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AbstractÐThis work presents a symbolic approach for the analysis of bounded Petri nets. The structure and behavior of the Petri net

is symbolically modeled by using Boolean functions, thus reducing reasoning about Petri nets to Boolean calculation. The set of

reachable markings is calculated by symbolically firing the transitions in the Petri net. Highly concurrent systems suffer from the state

explosion problem produced by an exponential increase of the number of reachable states. This state explosion is handled by using

Binary Decision Diagrams (BDDs) which are capable of representing large sets of markings with small data structures. Petri nets have

the ability to model a large variety of systems and the flexibility to describe causality, concurrency, and conditional relations. The

manipulation of vast state spaces generated by Petri nets enables the efficient analysis of a wide range of problems, e.g., deadlock

freeness, liveness, and concurrency. A number of examples are presented in order to show how large reachability sets can be

generated, represented, and analyzed with moderate BDD sizes. By using this symbolic framework, properties requiring an exhaustive

analysis of the reachability graph can be efficiently verified.

Index TermsÐPetri nets, formal verification, symbolic methods, Binary Decition Diagrams.

æ

1 INTRODUCTION

PETRI nets are a graph-based mathematical formalism
suitable to describe, model, and analyze the behavior of

discrete event concurrent systems. More precisely, Petri
nets can describe asynchronous sequential and nonsequen-
tial behaviors, including concurrency and nondeterministic
choice, where sets of processes can interact, cooperate, and
compete. Since their introduction by C.A. Petri in 1962 [11],
Petri nets (PNs) have been extensively used in a wide range
of areas such as communication protocols and networks,
computer architecture, distributed systems, manufacturing
planning, digital circuit synthesis and verification, and
high-level synthesis.

The existing methods for the analysis of PNs can be

mainly classified into four categories [9]: reachability tree

methods, enumerative methods, matrix-equation methods,

and reduction or decomposition methods. Traditionally, the

first and second methods are only applicable to small PNs

due to the explosion of the number of markings in

concurrent systems, while the third and fourth methods

are restricted to particular subclasses of PNs.
Enumerative methods permit verifying properties of finite

systems. They can also be successfully combined with

analysis methods based on the structure of the PN.

However, the potentially huge number of reachable mark-

ings in highly concurrent systems becomes the main

bottleneck for any enumerative approach. This limitation

encourages the study and application of new efficient

techniques to overcome this problem.

In this work, we present a symbolic approach that
implicitly enumerates the reachable markings. This method
is applicable to the analysis of any type of bounded PNs
[10]. The proposed technique is based on the modeling of
the PN by means of Boolean algebras [1]. Problems like
deadlock detection, liveness, boundedness, and persistence can
be checked by properly manipulating the functions that
model the PN.

Methods based on the explicit enumeration of the
reachable markings suffer from the state explosion problem
due to the arbitrary interleaving of concurrent transitions.
The inherent complexity involved in the enumeration of the
exponential number of markings in a PN is alleviated by
using Binary Decision Diagrams (BDD) [2]. BDDs have the
capability of representing large sets of encoded data with
small data structures and enable the efficient manipulation
of those sets. The utilization of BDDs not only provides
algorithms which are computationally capable of manip-
ulating large systems (due to its efficient data representa-
tion), but also provide an extremely flexible mechanism to
manipulate PNs.

Symbolic model checking techniques have already been
proposed in [7], [14], [18] for the verification of digital
circuits. More recently, [18] introduced special Boolean
operators to perform efficient symbolic analysis based on
Zero-Suppressed BDDs (ZBDDs). The theory presented in
this paper is not restricted to any particular class of
Decision Diagrams and can be applied to any framework
based on Boolean manipulation of Petri nets.

The remainder of this work is organized as follows: In
Section 2, we introduce basic definitions on Boolean
algebras, Petri nets, and Binary Decision Diagrams. The
modeling of PNs is discussed in Section 3. The Boolean
functions that define the dynamic behavior of the PN are
described in Section 4, while the symbolic reachability
analysis algorithm required to efficiently generate the
markings in the PN is outlined in Section 5. In order to
manipulate bounded PNs, an extension of the basic model,
as well as the required reachability techniques, is proposed
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in Section 6. Section 7 presents a set of PN reductions that
can improve the efficiency in the calculation of the state
space. Algorithms for the verification of properties, such as
concurrency, liveness, and persistence, are presented in
Section 8. Several experimental results are presented in
Section 9, including a detailed analysis on the efficiency of
the method.

2 BASIC DEFINITIONS

2.1 Boolean Algebras

This section reviews some basic concepts on Boolean
algebras. We refer the reader to [1] for a detailed
compendium on the subject.

