Evaluation of somatic mutation calling pipelines. A submission
and revision process was set up for the MB benchmark with
guidelines for the mutation call format. Participating centres
were provided with the best-quality sequence data set from
the sequencing benchmark (L.A). Using these FASTQs, they
produced SSM and SIM calls and submitted them for evaluation.
We received 18 SSM and 16 SIM submissions.

Submissions were compared among themselves and to the
Gold Set. Figure 3 shows the overlap of mutation call sets (private
calls are shown in Supplementary Figs 6 and 7). We found that
only 205 SSMs and one SIM were agreed upon by all submitters
(Fig. 3 and Supplementary Figs 6 and 7). Agreement among SSM
sets was much greater than agreement among SIMs in general.
In Fig. 4 we show the precision versus recall of the submitted
mutation calls. Each letter corresponds to a submission compared
with the Gold Set of Tiers 1, 2 or 3, with comparison with Tier 1
(AF410% mutant AF) having the highest value for recall in the
plot, Tier 2 (AF45%) the second highest and Tier 3 (AF4B2%)
the lowest. Precision is always calculated against Tier 4, which
also includes mutations that are complex or have ambiguous
positions.

We observed a cluster of well-performing SSM submissions
with high values for both precision and recall. Those with the
highest F1 scores (Table 3) were MB.Q and MB.J, pipelines that
combine two different somatic mutation callers: qSNP23 with
GATK24 and SGA25 with FreeBayes26 (Supplementary Methods).
Submissions with a high number of calls did not necessarily
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achieve higher recall; about two-thirds of all mutations (or 480%
of Tier 1 mutations) can be detected without making many false-
positive (FP) calls, after which increases in recall are accompanied
by precipitous declines in precision. This is because of the fact
that at 40� depth, a fraction of the curated mutations is
impossible to detect. Likewise, the one submission whose
precision was the highest (MB.L1) was not much more precise
than MB.B or MB.Q, which both found over twice as many true
mutations (Table 3). For SIMs (Fig. 4b), some submissions
achieved precisions greater than 0.9; however, their sensitivities
were still low. The highest F1 score (0.65 for MB.I) is noticeably
lower than that obtained for SSMs (0.79). Overall, SIM detection
appears to be more challenging, with performance lagging behind
than that of SSM detection.

Correlation of pipeline components with shared mutations.
Could those submissions that cluster together in terms of
precision and recall be calling the same mutations or have
similarities in terms of their pipelines? Using a measure of pair-
wise overlap, the Jaccard index, we clustered the submissions and
display the results as both a heatmap and hierarchical clustering
in Supplementary Fig. 8. Correspondence analysis gave similar
results. We also broke them down by true positives (TPs) or FPs
(Supplementary Figs 9–12) and clustered the pipelines based on
shared components or parameters (Supplementary Fig. 13, input
data in Supplementary Data 1). We find that when submissions
agree, they tend to agree on true mutations, and when they
disagree, these are more likely to be FPs or true negatives. Some

notable exceptions can be observed among the FP SIMs, where
MB.L1 and MB.L2 cluster as do MB.F and MB.N. These con-
cordant FPs may indicate incompleteness of the Gold Set and/or
similarities in the pipelines. In this case, MB.L1 is a filtered subset
of MB.L2, explaining the high degree of overlap. MB.F and MB.N
both use Strelka27 to call SIMs, possibly explaining the overlap in
FPs. Indeed, some overlap of MB.F and MB.N FP SIMs is seen
with MB.L2, which also uses Strelka. For TP SIMs, pipelines that
share components tend to have higher overlap, for example,
among Strelka calls or among GATK SomaticIndelDetector calls.
Sometimes, we observe higher Jaccard index values for pipelines
using different software, for example Platypus28 and Atlas-
indel29, which are two of the most sensitive mutation callers.
There is much more concordance among SSM calls; therefore,
trends are harder to see among the FPs. Logically, SSM
submissions with the highest F1 scores have the highest Jaccard
indices.

Genomic or alignment features affecting accuracy. We asked
what genomic features or sample, sequence or alignment features
might correlate with better or worse performance. We used
‘rainfall’ plots that show density of features along a genome.
By plotting the distance from the previous mutation (Fig. 5 and
Supplementary Fig. 14), we can observe clustering or hotspots.
SSM and SIM calls are coloured according to TP, FP and FN
status. The Gold Set exhibits no mutational hotspots; therefore,
any deviation is likely to be caused by a feature of the pipeline.
Indeed, we detect quite different patterns: MB.Q (Fig. 5a) and

a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

30_vs_30

MAF from 870 SSMs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

50_vs_50

MAF from 968 SSMs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

100_vs_100

MAF from 1,068 SSMs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

150_vs_150

MAF from 1,079 SSMs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

200_vs_200

MAF from 1,086 SSMs

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

250_vs_250

MAF from 1,081 SSMs

D
en

si
ty

b

0 500 1,000 1,500

250_VS_250

200_VS_200

150_VS_150

100_VS_100

50_VS_50

30_VS_30

Overlap of SSMs called by DKFZ at different balanced coverages

Total number of SSMs

c

Coverage

# 
S

S
M

0 100 200 300

0

200

400

600

800

1,000

0% cont. data
0% cont. sim.
17% cont. data
17% cont. sim.
33% cont. data
33% cont. sim.
50% cont. data
50% cont. sim.

Shared by all
Shared by five
Shared by four
Shared by three
Shared by two
Private

Figure 2 | Effect of sequencing coverage on the ability to call SSMs. (a) Overlap of SSMs called on different balanced coverages. (b) Density plots of the

variant allele frequencies for different balanced coverages of tumour and control (tumour_versus_control) and number of SSMs called in total (calls were

performed using the DKFZ calling pipeline, MB.I). (c) Plot of the number of SSMs (y axis) found for a given coverage (x axis). The different colours

represent different levels of normal ‘contamination’ in the tumour (0% black, 17% blue, 33% green and 50% orange). Solid lines represent the real data and

dashed lines are simulated. Lines are fitted against the Michaelis–Menten model using the ‘drc’ package in R. Solid lines are fitted to the data points and

dashed lines are simulated using a mixed inhibition model for enzyme kinetics.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10001 ARTICLE

NATURE COMMUNICATIONS | 6:10001 | DOI: 10.1038/ncomms10001 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


MB.B (Fig. 5b) do not display any notable hotspots, while MB.C
(Fig. 5c), for example, has many FP mutation calls in centromeric
regions. MB.D and other call sets display varying degrees of this
problem, which may arise if alignment of reads is performed to
the GRCH37 reference without the d5 decoy sequence and/or no
ultrahigh-signal blacklist is employed. MB.K overcalls (Fig. 5d)
but a more subtle pattern is also apparent: higher ploidy chro-
mosomes (for example, 17) display a greater density of calls and
lower ploidy chromosomes (8, 15, X and Y) demonstrate a lower
density of calls, presumably because of coverage.