A set is a collection of objects called elements. In the
sequel, we will only consider finite sets. The cardinality of a
set A, written jAj, is the number of elements in the set. The
power set of a set A is represented by 2A. Given two sets A
and B, a binary relationR between A and B is a subset of the
Cartesian product A�B. We write xRy iff x and y are in
relationR. A function f from A to B, f : A! B, is a relation
that associates exactly one element of B to each element of
A. A is called the domain of the function. B is called the
codomain. For every element x 2 A, f�x� 2 B is called the
image of x.

A Boolean algebra is a five-tuple �B;�; �; 0; 1�, where B is a
set called the carrier, � and � are binary operations on B, and
0 and 1 are elements of B. The elements in B satisfy the
commutative, distributive, identity, and complement laws.
The algebra of subsets of a set S, denoted �2S;[;\; ;; S�, is a
Boolean algebra, where 2S is the set of subsets of S and [, \
are the union and intersection operations.

The system �B;�; �; 0; 1�, with B � f0; 1g, �, and �
defined as the logic OR and logic AND operations,
respectively, is a Boolean algebra, also known as the
switching algebra.

For an integer n � 0, an n-variable Boolean function is a
function f : Bn ! B. Let Fn�B� be the set of n-variable
Boolean functions, then Fn�B� is the power set of Bn (the
characteristic functions of subsets of Bn). The system

�Fn�B�;�; �;0;1� �1�
is the Boolean algebra of Boolean functions, in which ª�º
and ª�º represent disjunction and conjunction of n-variable
Boolean functions and 0 and 1 represent the ªzeroº and
ªoneº functions (f�x1; . . . ; xn� � 0 and f�x1; . . . ; xn� � 1).
The cardinality of Fn�B�, that is, the number of different
n-variable functions, is 22n .

Let V � Bn be a set of elements in the Boolean algebra of
n-variable Boolean functions. The characteristic function �V
of the set V is an n-variable Boolean function that evaluates
to 1 for those elements of Bn that are in V , i.e.,
v 2 V , �V �v� � 1; 8v 2 Fn�B�.
Theorem 1 (Stone's Representation Theorem). Every finite

Boolean algebra is isomorphic to the Boolean algebra of subsets
of some finite set S.

Stone's Representation Theorem establishes the basis of
the approach presented in this work, that is, bounded PNs

can be modeled with the Boolean algebra of Boolean
functions.

Given the Boolean algebra of n-variable Boolean func-
tions, with n symbols x1; . . . ; xn, we call each element of Bn

a vertex. A literal is either a variable xi or its complement xi.
A cube c is a set of literals such that if xi 2 c, then xi 62 c and
vice versa. A cube is interpreted as the Boolean product of
its literals. Note that the set of all cubes with n literals is in
one-to-one correspondence with the vertices of Bn.

The Boolean functions fxi � f�x1; . . . ; xiÿ1; 1; xi�1; . . . ; xn�
and fxi � f�x1; . . . ; xiÿ1; 0; xi�1; . . . ; xn� are called the posi-
tive and negative cofactors of f with respect to xi. If f :
Bn ! B is an n-variable Boolean function, then Boole's
Expansion Theorem defines that

8xi; 1 � i � n; f�x1; . . . ; xn� � xi � fxi � xi � fxi :
The definition of cofactor can also be extended to cubes.
Given a cube c � x̂1 � c1 composed of a literal x̂1 (either x1 or
x1) and another cube c1, then the cofactor of a function with
respect to c is recursively defined as: fc � �fx̂1

�c1
.

Abstractions are of fundamental use in our framework.
They have a direct correspondence to the existential and
universal quantifiers applied to predicates in Boolean
reasoning. The existential and universal abstractions of
f�x1; . . . ; xn� with respect to a variable xi are defined 9xif �
fxi � fxi and 8xif � fxi � fxi , respectively.

2.2 Petri Nets

A Petr i net [9] , [12] , [13] is a four- tuple
N � hP; T ;W;Moi, where P � fp1; . . . ; png and T �
ft1; . . . ; tmg are finite sets of places and transitions (also
called nodes) satisfying P \ T � ; and P [ T 6� ;, W :
�P � T � [ �T � P� ! IN is the weighted flow relation, and Mo

is the initial marking. A marking is a function M : P ! IN. If
k is assigned to a place p by M, we will say that p is marked
with k tokens in M. IfW�u; v� > 0, then there is an arc from
u to v with weight W�u; v�. The pre and postset of a node are
specified by a dot-notation: �u � fv 2 P [ T j W�v; u� > 0g
is called the preset of u and u� � fv 2 P [ T j W�u; v� > 0g
is called the postset of u. Fig. 1a depicts a PN in which all
arcs have weight one.

A transition t is enabled at a markingM (denoted byM�ti) if
8p 2 �t : M�p� � W�p; t�. Once a transition t is enabled at a
markingM, it may fire, reaching a new markingM 0 (denoted
by M�tiM 0), where M 0�p� �M�p� ÿW�p; t� �W�t; p�.