Other genomic features such as tandem or interspersed repeats,
as well as some key sample/sequence/alignment features, also
create problems for mutation callers but are not detectable at the
chromosomal scale. We annotated the Gold Set and all submitted
SSM and SIM calls for each feature, indicating membership
(Boolean flags) or a score (for continuous characteristics;
Supplementary Tables 3 and 4). The frequencies or mean scores,
respectively, were computed for three subsets of each submission
(TPs, FPs or FNs) and for the Gold Sets. To highlight problematic
features for each submission, the differences with respect to the
Gold Set were computed and multiplied by the FP or FN rate,
accordingly. The problematic features of FPs in the MB SSM data
set are shown as a heat map (Fig. 6). While nearly all sets of FPs
are enriched in low-frequency mutations, which are harder to
discriminate from background noise (also reflected by the ‘same
AF’ metric), some call sets (MB.K, H, C, D and M) do less well.
MB.H seems to also have a problem with segmental duplications
and multimappable regions, and MB.D with duplications only.
MB.K and MB.M, to a lesser extent, are enriched in SSMs located
in tandem repeats, simple repeats and homopolymers. MB.C has
issues with FPs falling in blacklisted regions, specifically
centromeric and simple repeats. The three submissions with
fewer FPs immediately adjacent to tandem repeats than in the
Gold Set (MB.H, MB.C and MB.D) do not use the Burrows-
Wheeler Aligner (BWA) for the primary alignment step—instead,
the mappers Novoalign or GEM are used, or the detection
method is not based on mapping (SMUFIN30). The
corresponding heatmaps for MB SSM FNs, and MB FP and FN
SIMs are shown in Supplementary Figs 15–17. In general, both
tandem repeats and segmental duplications and interspersed
repeats cause sensitivity issues, with some pipelines more affected

than others. The results for SIMs show that SIMs in tandem
repeats (the majority being homopolymers) are undercalled,
being under-represented in FPs and over-represented in FNs.
Interestingly, nested repeats and duplications show the opposite
trend, indicating that many FPs likely arise from low mapping
quality.

Correspondence analysis confirms some of the above findings
for MB SSM FPs (Supplementary Fig. 18). MB.C clusters with
EncMap, dukeMap and centr, suggesting that MB.C FPs occur in
some blacklisted regions. MB.H (and MB.G and MB.O to lesser
extent) FPs are associated with segmental duplications. MB.K FPs
are associated with tandem repeats (and microsatellites and
simple repeats).

Effect of mapper on mutation calling. The differences between
sets of mutations submitted by the participating groups raised
questions about the impact of individual pipeline components on
the results. The extent of observed pipeline customization
(Supplementary Methods and Supplementary Data 1) did not
allow for exhaustive testing of all potentially important analysis
steps; however, three pipeline components were selected for closer
inspection because of their expected high impact: mapper,
reference genome build and mutation caller. Four mappers
(Novoalign2, BWA, BWA-mem and GEM), two SSM callers
(MuTect31 and Strelka) and three versions of the human
reference genome (b37, b37þ decoy and ‘hg19r’—a reduced
version of hg19, with unplaced contigs and haplotypes removed)
were selected for testing, based on their usage by the
benchmarking groups (Supplementary Methods for software
versions and settings). To limit the effect of non-tested software
on the produced mutation sets, a simple SSM-calling pipeline was
established. First, we compared the effect of the mapper with each
of the SSM callers. With a single SSM caller employed, a
considerable fraction of unfiltered SSM calls for a given mapper
(0.22–0.69, depending on the mapper–caller combination) is not
reproducible by that caller with any other mapper
(Supplementary Fig. 19). When compared with the Gold Set
(Tier 3 SSMs), calls supported by a single mapper are almost
exclusively FPs (precision o0.02). On the other hand, a large
majority of calls supported by all four mappers are TPs (with
precision ranging from 0.87 for MuTect to 0.99 for Strelka).

Effect of primary mutation caller on mutation calling. Similar
trends are observed when SSM callers are compared while
holding the mapper constant (Supplementary Table 5). A sizable
fraction (0.22–0.87, depending on the mapper) of unfiltered
SSM calls for any given mapper–caller combination is not
reproducible by the other caller on the same alignment file.
Remarkably, in case of Novoalign2, the same alignment file leads
to the most somatic calls and the lowest overall precision when
used with MuTect, but the fewest somatic calls and highest overall
precision when used with Strelka. When compared with the Gold
Set, calls private to a single caller appear to be mostly FPs, with
precision ranging from 0.01 to 0.05. Calls supported by both
callers prove to be mostly correct (with precision between 0.89
and 0.93; Supplementary Table 6). The consensus sets seem to be
robust—considerably improving the precision rates while only
minimally lowering the sensitivity. The results of reference
genome choice and a detailed examination of the alignment
characteristics of the different aligners are presented in
Supplementary Note 1.

Improvement of pipelines using the benchmark data set. As a
demonstration of the utility of the benchmark data set to improve
pipelines, we set out to improve the MB.F pipeline further

Table 2 | Classification of SSM and SIM Gold Set mutations
for the medulloblastoma benchmark.

Definition MB SSM MB SIM

Class 1 Mutant AFZ0.10 962 337
Class 2 0.05rMutant AFo0.10 139
Class 3 Mutant AFo0.05 154
Class 4 Ambiguous alignment 8 10
Class 5 High or low depth 29
Tier 1 Class 1 962 337
Tier 2 Classes 1 and 2 1,101
Tier 3 Classes 1, 2 and 3 1,255
Tier 4 Classes 1, 2, 3 and 4 1,263 347
Tier 5 Classes 1, 2, 3, 4 and 5 1,292

AF, allele frequency; MB, medulloblastoma; SIM, somatic insertion/deletion mutations; SNP,
single-nucleotide polymorphisms; SNV, single-nucleotide variant; SSM, somatic single-base
mutation.
Numbers of curated mutations falling in each class or tier are shown. Successive tiers represent
cumulative addition of lower AF mutations, followed by those supported by ambiguous
alignments, and finally those with either too low or too high a depth. SIMs were not subjected to
such fine classification, with calls only assigned to classes 1 and 4. Note that we use the terms
SSM and SIM for somatic mutations instead of more commonly used terms that ought to be
reserved for germline variants such as SNP (refers to a single base variable position in the
germline with a frequency of 41% in the general population) or SNV (refers to any single base
variable position in the germline including those with a frequency o1% in the general
population).
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(already the MB.E pipeline, which uses SomaticSniper, was
replaced with the MB.F pipeline, which uses Strelka, based on the
analysis of the CLL benchmark results). Using the Gold Set to
devise and tune a set of filters for various metrics (Supplementary
Table 7), including mapping quality and distance from the end of
the read alignment block (Supplementary Fig. 20), we are able to
outperform (in terms of F1) all other MB SSM submissions
(Fig. 7a and Supplementary Table 8). Despite choosing reason-
ably conservative thresholds, we were still worried about the
possibility of overfitting; thus, we tested the adjusted pipeline

on the CLL benchmark data set. We achieved similar results
(Fig. 7b), demonstrating that the filter settings work well on at
least one other cancer type. Removal of the repeat copy filter
in Strelka also improve both MB and CLL SIM sensitivity
without greatly affecting precision (Supplementary Fig. 21 and
Supplementary Table 8).

Additional information regarding the CLL benchmark is
provided in Supplementary Note 1, Supplementary Figs 22–36
and Supplementary Tables 9–13, which present the analogous
information presented here for MB. Additional sequencing
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analyses are described in Supplementary Note 1, Supplementary
Figs 37–40 and Supplementary Tables 14 and 15. Controls for
genome reference builds and effect of mapper choice are
presented in Supplementary Note 1, Supplementary Figs 41–47
and Supplementary Table 16. All pipeline details (as given by
each submitter) are presented in Supplementary Methods,
Supplementary Fig. 48 and Supplementary Tables 17 and 18.

Discussion
This benchmarking exercise has highlighted the importance of
carefully considering all stages of the laboratory and analysis
pipelines required to generate consistent and high-quality whole-
genome data for cancer analysis. In this study we have isolated
and tested individual library construction/sequencing methods
and complete analysis pipelines. Analysis pipelines themselves are
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also multicomponent; therefore, we have also evaluated mappers
and two popular mutation callers in isolation.

By preparing libraries and generating sequence from the same
MB tumour-normal pair at five different sequencing centres, we
obtained results that suggest that PCR-free library preparation
protocols should be the method of choice to ensure evenness of
coverage, and that a sequencing depth of close to 100� for both
tumour and normal ought to be aimed for (particularly
in situations where subclonal mutations or noncoding alterations
are suspected to be playing a role). With platforms such as the
Illumina HiSeq X now coming online in more centres, such an
increase in coverage may be feasible without dramatically
increasing costs.

This exercise also afforded a unique opportunity to compare
validation schemes for benchmark creation. We found that high-
depth (B300� ) WGS, in contrast to targeted resequencing, allowed
us to more accurately assess FN rates in addition to FP rates, as well
as better enable us to determine sweet spots of pipelines.

We have found that, contrary to common perception,
identifying somatic mutations, be they SSMs or SIMs, from
WGS data is still a major challenge. Calling mutations with
different pipelines on differently prepared sequence read sets
resulted in a low level of consensus. Using a standard pipeline
had the potential of improving on this but still suffered from
inadequate controls for library preparation and sequencing
artefacts. Using a common high-quality sequence data set
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yielded higher concordance, but still resulted in substantial
discrepancies in somatic mutation call rates and the calls
themselves in the hands of different analysis groups. In some
cases we were able to identify the Achilles’ heels of pipelines for
failing to identify or for overcalling mutations as a function of
genomic features or properties of sequencing depth, quality or
alignment problems. We found that dominating features of both
FP and FN SSMs were low coverage in the tumour, and aberrant
coverage of tumour and normal. Underlying these artefacts are
features such as segmental duplications and centromeric repeats.
Use of an appropriate reference sequence (including decoy
sequences) and/or good use of blacklists (problematic high-
coverage regions or low mappability) can reduce FPs, while only
an increase in overall sequencing depth or more sensitive
algorithms (MuTect, for example) can address the FN rate. In
contrast, we found that the vast majority of curated SIMs fall in
simple/tandem repeats, and yet they are often filtered out
because of a concern that they may be artefacts. We found little
basis for this concern, at least in our data set that came from a
no-PCR library. We found that adjustment of filters related to
the number of copies of a repeat unit can increase sensitivity for
this type of mutation.

Data analysis pipelines are constructed by integrating software
from diverse sources. We found that the particular choice of a
pipeline software is not as critical as how each piece of software is
applied and how the results are filtered. In many instances,
the approaches used in the different software and the assump-
tions made therein are not evident to the user and many parts are
black boxes. We found that certain combinations show much
higher compatibility than others, for example, with Novoalign
alignments as input, MuTect produces an SSM call set with the
lowest overall precision, while the SSM call set produced by
Strelka on the same alignment file has the highest overall
precision. Using combinations of tools for the same process step,
assuming that a result shared by two different approaches has a
higher likelihood to be correct, results in higher accuracy32.
Indeed, we found that some of the higher accuracy pipelines
utilize consensus of more than one mutation caller. Our
controlled experiment intersecting Strelka and MuTect calls
bore this out as well.

Recommended checklist for WGS cancer studies:

� PCR-free library preparation
� Tumour coverage 4100�

Table 3 | Summary of accuracy measures.