A sequence of transitions � � t1 . . . tkÿ1 2 T � is a
firing sequence from a marking M1 to a marking Mk

iff there exist markings M2; . . . ;Mkÿ1 such that:
Mi�tiiMi�1 for 1 � i � kÿ 1. Marking Mk is said to be
reachable from Mo by firing � : Mo��iMk. �Mi is the set of
markings reachable from M by firing any sequence of
transitions, i.e., M 0 2 �Mi , 9� 2 T � : M��iM 0. �Moi is the
set of all markings reachable from Mo. The automaton that
contains the set of reachable markings and all possible
firing sequences of a PN is called the reachability graph. A
transition t 2 T is live iff

8M 2 �Moi : 9M 0 2 �Mi such thatM 0�ti:
A PN is live iff every transition in the PN is live. A marking
M 2 �Moi is a home marking iff 8M 0 2 �Mi : M 2 �M 0i. A place
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p 2 P is called k-bounded (k 2 IN) iff 8M 2 �Moi : M�p� � k. A
PN is k-bounded iff every place is k-bounded. A PN is
bounded iff it is k-bounded for some k. A PN is safe iff it is 1-
bounded.

The symbolic methods presented in this work require the
PNs to be bounded. It is also required to know an upper
bound of the number of tokens that a place may hold. In
general, a conservative bound for a place can be calculated
in advance by solving a specific Linear Programming Problem
[4]. In case such a bound cannot be obtained, the user must
provide estimated values. Note, however, that any esti-
mated bound will be validated during the symbolic
generation of the reachability set (see Section 5.1).

Fig. 1b depicts the reachability graph for the PN
presented in Fig. 1a. This graph has eight reachable
markings, each one annotated with the subset of places
that are marked in it. In general, a marking in a safe PN can
be represented by a set of places m � fp1; . . . ; pkg � P,
where p 2 m denotes the fact that there is a token in p.
Additionally, any set of markings in �Moi can be repre-
sented by a setM� fm1; . . . ;mlg of subsets of the places in
the PN, every set of places mi 2 M corresponding to one of
the markings.

2.3 Binary Decision Diagrams

Basic definitions for Binary Decision Diagrams were given
in [2]. In this section, we review some of these definitions
for reference.

A Binary Decision Diagram (BDD) is a directed acyclic
graph with two sink nodes, labeled 0 and 1, representing
the Boolean functions 0 and 1. Each nonsink node is labeled
with a Boolean variable v and has two out-edges labeled 1
(or then) and 0 (or else). Each nonsink node represents the
Boolean function corresponding to its 1-edge if v � 1 or the
Boolean function corresponding to its 0-edge if v � 0.

An Ordered Binary Decision Diagram (OBDD) is a BDD in
which variables are totally ordered and every source to sink
path in the OBDD visits the variables in ascending order. A
Reduced Ordered Binary Decision Diagram (ROBDD) is an
OBDD where each node represents a distinct logic function.

ROBDDs are canonical representations of Boolean func-
tions: For a fixed variable order, two functions are
equivalent if and only if their BDDs are isomorphic.

ROBDDs have emerged as an efficient form to manip-
ulate large functions (with hundreds of variables). It is
known that the size of the ROBDD for a function depends
on the chosen variable order [15]. However, this work does
not tackle the variable ordering problem.

3 SYMBOLIC MODELING OF SAFE PETRI NETS

This section describes how a safe PN can be modeled using
Boolean algebras. In Section 6, this model will be extended
for bounded PNs.

Let MP � 2P be the set of all subsets of places
representing markings of a safe PN with jPj places. The
system �2MP ;[;\; ;;MP � is the Boolean algebra of sets of
safe markings (see (1)). This system is isomorphic to the
Boolean algebra of n-variable Boolean functions, where n �
jPj (see Theorem 1).

Given this, there is a one-to-one correspondence between
markings in MP and vertices of Bn. Any marking M 2MP

in a safe PN can be represented by a vertex of Bn and
determined by an encoding function E : MP ! Bn. The image
of every marking M 2MP is encoded into a vertex
�p1; . . . ; pn� 2 Bn such that:

8i 2 1; . . . ; n pi � 1 if pi 2M
0 if pi 62M:

�
Henceforth, we will use pi to denote either a place in P
or its corresponding Boolean variable and M to denote
either a reachable marking or the corresponding set of
places that hold tokens in the marking. As an example, in
Fig. 1, both the vertex �0; 1; 0; 0; 0; 0; 1� 2 B7 and the cube
p1 p2 p3 p4 p5 p6 p7 represent the marking in which p2 and p7

are marked and p1, p3, p4, p5, and p6 are not marked.
Extending the use of the encoding function E, each set of

markings M2 2MP has a corresponding image V 2 Fn�B�
according to E, defined by:
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V � fv 2 Bn j 9M 2 M : v � E�M�g:
Then, the characteristic function of the set M is a function
�M : Bn ! B that evaluates to 1 for those vertices that
correspond to markings belonging to M; that is, �M � �V .
From now on, and for the sake of simplicity, we will
indistinctly use M and �M to denote the characteristic
function of a set of markingsM. All set manipulations can
by applied as Boolean operations directly to the character-
istic functions. For example, given the sets of markings
M1;M2 2MP , union �M1[M2

� �M1
� �M2

, intersection
�M1\M2

� �M1
� �M2

, and complement �M1
� �M1

can be
implemented with the corresponding Boolean operators.

As an example, the set of markings

M� ffp2 p3g; fp2 p7g; fp4 p7gg
has the characteristic function:

�M � p1 p2 p4 p5 p6 �p3 � p7� � p1 p3 p5 p6 p7 �p2 � p4�:
Characteristic functions can also be used to represent

binary relations between sets of markings. Given two sets
M and M0, a binary relation R �M�M0 can be
represented by using two sets of Boolean variables to
encode the elements of each set. Taking Boolean variables
p1; . . . ; pn for M and q1; . . . ; qn for M0, the characteristic
function of R is defined by:

8�p1; . . . ; pn�; �q1; . . . ; qn� 2 Bn

�R�p1; . . . ; pn; q1; . . . ; qn� � 1 , 9�M;M 0� 2 R :

�E�M� � �p1; . . . ; pn� ^ E�M 0� � �q1; . . . ; qn��:
Given the binary relation R between setsM andM0, the

elements ofM that are in relation with some element ofM0

are defined by the set:

RM � M 2M j 9M 0 2 M0 : �M;M 0� 2 Rf g;
and its characteristic function �R�M� is computed as:

�RM�p1; . . . ; pn� � 9q1;...;qn �R�p1; . . . ; pn; q1; . . . ; qn�:

4 DYNAMIC BEHAVIOR OF SAFE PETRI NETS

This section introduces the Boolean functions and relations
that model the dynamic behavior of safe PNs. The enabling
and firing of individual transitions are analyzed first. Based
on these results, several algorithms are described to
efficiently construct the reachability set and to verify the
initial safeness assumption.

4.1 Transition Firing

The structure of a PN defines a set of local changes of state,
called transition firing functions, that determine its dynamic
behavior. Let Et �MP be the set of markings in which
transition t is enabled. The transition function for a transition
t 2 T is a partially defined function �t : Bn ! Bn that
transforms every marking M 2 Et into a new marking M 0 2
MP by firing transition t, i.e., M 0 � �t�M�. The image of �t

for markings outside Et is undefined.
This concept is equivalent to the one-step reachability in

PNs. The transition function �t � ��t1; . . . ; �tjPj� for a transi-
tion t 2 T defines how the contents of each place is

transformed as a result of firing t at marking in which t is

enabled. The function is defined as 8i 2 1; . . . ; jPj:

�ti�p1; . . . ; pn� �
1 if pi 2 t�
0 if pi 2 �t and pi 62 t�
pi otherwise:

8<: �2�

The characteristic function Et of the set of markings in

which transition t is enabled is defined as:

Et �
Y
pi2�t

pi: �3�

By firing transition t, the function returns 1 if p is in its

postset and 0 if p is in its preset (but not a self-loop).

Otherwise, the place remains with the same value.
A marking Mk is reachable in k steps from the initial

marking Mo if there is a sequence of markings

M1;M2; . . . ;Mkÿ1 a nd a s e q u e n c e o f t r a n s i t i o n s

t1; t2; . . . ; tk, such that, �ti�Miÿ1� �Mi; 8i; 1 � i � k. Follow-

ing the example in Fig. 1 that requires the Boolean variables

p1; . . . ; p7, the transition and enabling functions are:

��1� ��2� ��3� ��4� ��5� ��6� ��7�
�t1 �M�� �0; 1; 1; p4; p5; p6; p7�; Et1 � p1;
�t2 �M�� �0; p2; p3; 1; 1; p6; p7�; Et2 � p1;
�t3 �M�� �p1; 0; p3; p4; p5; 1; p7�; Et3 � p2;
�t4 �M�� �p1; p2; 0; p4; p5; p6; 1�; Et4 � p3;
�t5 �M�� �p1; p2; p3; 0; p5; 1; p7�; Et5 � p4;
�t6 �M�� �p1; p2; p3; p4; 0; p6; 1�; ET6

� p5;
�t7 �M�� �1; p2; p3; p4; p5; 0; 0�; Et7 � p6p7:

Therefore, firing transition t1 from markings

p1 p2 p3 p4 p5 p6 p7

and

p1 p2 p3 p4 p5 p6 p7;

where t1 is enabled, results in:

p1 p2 p3 p4 p5 p6 p7 � �t1�p1 p2 p3 p4 p5 p6 p7�
and

p1 p2 p3 p4 p5 p6 p7 � �t1�p1 p2 p3 p4 p5 p6 p7�:
We now consider the firing of transitions in sets of

markings rather than using a marking-per-marking basis.