SSM calls Aligner SSM Detection Software TP FP FN P R F1

MB.GOLD BWA, GEM Curated 1,255 (8) 0 0 1.00 1.00 1.00
MB.A BWA In-house 775 (0) 147 480 0.84 0.62 0.71
MB.B BWA samtools, Varscan 788 (1) 12 467 0.99 0.63 0.77
MB.C GEM samtools, bcftools 766 (3) 1,025 489 0.43 0.61 0.50
MB.D n.a. SMuFin 737 (4) 1,086 518 0.41 0.59 0.48
MB.E BWA SomaticSniper 750 (4) 229 505 0.77 0.60 0.67
MB.F BWA Strelka 884 (2) 165 371 0.84 0.70 0.77
MB.G BWA Caveman, Picnic 899 (3) 140 356 0.87 0.72 0.78
MB.H Novoalign MuTect 947 (3) 6,296 308 0.13 0.76 0.22
MB.I BWA samtools 879 (7) 129 376 0.87 0.70 0.78
MB.J None, BWA SGAþ freebayes 856 (1) 62 399 0.93 0.68 0.79
MB.K BWA Atlas2-snp 945 (8) 7,923 310 0.11 0.75 0.19
MB.L1 BWA MuTect, Strelka 385 (0) 3 870 0.99 0.31 0.47
MB.L2 BWA MuTect, Strelka 900 (1) 253 355 0.78 0.72 0.75
MB.M BWA mem samtools, GATKþMuTect 937 (4) 1,695 318 0.36 0.75 0.48
MB.N BWA Strelka 847 (1) 289 408 0.75 0.68 0.71
MB.O BWA MuTect 944 (3) 272 311 0.78 0.75 0.76
MB.P BWA Sidron 833 (3) 256 422 0.77 0.66 0.71
MB.Q BWA qSNPþGATK 842 (2) 25 413 0.97 0.67 0.79

SIM calls
MB.GOLD BWA, GEM Curated 337 (10) 0 0 1.00 1.00 1.00
MB.A BWA In-house 16 (0) 63 321 0.20 0.05 0.08
MB.B BWA GATK SomaticIndelDetector, Varscan 167 (0) 20 173 0.89 0.49 0.63
MB.C GEM samtools, bcftools 103 (0) 26 236 0.80 0.30 0.44
MB.D none SMuFin 29 (0) 25 308 0.54 0.09 0.15
MB.F BWA Strelka 147 (8) 12 193 0.93 0.43 0.58
MB.G BWA Pindel 189 (2) 82 152 0.70 0.55 0.61
MB.H Novoalign VarScan2 55 (0) 248 282 0.18 0.16 0.17
MB.I BWA Platypus 271 (7) 224 70 0.55 0.79 0.65
MB.J None SGA 90 (1) 34 249 0.72 0.26 0.38
MB.K BWA Atlas2-indel 268 (6) 444 72 0.38 0.79 0.51
MB.L1 BWA Strelka 64 (1) 3 273 0.96 0.19 0.32
MB.L2 BWA Strelka 130 (3) 13 210 0.91 0.38 0.53
MB.N BWA Strelka 128 (6) 16 209 0.89 0.38 0.53
MB.O BWA GATK SomaticIndelDetector 140 (1) 47 197 0.75 0.42 0.53
MB.P BWA bcftools, PolyFilter 37 (0) 57 301 0.39 0.11 0.17
MB.Q BWA Pindel 100 (2) 61 237 0.63 0.30 0.40

F1, F1 score; FN, false negative; FP, false positives; P, precision; R, recall; TP, true positives.
Shown are the evaluation results with respect to the medulloblastoma Gold Set (Tier 3). Shown are the number of true calls (TP) with additional Tier 4 calls in parentheses, the number of FP, the number
of FN, P, R and F1. The submissions with the best precision, recall and F1 score are in bold.
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� Control coverage close to tumour coverage (±10%)
� Reference genome hs37d5 (with decoy sequences) or GRCh38

(untested)
� Optimize aligner/variant caller combination
� Combine several mutation callers
� Allow mutations in or near repeats (regions of the genome

likely to be more prone to mutation)
� Filter by mapping quality, strand bias, positional bias, presence

of soft-clipping to minimize mapping artefacts

To account for many unknowns, variant calling pipeline
developers often resort to calibrating their pipelines against
known results, for example from a genotyping experiment
performed on similar samples. This approach might only have
limited validity genome-wide, as genotyping assays are typically
biased towards less complex areas of the genome. We show that
for cancer WGS experiments our benchmark set has the potential
to be an unbiased and powerful calibration tool. The sequencing
reads and curated Gold Set mutations described here are available
to the research community through the ICGC DACO and the
EGA to benchmark and calibrate their pipelines.

The issues that we have addressed in this study must be
resolved (and we think they can, with the use of our benchmark
data set) before WGS for cancer analysis can be wholly adopted
for clinical use. However, we also suggest that further benchmarks
be established to resolve even more difficult mutational features
that tumour samples and genomes can present. These include,
but are not limited to, low sample purity (contamination of
tumour cells by normal cells and also the normal contaminated
by tumour cells or viral components), subclonality, structural
rearrangements and karyotype aberrations. Real cancers are
complex and this complexity continues to challenge somatic
mutation calling pipelines. In summary, this valuable resource
can serve as a useful tool for the comparative assessment of
sequencing pipelines, and gives important new insights into
sequencing and analysis strategies as we move into the next big
expansion phase of the high-throughput sequencing era.

Methods
Patient material. An Institutional Review Board ethical vote (Medical Faculty of
the University of Heidelberg) as well as informed consent were obtained according
to ICGC the guidelines (www.icgc.org). A limited amount of the original MB DNA
can be made available on request.

Library preparation and sequencing. The libraries were prepared at the different
sequencing centres: the National Center for Genome Analysis (CNAG), Barcelona,
Spain; the German Cancer Research Center (DKFZ), Heidelberg, Germany; the
RIKEN Institute, Tokyo, Japan; the Ontario Institute for Cancer Research (OICR),
Toronto, Canada, and the Wellcome Trust Sanger Institute, Hinxton, UK. Some
libraries actually comprise a mixture of different libraries (as per the centre’s
standard protocols); others comprise one library only. An overview of the com-
position of the different libraries and differences in the library preparation pro-
tocols is given in Table 1 and Supplementary Table 1. All samples were sequenced
using Illumina technology and chemistry. The majority of reads are of 2� 100 bp
length and are derived from HiSeq2000 or HiSeq2500 sequencers, however, in one
read set (L.A), a low number of 2� 250-bp MiSeq reads are also included.

Comparison of SSM calls. Each of the participating centres performed mutation
calling using the respective in house pipelines (Supplementary Methods).
The raw SSM calls were provided in the form of customized Variant Call Format
(VCF) files. To provide a fair comparison, only single base point mutations were
considered. A call was considered to be equal when both the position and the exact
substitution reported were identical. The calls were then sorted according to the
number of centres that made this particular call using a custom Perl script. The
resulting file was plotted using a custom R-script (both available on request).