Let us define the constrained image (or simply image) of �t as

a function that transforms a set of markingsM into the set

of markingsM0 that can be reached fromM by firing t. The

constrained image of �t is denoted by Img�t;M� and

computed:

Img�t;M� � M 0 2MP : 9M 2 M^ Et; �
t�M� �M 0� 	

: �4�
Using the terminology for verification of sequential

machines, function Img performs the image computation of

a transition [5], [6]. We can now apply two different

strategies to implement the image computation for transi-

tions using BDDs: topological image computation and transi-

tion relation.
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4.2 Topological Image Computation

Image computation for single transitions can be efficiently

implemented by using the topological information of the

PN and the characteristic function of some selected sets of

markings. In addition to Et (previously defined in (3)), we

present the characteristic function of some important sets

related to a transition t 2 T :

NPMt �
Y
pi2�t

pi �no predecessor of t is marked�;

ASMt �
Y
pi2t�

pi �all successors of t are marked�;

NSMt �
Y
pi2t�

pi �no successor of t is marked�:

Given these characteristic functions, the image computa-

tion for transitions is reduced to calculating the Boolean

formula:

Img�t;M� � MEt
�NPMt� �NSMt

�ASMt: �5�
We will show with the example of Fig. 1a how this

formula ªsimulatesº firing a transition t. Given the set of

markings M� ffp2 p3g; fp2 p7g; fp4 p7gg, with its charac-

teristic function:

M� p1 p2 p3 p4 p5 p6 p7 � p1 p2 p3 p4 p5 p6 p7

� p1 p2 p3 p4 p5 p6 p7;

we will calculateM0 � ��M; t3�. First,MEt3
(the cofactor of

M with respect to Et3 � p2) selects those markings in which

t3 is enabled1 and removes its predecessor places from the

characteristic function:

MEt3
� p1 p3 p4 p5 p6 p7 � p1 p3 p4 p5 p6 p7:

Then, the product with NPMt3 � p2 simulates the elimina-

tion of tokens in the predecessor places:

MEt3
�NPMt3 � p1 p2 p3 p4 p5 p6 p7 � p1 p2 p3 p4 p5 p6 p7:

Next, the cofactor with respect to NSMt3 � p6 removes all

successor places from the characteristic function:

�MEt3
�NPMt3�NSMt3

� p1 p2 p3 p4 p5 p7 � p1 p2 p3 p4 p5 p7:

Finally, the product with ASMt3 � p6 adds a token to all

successor places of t3:

�MEt3
�NPMt3�NSMt3

�ASMt3 � p1 p2 p3 p4 p5 p6 p7

� p1 p2 p3 p4 p5 p6 p7;

generating the characteristic function of the set of markings

M0 � ffp3 p6g; fp6 p7gg.
Note that (5) is correctly defined only for safe PNs.

However, this safeness assumption can be verified, as will

be shown in Section 5.1.

4.3 Image Computation Based on Transition
Relations

The transition function relates sets of markingsM0 � �t�M�
such that the markings in M0 are reachable after firing
transition t from the subset ofM in which t is enabled. The
relation induced by �t can be represented by a characteristic
function Rt that requires two different sets of variables:
p1; . . . ; pn forM and q1; . . . ; qn forM0, respectively (n � jPj).
According to the definition of �t, its characteristic function
is described by the binary relation:2

Rt�p1; . . . ; pn; q1; . . . ; qn� �
YjPj
i�1

qi � �ti�p1; . . . ; pn�
ÿ � � Et:

Finding the set of markingsM0 that can be reached after
firing transition t from any marking in the setM (in which t
is enabled) is reduced to computing:

Img�t;M� � 9p1;...;pn Rt�p1; . . . ; pn; q1; . . . ; qn� �M� �: �6�
As an example, we provide the characteristic function for
the transition relation of t1 in Fig. 1:

Rt1�p1; . . . ; p7; q1; . . . ; q7� �
�q1 � q2 � q3 � �q4 � p4� � �q5 � p5� � �q6 � p6� � �q7 � p7�� � �p1�:

For this transition, a token is removed from p1 (q1) and
tokens are added for p2 and p3 (q2 � q3). No change occurs at
any other place (�q4 � p4� � �q5 � p5� � �q6 � p6� � �q7 � p7�).
Additionally, firing can only occur at markings where t1 is
enabled (p1).

The one-step reachability relation of the whole PN is the
union of the images of all transitions:

Img�PN;M� �

9p1;...;pn

X
8tj2T

YjPj
i�1

qi � �tji �p1; . . . ; pn�
� �

� Et � M
" #

:

This function computes all markings that can be reached in
one step from M.

The main computational problem in image computation
with the transition relation method appears when taking
the conjunction

QjPj
i�1 . Even if the BDDs for �qi � �ti� and the

final result Rt are small, the product may be too large in
some intermediate result. A substantial increase in effi-
ciency can be obtained using a partitioned image computation
as described in [3].

5 PETRI NET TRAVERSAL AND REACHABLE

MARKINGS

The set of reachable markings from Mo can be efficiently
calculated by using the image computation in a symbolic
traversal algorithm. The objective of the symbolic manipula-
tion is to fire multiple transitions simultaneously from sets
of markings and, therefore, reduce the number of opera-
tions required to derive the reachability set. This section
introduces an approach similar to symbolic breadth-first-
search (BFS) traversal for Finite State Machines [5], [6]. The
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1. This implementation of the transition function satisfies the require-
ments imposed by the partial definition of (2), i.e., no image is generated for
markings outside Et.

2. Note that the operator a � b stands for a equivalent to b and it is
defined as a�b � ab� ab.



reachability set can be obtained by computing the least fix
point of the following recurrence:

So � Mo

Si�1 � Si [ Img�PN; Si�:
The algorithm presented in Fig. 2 traverses the PN and

calculates the reachability set from the initial marking. The
union and difference of sets of markings are performed by
manipulating their corresponding characteristic functions.

Given the ith iteration of the outermost loop in the
algorithm, the traversal obtains all markings reachable in
one step from the set Fromi (the index in the set denotes the
iteration number). The algorithm applies the Img function
for every transition in the PN3 (see Fig. 3). Only those
markings that are new in the set of reachable markings
(set Newi) are considered for the next iteration. Hence, the
set Newi is transformed into the set Fromi�1 for the next
iteration. The accumulation of sets of new markings (Newi)
results in a monotonically increasing set of reachable
markings (Reachedi). The algorithm iterates until no new
markings are generated, i.e., until it reaches a fixed point.
The number of iterations performed by the traversal is
determined by the maximum number of firings from the
initial marking to the first occurrence of any of the reachable
markings (called the sequential depth of the PN). The

sequential depth of the PN in Fig. 1a is four, which is the
number of transitions firing from Mo to itself.

As an example, take the initial marking fp1g in Fig. 1.
After the first iteration of the repeat loop (by firing
transitions t1 and t2), the algorithm yields

To � ffp2p3g; fp4p5gg
New � ffp2p3g; fp4p5gg ÿ ffp1gg � ffp2p3g; fp4p5gg;

and

Reached � ffp1g; fp2p3g; fp4p5gg:
The final set of reachable markings is shown in Fig. 1b,
where nodes represent markings and edges the firing of
transitions.

5.1 Safeness Verification

Up to this point, the calculation of the reachability set by
means of image computation has been implemented under
the assumption that the PN is safe. This calculation is
erroneous if the firing of a transition requires storing more
than one token in any place. Unsafe PNs cannot be
represented by encoding each place with one Boolean
variable and, therefore, cannot be manipulated with the
present model. However, this extension will be considered
in Section 6.

Detecting unsafeness can be done by identifying a
marking M in which a transition t is enabled and some
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3. An alternative approach could be to use the Img function of the whole
PN. In that case, it is not necessary to iterate over all transitions in the net.

Fig. 2. Algorithm for symbolic PN traversal using the Img function.

Fig. 3. Generic iteration for the symbolic traversal methodology from an initial marking.



successor place p 2 t� not included in a self-loop (p 62 �t) is

already marked. In that situation, after firing transition t,

place p will contain two tokens. Formally, a PN is not safe if:

9 �M 2 �Moi; t 2 T ; p 2 P� :

M�ti ^ p 2 t� ^ p 62 �t ^ M�p� � 1� �:
Given the computed set of reachable markings, the

algorithm depicted in Fig. 4 detects whether a PN is safe

or not by checking one equation for each transition.
On the other hand, safeness can also be detected every

time a transition t is going to be fired from a set of

markings. Given the set of markings From in the algorithm

of Fig. 2, the safeness of the PN can be verified at each

iteration of the algorithm by checking that the following

formula holds at the beginning of the loop:

8t 2 T : From � Et �
X

�p2t��^�p 62�t�
p

24 35 � 0: �7�

5.2 Improved Reachability Analysis

This section introduces an improvement over the reach-

ability analysis algorithm in Fig. 3 based on the individual

firing of each transition by its Img function. The proposed

method, named transition chaining, is based on the fact that

each iteration of the outermost loop only generates

markings that are reachable in one step. Therefore, to

traverse the whole PN, it is necessary to iterate the number

of times indicated by the sequential depth on the PN. This

limitation can be overcome if the new markings that are

generated after applying the image computation are

immediately reused in the traverse.
Assume the PN structure described in Fig. 6a which

contains two concurrent transitions t1 and t2 that enable the

firing of transition t3. This PN has five reachable markings.