Merging of the bam files to get the 300� files. To create the high coverage
B300� bam files, the raw fastq files were aligned using bwa 0.6.2-r126-tpx aln -t
12 -q 20, followed by bwa-0.6.2-tpx sample -P -T -t 8 -a 1000 -r. The bam files for
each centre/library were merged, and duplicates were marked using Picard tools

MarkDuplicates Version 1.61. Finally, all merged per-centre bam files were merged
using picard-1.95 MergeSamFiles and the header was adjusted using samtools-
0.1.19 reheader. Since only reads from different libraries were merged at this step,
duplicates were not marked. The coverage was calculated using an in-house tool,
taking into account only non-N bases.

Downsampling of the 300� files. The B300� bam files were serially down-
sampled to different coverage levels (250� , 200� , 150� , 100� , 50� , 30� , 20)
using picard-1.95 DownsampleSam, and the coverage was determined after each step.

Determination of library GC bias. To determine the GC bias of the libraries,
we first created 10 kb windows over the whole genome using bedtools (v2.16.2)
makewindows. Then, the GC content for each window was calculated using
bedtools (v2.16.2) nuc. Windows containing more than 100 ‘N’ bases were
excluded (awk-3.1.6 ‘BEGIN{FS¼ ’\t’}{if ($10 o¼ 100 && $11 o¼ 100) print
$1"\t"$2"\t"$3"\t"$5}’). Finally, the coverage for each of the remaining windows
was calculated using bedtools (v2.16.2) multicov. Since the total coverage of the
different libraries was not the same, the coverage was normalized by dividing the
coverage for each window by the mean coverage across all windows for each of the
samples. To visualize the GC bias, we then plotted the normalized coverage against
the GC content.

Calculation of low coverage in special regions of interest. The regions of
interest were defined as previously described33. To determine the percentage of
bases covered with fewer than 10 reads, we first determined the coverage over the
whole genome in per-base resolution using genomeCoverageBed (v2.16.2) -bga.
The resulting coverage file was compressed using bgzip, and an index was produced
with tabix-0.2.5 -p bed. We then extracted the coverage for our regions of interest
using tabix-0.2.5. From the resulting extracted coverage files, we computed the
number of bases covered by a certain number of reads using intersectBed and a
custom perl script. This table was then used to determine the percentage of bases
covered by r10 reads.

Extraction of mutation signatures. Mutational catalogues were generated based
on the somatic mutations detected in the tumours. The 30 and 50 sequence context
of all selected mutations was extracted, and the resulting trinucleotides were
converted to the pyrimidine context of the substituted base. Considering six
basic substitution types with surrounding sequence context, this results in a
mutation-type vector of length 96. The mutational catalogue was set up by
counting the occurrence of each of these 96 mutation types per sample.

The proportions of the signatures published by Alexandrov et al.34,35

contributing to the mutational profile of each sample were estimated based on the
probabilities of point mutations with their trinucleotide context in the signatures.
The respective exposures were extracted sample-wise by quadratic programming.
Exposures were plotted if they accounted for at least 5% of the SSMs in a sample.

Somatic mutation calling benchmark data set. The sequencing reads provided
to pipeline benchmark participants were produced at the CNAG using a no-PCR
library preparation procedure that was adapted from the KAPA Library
Preparation Kit protocol used together with Illumina TruSeq adaptors and
omitting PCR amplification, each for the MB tumour and the corresponding
normal DNA sample (L.A). For each sample two libraries were prepared with
smaller (roughly 300 bases) and larger (roughly 450 bases) insert size. Sizing was
performed using agarose gel separation and excision of corresponding size bands.
The two tumour libraries were sequenced to 40.5� and the two normal libraries to
29.6� using a combination of Illumina HiSeq2000 (2� 100 bp) and Illumina
MiSeq (2� 250 bp). MiSeq reads contributed about 2� to each tumour and
normal data. Reads in the FASTQ format were generated using the RTA software
provided by Illumina.

Verification by 300� coverage. All reads produced by the different sequencing
centres on the MB tumour-normal pair (including the CNAG reads described
above) were combined and analysed to generate a curated set of results (Gold Set).
The combined sequences gave 314� coverage of the tumour and 272� in the
normal. Six different teams carried out mutation calling using their pipelines
(different combinations of aligners, mutation callers and filters). A consensus set
was generated accepting all calls made by more than three submitters (a subset of
10% was reviewed manually to confirm the quality of these calls). All calls made
by three or fewer submitters were reviewed manually. We generated Integrative
Genomics Viewer (IGV) screenshots centred on the mutation positions,
juxtaposing the normal and tumour BWA36 alignments. The images were made
available for visual inspection and reviewed manually and voted/commented on by
the entire analysis team (more than eight researchers). For calls that did not achieve
complete agreement with the reviewers, a final decision was reached as follows.
Reads were aligned with GEM37 (gem-mapper) and converted to the BAM
format using gemtools scorereads. Alignments were filtered to retain only
primary alignments with mapping quality Z20. Duplicates were removed with
Picard, indels realigned at 1,000 genomes indel target locations and all indels were
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left-aligned using GATK. The pileups at SSM positions were extracted using
samtools mpileup with base-quality threshold Z13. Read depth and base counts
were extracted using a custom script. Mutant allele and normal counts were
compared using in-house software snape-cmp-counts38, which compares alternate
and reference allele counts in tumour and normal and then assigns a score
according to the probability that they are derived from different beta distributions.
Mappabilities with 0, 1 and 2% mismatches were computed for the reference
genome (h37d5). The average mappabilities in 100-bp windows preceding each
candidate mutation were stored as tracks for visualization in IGV. In addition, the
segmental duplication annotation from the UCSC browser was loaded into IGV.
Mutations were then classified as follows. Mutations with sufficient depth (Z20)
and a snape-cmp-counts score Z0.98, average mappability of one and no overlap
with segmental duplications were automatically classified in the Gold Set according
to their mutant AF (class 1: MAFZ0.1, class 2: 0.14MAFZ0.05 or class 3:
MAFo0.05). All other candidates with snape-cmp-counts score 40.9 were
reviewed visually in IGV. At this point, extensive soft-clipping in BWA, obvious
strand bias and positional bias were also taken into consideration. Mutations with
ambiguous alignments were assigned to class 4. Abnormally low or high depth
mutations (taking also into account large-scale copy number variant regions) were
assigned to class 5. Somatic mutation Gold Set tiers were compiled by cumulative
addition of classes so that Tier 1 only includes class 1, while Tier 2 includes class 1
and class 2, Tier 3 includes classes 1, 2 and 3 and so on. All other candidate
mutations were rejected and assigned to class 0 (Table 1). The estimated mutation
AF cutoff is 2%, below which we deemed a call unreliable. The Gold Set was made
available to all participants to review why a somatic mutation was wrongly called or
missed in their respective submission.