The BFS reachability algorithm presented in Fig. 2 requires

three iterations to generate all the markings (see Fig. 6b).

Starting from M1, in the first iteration (i1), t1 and t2 will fire,

reaching M2 and M3, respectively. In a second iteration (i2),

t1 and t2 will fire again, both reaching M4. Finally, in the

third iteration (i3), t3 will fire, reaching M5.
We can modify the basic BFS reachability algorithm in

order to reuse the markings that are computed every time

the Img function is evaluated. The newly generated

markings, instead of being accumulated in the To set, will

be placed back to the From set, to be reused in the same

iteration (see Fig. 5)Ðthis basic chaining technique is

named greedy chaining.

438 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

Fig. 4. Algorithm for safeness checking of a PN.

Fig. 6. Application example for the chaining reachability techniques.

Fig. 5. Symbolic PN traversal applying transition chaining.



The improved reachability algorithm will require only
one outermost iteration and three innermost iterations to
explore all possible markings in the example of Fig. 6c.
Assume that we process transitions in the order t1; t2; t3.
Starting from M1, in the first iteration transition, t1 will fire,
reaching M2. From fM1;M2g, t2 will fire, reaching M3 and
M4. Finally, from fM1; . . . ;M4g, t3 will fire, generating the
whole reachability set.

In practice, the greedy chaining technique can reduce the
number of iterations of the BFS algorithm in at least one
order of magnitude (see the experimental results in
Section 9). The method is especially effective if the
appropriate firing order of the transitions is selected, i.e.,
given a transition t, all transitions in its preset ���t� should
be fired firstÐnamed BFS chaining. Note, however, that this
is a heuristic technique that does not guarantee an optimal
chaining order. As an example, for the PN in Fig. 1a, we
could select the firing order t1; t3; t4; t2; t5; t6; t7.

6 WEIGHTED AND BOUNDED PETRI NETS

This section extends the PN modeling and analysis
techniques to weighted and bounded nets.

6.1 Place Encoding

A place p 2 P that may contain up to k tokens can be
represented by a set of Boolean variables, p0; . . . ; pKp , that
encode the up-to-k possible number of tokens in p. The
number of required variables depends on the type of
encoding. Different types of encoding strategies can be
considered, e.g., binary encoding, one-hot encoding, etc.

In a one-hot encoding scheme, k� 1 variables are needed

to encode a place. For example, in a 3-bounded PN, the

number of tokens in place p could be represented by four

variables (see Table 1). This scheme can be relaxed by using

the zero code to encode a nonempty place. In that case, only

k variables are required. When using a binary encoding

scheme, dlog2�k� 1�e Boolean variables are necessary for a

k-bounded place, e.g., two variables are required in a

3-bounded PN (see Table 1). A conventional binary

encoding can be used to encode the natural numbers

0; . . . ; k as a vector of Boolean variables p0; . . . ; pKp (for

Kp � dlog2�k� 1�e ÿ 1). For any natural number N such that

N �PKp

0 ni 2i, then:

8i 2 0; . . . ;Kp pi � 1 ni � 1
0 ni � 0:

�

Given that the number of variables, which is a critical

parameter in the efficiency of BDD algorithms, is larger for

one-hot encoding than for binary encoding, we will

concentrate on the latter strategy.

Fig. 7 describes a bounded PN that will be used as an

example along this section. The bounds for places p1, p2, p3,

and p4 are 3, 2, 2, and 6, respectively. Therefore, places p1,

p2, and p3 are encoded with two variables and p4 is encoded

with three variables. The characteristic function of the initial

marking of this PN when using a binary encoding is

p1
1 p

0
1 p1

2 p
0
2 p1

3 p
0
3 p2

4 p
1
4 p

0
4.

6.2 Transition Firing

This section introduces the transition functions and transi-

tion relations required to implement weighted PNs using a

binary encoding. The transition function for a transition t

(previously described in (2)) should be rewritten as:

�ti�p1; . . . ; pn� �
M�pi� ÿW�pi; t� if pi 2 �tnt�;
M�pi� �W�t; pi� if pi 2 t�n�t;
M�pi� ÿW�pi; t� �W�t; pi� if pi 2 t� \ �t;
M�pi� otherwise:

8>><>>:
The characteristic function of the set of bounded markings

in which transition t is enabled (Et) is also rewritten as:

Et �
Y
p2�t

M�p� � W�p; t�� �:
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TABLE 1
Encoding of Places for k-Bounded PNs (with k � 3)

Fig. 7. Bounded and weighted PN.