Evaluation of submissions. Automatic validation was performed on the
submission server to minimize formatting problems. In addition, the submitted
VCF files were sorted, filtered to restrict calls to chromosomes 1–22, X and Y and
SIMs were left-aligned. Submissions of both CLL and MB SSMs and SIMs were
evaluated against their respective Gold Sets, whose derivation is described above.
For calculation of recall, the curated mutations were classified into three tiers
according to alternate (mutation) AF. Only positions were considered, not the
genotypes reported. For calculation of precision, all Tier 3 mutations plus
ambiguously aligned mutations (class 4) were included so as to not penalize
difficult to align but otherwise convincing differences between tumour and normal
samples. For SIMs, no stratification into tiers 2 or 3 was performed; for recall, Tier
1 SIMs were used while, for precision, Tier 4 SIMs were used. To compare overall
performance, we used a balanced measure of accuracy, the F1 score, defined as
2� (Precision�Recall)/(PrecisionþRecall).

Overlap calculations for the purpose of clustering and heat map generation were
performed using Tier 3 for SSMs and Tier 1 for SIMs. The Jaccard index is defined
as the intersection divided by the union.

Correspondence analysis was performed using the ‘ca’ package in R on a table
where each row corresponds to a genomic position at which at least one submission
calls a somatic mutation in the Gold Set. The columns comprise the presence or
absence in each call set, and Boolean values indicating whether certain genomic
features such as repeats or presence in a blacklisted region apply, as well as
sequence data such as AF or depth.

Rainfall plots represent the distance for each SSM call from its immediately
prior SSM on the reference genome. For each submission, the SSM set used was
made of SSM called classified as TP or FP and SSM from the Gold Set Tier 4 that
were absent from the submission, classified as FN positions.

Feature analysis was conducted as follows. Tandem repeats were annotated with
two programmes. Tandem repeats finder39 was run on 201-bp windows around
each SSM and SIM calls. Any repeats greater than or equal to six repeat units
overlapping or immediately adjacent to the mutation position was annotated
accordingly. SGA25 was also used to annotate homopolymers specifically, giving a
richer annotation of the repeat context and change induced by the mutation.
Mappability was calculated using gem mappability40 with one mismatch at both
100mer and 150mer lengths. The average 100mer and 150mer mappabilities for
each mutation were calculated for a window of � 90 to � 10 or � 140 to � 10
with respect to its position, respectively. Mult100 and mult150 are defined as
1—mappability 100 and 150. Same AF is defined as 1� (2� (SCOREsnape-cmp-counts

� 0.5)) for SCOREZ0.5 else 0.

Control of pipeline components. The protocol consisted of choosing a genome
reference, mapping, alignment processing, variant calling and then analysis of
alignments or variant calls.

Genome references tested:

� ‘b37d’ (‘human_g1k_v37_decoy’ from GATK bundle 2.8)
� ‘b37’ (‘human_g1k_v37’ from GATK bundle 2.8)
� ‘hg19r’ (‘ucsc.hg19’ from GATK bundle 2.3, with its unplaced contigs and

haplotype chromosomes removed)

Mappers tested:

� Novoalign2 (v2.08.03) options: -i PE 360,60 -r All 10

� BWA (0.6.2-r126-tpx)
� BWA-mem (0.7.7-r441) options: -t 8 -M -B 3
� GEM (1.828)

J short reads: gem-mapper -I hs37d5.gem -q offset-33 -m 0.06 -e 0.20 --max-
big-indel-length 50 -s 1 -T 8 | gt.scorereads -t 8 --output-format SAM -I
hs37d5.gem -p -q offset-33 --min-insert 0 --max-insert 1,500

J long reads: gem-mapper -I hs37d5.gem -q offset-33 -m 0.08 -e 0.20 --fast-
mapping¼ 0 --max-big-indel-length 100 -s 1 -T 8 | gt.scorereads -t 8 --
output-format SAM -I hs37d5.gem -p -q offset-33 --min-insert 0 --max-
insert 2,500

Mutation callers tested:

� MuTect31 (v. 1.1.4; dbSNP v. 138; COSMIC v. 64)
� Strelka27 (1.0.13)

Alignment post-processing ensuring format compatibility with the downstream
tools was performed as follows:

� Merge multiple SAM/BAM output files, coordinate-sorting of alignments with
Picard tools (v. 1.84)

� Add read group information with Picard tools
� Discard secondary alignments (alignments with SAM FLAG 0� 100 set) with

samtools (v. 0.1.18) (‘samtools view -h -b -F 256’)
� Mark duplicates with Picard tools’ MarkDuplicates.
� Realignment (RealignerTargetCreator, IndelRealigner) around indels with

GATK (v. 2.3-9-ge5ebf34). The tumour and control were processed together.
� Apply Picard tools’ FixMateInformation

No base-quality recalibration or mutation filtration was applied. Two hundred
fifty-one-nucleotide-long reads mapped by Novoalign were truncated to 150
nucleotides; this affected B4.4% of tumour reads (causing possible FNs because of
missing mutation support in the tumour) and B4.5% of control reads (causing
possible FPs because of missing mutation evidence in the control).

The programme qProfiler (http://sourceforge.net/p/adamajava/wiki/qProfiler/)
was run on each mapper’s alignment files to investigate systematic mapping
differences that potentially influenced subsequent mutation calling. Specifically,
distributions of values in SAM fields ‘RNAME’ (alignment reference sequence ID),
‘MAPQ’ (alignment mapping quality score), ‘TLEN’ (observed insert size),
‘CIGAR’ (alignment-level indel details together with ‘soft clippings’—mapper-
induced read trimming) and ‘MD’ (alignment mismatch details) were of interest.
The same alignment files were used for mutation calling and qprofiler analysis.
However, since mutation calling results were limited to chromosomes 1–22, X and
Y, alignment files serving as qprofiler input were first filtered so as to contain only
alignments to chromosomes 1–22, X and Y in order for the statistics being relevant
(contig coverage statistics being the only exception, since mapping to the decoy
contig appears to be important).

Availability of data. Sequence data for this study have been deposited in the
European Genome-phenome Archive (EGA) under the accession number
EGAS00001001539.

References
1. Hudson, T. J. et al. International network of cancer genome projects. Nature

464, 993–998 (2010).
2. Mardis, E. R. & Wilson, R. K. Cancer genome sequencing: a review. Hum. Mol.

Genet. 18, R163–R168 (2009).
3. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.

363, 2424–2433 (2010).
4. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in

chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).
5. Alkodsi, A., Louhimo, R. & Hautaniemi, S. Comparative analysis of methods

for identifying somatic copy number alterations from deep sequencing data.
Brief Bioinform. 16, 242–254 (2014).

6. Dewey, F. E. et al. Clinical interpretation and implications of whole-genome
sequencing. JAMA 311, 1035–1045 (2014).

7. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer
types. Nature 502, 333–339 (2013).

8. Jones, D. T. et al. Dissecting the genomic complexity underlying
medulloblastoma. Nature 488, 100–105 (2012).

9. Cancer Genome Atlas Research, N. Genomic and epigenomic landscapes of
adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

10. Li, H. Toward better understanding of artifacts in variant calling from
high-coverage samples. Bioinformatics 30, 2843–2851 (2014).

11. McGinn, S. & Gut, I. G. DNA sequencing—spanning the generations.
N. Biotechnol. 30, 366–372 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10001

12 NATURE COMMUNICATIONS | 6:10001 | DOI: 10.1038/ncomms10001 | www.nature.com/naturecommunications

http://sourceforge.net/p/adamajava/wiki/qProfiler/
http://www.nature.com/naturecommunications


12. Xu, H., DiCarlo, J., Satya, R. V., Peng, Q. & Wang, Y. Comparison of somatic
mutation calling methods in amplicon and whole exome sequence data. BMC
Genomics 15, 244 (2014).

13. Highnam, G. et al. An analytical framework for optimizing variant discovery
from personal genomes. Nat. Commun. 6, 6275 (2015).

14. Zook, J. M. et al. Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).

15. Pabinger, S. et al. A survey of tools for variant analysis of next-generation
genome sequencing data. Brief Bioinform. 15, 256–278 (2014).

16. Fang, H. et al. Reducing INDEL calling errors in whole genome and exome
sequencing data. Genome Med. 6, 89 (2014).

17. O’Rawe, J. et al. Low concordance of multiple variant-calling pipelines:
practical implications for exome and genome sequencing. Genome Med. 5, 28
(2013).

18. Wang, Q. et al. Detecting somatic point mutations in cancer genome
sequencing data: a comparison of mutation callers. Genome Med. 5, 91 (2013).

19. Kim, S. Y. & Speed, T. P. Comparing somatic mutation-callers: beyond Venn
diagrams. BMC Bioinformatics 14, 189 (2013).

20. Louis, D. N. et al. The 2007 WHO classification of tumours of the central
nervous system. Acta Neuropathol. 114, 97–109 (2007).

21. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current
consensus. Acta Neuropathol. 123, 465–472 (2012).

22. Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing
to benchmark somatic single-nucleotide-variant detection. Nat. Methods 12,
623–630 (2015).

23. Kassahn, K. S. et al. Somatic point mutation calling in low cellularity tumors.
PLoS ONE 8, e74380 (2013).

24. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303
(2010).

25. Simpson, J. T. & Durbin, R. Efficient construction of an assembly string graph
using the FM-index. Bioinformatics 26, i367–i373 (2010).

26. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read
sequencing. Preprint at arXiv:1207.3907 (2012).

27. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from
sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

28. Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based
approaches for calling variants in clinical sequencing applications. Nat. Genet.
46, 912–918 (2014).

29. Challis, D. et al. An integrative variant analysis suite for whole exome
next-generation sequencing data. BMC Bioinformatics 13, 8 (2012).

30. Moncunill, V. et al. Comprehensive characterization of complex structural
variations in cancer by directly comparing genome sequence reads. Nat.
Biotechnol. 32, 1106–1112 (2014).

31. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

32. Goode, D. L. et al. A simple consensus approach improves somatic mutation
prediction accuracy. Genome Med. 5, 90 (2013).

33. Rieber, N. et al. Coverage bias and sensitivity of variant calling for four
whole-genome sequencing technologies. PLoS ONE 8, e66621 (2013).

34. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature 500, 415–421 (2013).

35. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M.
R. Deciphering signatures of mutational processes operative in human cancer.
Cell Rep. 3, 246–259 (2013).

36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

37. Marco-Sola, S., Sammeth, M., Guigo, R. & Ribeca, P. The GEM mapper: fast,
accurate and versatile alignment by filtration. Nat. Methods 9, 1185–1188
(2012).

38. Raineri, E., Dabad, M. & Heath, S. A note on exact differences between
beta distributions in genomic (Methylation) studies. PLoS ONE 9, e97349
(2014).

39. Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
Nucleic Acids Res. 27, 573–580 (1999).

40. Derrien, T. et al. Fast computation and applications of genome mappability.
PLoS ONE 7, e30377 (2012).

Acknowledgements
We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome
Technologies Platform for provision of sequencing services. Financial support was
provided by the consortium projects READNA under grant agreement FP7 Health-F4-
2008-201418, ESGI under grant agreement 262055, GEUVADIS under grant agreement
261123 of the European Commission Framework Programme 7, ICGC-CLL through the
Spanish Ministry of Science and Innovation (MICINN), the Instituto de Salud Carlos III
(ISCIII) and the Generalitat de Catalunya. Additional financial support was provided by
the PedBrain Tumor Project contributing to the ICGC, funded by German Cancer Aid
(109252) and by the German Federal Ministry of Education and Research (BMBF, grants
#01KU1201A, MedSys #0315416C and NGFNplus #01GS0883), the BMBF-funded ICGC
projects on early-onset prostate cancer and malignant lymphoma (#01KU1001A,
#01KU1002B) and via the BMBF-funded de.NBI HD-HuB network (#031A537A,
#031A537C); the Ontario Institute for Cancer Research to PCB and JDM through
funding provided by the Government of Ontario, Ministry of Research and Innovation;
Genome Canada; the Canada Foundation for Innovation and Prostate Cancer Canada
with funding from the Movember Foundation (PCB). P.C.B. was also supported by a
Terry Fox Research Institute New Investigator Award, a CIHR New Investigator Award
and a Genome Canada Large-Scale Applied Project Contract. The Synergie Lyon Cancer
platform has received support from the French National Institute of Cancer (INCa) and
from the ABS4NGS ANR project (ANR-11-BINF-0001-06). The ICGC RIKEN study was
supported partially by RIKEN President’s Fund 2011, and the supercomputing resource
for the RIKEN study was provided by the Human Genome Center, University of Tokyo.
M.D.E., L.B., A.G.L. and C.L.A. were supported by Cancer Research UK, the University
of Cambridge and Hutchison-Whampoa Limited. S.D. is supported by the Torres
Quevedo subprogramme (MICINN) under grant agreement PTQ-12-05391. E.H. is
supported by the Research Council of Norway under grant agreements 221580 and
218241 and by the Norwegian Cancer Society under grant agreement 71220—PR-2006-
0433. We specially thank Jennifer Jennings for administrating the activity of the ICGC
Verification Working Group and Anna Borrell for administrative support.

Author contributions
T.S.A., I.B., D.T.W.J. and I.G.G. planned the study and wrote the paper. T.S.A.
coordinated mutation call submissions, led analysis team and performed primary
analysis. I.B. and B.H. coordinated the sequencing benchmark and analysis.
S.D. coordinated metadata collection and analysis. T.S.A., S.D., M.D.E., E.H., I.B., B.H.,
P.G., D.T.W.J., L.E.H., T.A.B., J.T.S., L.T., A.-S.S., A.-M.P., P.R., V.Q., R.V.-M., S.N.,
D.V., A.G.L., R.E.D., E.R., M.D., S.C.H., P.S.T., P.J.C., P.C.B., X.S.P., J.D.M. and I.G.G.
contributed to analysis. S.D., M.D.E., E.H., I.B., B.H., B.B., R.D., R.K., S.G., A.K.,
D.T.W.J., L.E.H., T.A.B., J.T.S., L.T., A.-S.S., P.S.T., D.J., L.S., L.F., K.R., J.H., J.W.T., A.M.,
R.S., A.P.B., A.-M.P., P.R., V.Q., R.V.-M., S.N., D.V., L.B., A.G.L., C.L.A., N.J.H., T.N.Y.,
N.W., J.V.P., S.M.G., F.C.G., S.B., N.J., N.P., M.H., M.S., R.D., N.P., M.S., M.P., P.S., A.F.,
H.N., M.H., C.K., S.L., J.Z., L.L., S.M., S.S., D.T., L.X., D.A.W., C.L.-O., P.J.C., P.C.B. and
X.S.P. contributed to pipeline development and formatting of submissions. E.C. and
D.T.W.J. provided samples. S.C., S.S., N.D., C.P., H.N., A.F., X.S.P., R.E.D., J.D.M. and
M.G. contributed to sequencing effort. P.B., J.D.M., S.M.P., R.E., P.L., D.G. and T.H.
provided organization and additional input on the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Alioto, T. S. et al. A comprehensive assessment of somatic
mutation detection in cancer using whole-genome sequencing. Nat. Commun. 6:10001
doi: 10.1038/ncomms10001 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10001 ARTICLE

NATURE COMMUNICATIONS | 6:10001 | DOI: 10.1038/ncomms10001 | www.nature.com/naturecommunications 13

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	WGS data generation
	Evaluation of sequencing library construction methods
	Evaluation of sequencing depth
	Effect of tumour purity on mutation calling
	Effect of tumour to normal sequencing depth ratio

	Table 1 
	Curation of a Gold Set of somatic mutations
	Evaluation of somatic mutation calling pipelines

	Figure™1Differences between the different sample libraries.Libraries A, E and G are PCR-free. (a) GC bias of the different libraries. The genome was segmented into 10-kb windows. For each window, the GC content was calculated and the coverage for the resp
	Correlation of pipeline components with shared mutations
	Genomic or alignment features affecting accuracy

	Figure™2Effect of sequencing coverage on the ability to call SSMs.(a) Overlap of SSMs called on different balanced coverages. (b) Density plots of the variant allele frequencies for different balanced coverages of tumour and control (tumourversuscontrol) 
	Effect of mapper on mutation calling
	Effect of primary mutation caller on mutation calling
	Improvement of pipelines using the benchmark data set

	Table 2 
	Figure™3Overlap of somatic mutation calls for each level of concordance.Shared sets of calls are vertically aligned. GOLD indicates the Gold Set. (a) Medulloblastoma SSM calls shared by at least two call sets. (b) Medulloblastoma SIM calls shared by at le
	Figure™4Somatic mutation calling accuracy against Gold Sets.Decreasing sensitivity on Tiers 1, 2 and 3 shown as series for each SSM call set, while precision remains the same. (a) Medulloblastoma SSMs. (b) Medulloblastoma SIMs
	Discussion
	Figure™5Rainfall plot showing distribution of called mutations on the genome.The distance between mutations is plotted in the log scale (y axis) versus the genomic position on the x axis. TPs (blue), FPs (green) and FNs (red). Four MB submissions represen
	Figure™6Enrichment or depletion of genomic and alignment features in FP calls for each medulloblastoma SSM submission.For each feature, the difference in frequency with respect to the Gold Set is multiplied by the FP rate. Blue indicates values less than 
	Figure™7Accuracy of re-filtered pipeline SSM calls.Unfiltered calls (MB.F0 and CLL.F0) are shown as a red squares, while the calls using the tuned filters (MB.F2 and CLL.F2) are shown as red circles for the medulloblastoma (a) and CLL (b) benchmark GOLD s
	Table  
	Methods
	Patient material
	Library preparation and sequencing
	Comparison of SSM calls
	Merging of the bam files to get the 300times files
	Downsampling of the 300times files
	Determination of library GC bias
	Calculation of low coverage in special regions of interest
	Extraction of mutation signatures
	Somatic mutation calling benchmark data set
	Verification by 300times coverage
	Evaluation of submissions
	Control of pipeline components
	Availability of data

	HudsonT. J.International network of cancer genome projectsNature4649939982010MardisE. R.WilsonR. K.Cancer genome sequencing: a reviewHum. Mol. Genet.18R163R1682009LeyT. J.DNMT3A mutations in acute myeloid leukemiaN. Engl. J. Med.363242424332010PuenteX. S
	We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome Technologies Platform for provision of sequencing services. Financial support was provided by the consortium projects READNA under grant agreement FP7 Health-F4-2008-201418, ESGI 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