When using a binary encoding scheme, the number of

tokens in place p is represented with a set of Boolean

variables p0; . . . ; pKp and the weight W�p; t� is represented

by the same number of binary encoded Boolean constants

w0; . . . ; wKp . Then, the relation M�p� � W�p; t� can be

described by the equation:4

M�p� � W�p; t� � �pKp > wKp�
� �pKp � wKp� � �pKpÿ1 > wKpÿ1�
� �pKp � wKp� � �pKpÿ1 � wKpÿ1� � �pKpÿ2 > wKpÿ2�
. . . . . .

� �pKp � wKp� � �pKpÿ1 � wKpÿ1� � . . . � �p1 � w1� � �p0 > w0�
� �pKp � wKp� � �pKpÿ1 � wKpÿ1� � . . . � �p1 � w1� � �p0 � w0�:

Hence, the markings in which a transition t is enabled

are defined by the characteristic function Et:

Y
p2�t

XKp

i�0

�pi > wi� �
YKp

j�i�1

�pj � wj�
" #

�
YKp

i�0

�pi � wi�
" #

:

Given the example in Fig. 7, the characteristic functions

for each transition will be:

Et1 � ��p0
1 0� � �p1

1 � 1� � �p1
1 0� � �p0

1 � 0� � �p1
1 � 1�� � p1

1;

Et2 � ��p0
2 1� � �p1

2 � 0� � �p1
2 0� � �p0

2 � 1� � �p1
2 � 0��

��p0
4 0� � �p1

4 � 1� � �p2
4 � 0� � �p1

4 1� � �p2
4 � 0� � �p2

4 0�
� �p0

4 � 0� � �p1
4 � 1� � �p2

4 � 0��
� �p0

2 � p1
2� � �p1

4 � p2
4�;

Et3 � ��p0
3 1� � �p1

3 � 0� � �p1
3 0� � �p0

3 � 1� � �p1
3 � 0�� � p0

3 � p1
3:

For any marking in which transition t is enabled, it is

necessary to effectively implement the transition firing by

eliminating the corresponding tokens from any predecessor

place and adding the corresponding tokens to any successor

place.
The number of tokens in place pi is represented with a

vector of Boolean variables p0; . . . ; pKp and the number of

tokens that must be subtracted is represented by another

vector of Boolean constants w0; . . . ; wKp (either subtracting

W�pi; t� orW�t; pi� ÿW�pi; t� ifW�pi; t� >W�t; pi�). In those

cases, the transition function �t�M� is equivalent to the

subtraction of two natural numbers represented as binary

vectors that can be described by the set of equations:

��t1�M�; . . . ; �t
Kp �M�� �

�p0 � w0; with B0 � p0 � w0

p1 � w1 �B0; with B1 � p1 � w1 �B0 � �p1 � w1�
. . . . . .

p
Kp

i � wKp �BKpÿ1� with BKp
� pKp � wKp �BKpÿ1

��pKp � wKp�:
On the other hand, the number of tokens that must be

added is represented by another vector of Boolean constants

w0; . . . ; wKp (either adding W�t; pi� or W�t; pi� ÿW�pi; t� if

W�t; pi� >W�pi; t��. In those cases, the transition function

�t�M� is equivalent to the addition of two natural numbers

that can be described by the set of equations:

��t1�M�; . . . ; �t
Kp �M�� �

�p1 � w1; with C1 � p1 � w1

p2 � w2 � C1; with C2 � p2 � w2 � C1 � �p2 � w2�
. . . . . .

pKp � wKp � CKpÿ1� with CKp
� pKp � wKp � CKpÿ1

�pKp � wKp�:
In summary, the transition function �t

j

i for the jth

variable encoding the tokens in a place pi is:

�t
j

i �p1; . . . ; pn� �
pji � wj �Bjÿ1 if pi 2 �tnt�;
pji � wj � Cjÿ1 if pi 2 t�n�t;
pji � wj �Bjÿ1 if pi 2 t� \ �t ^ W�pi; t� >W�t; pi�;
pji � wj � Cjÿ1 if pi 2 t� \ �t ^ W�t; pi� >W�pi; t�;
pji otherwise;

8>>>>>>><>>>>>>>:
where the carry and borrow functions are defined as:

Cj � pji � wj � Cjÿ1 � �pji � wj� if j � 0

0 otherwise

(

Bj � pji � wj �Bjÿ1 � �pji � wj� if j � 0

0 otherwise:

(
Finally, the appropriate constant value wj must be taken for

each case, where Wj indicates the jth bit of the natural

constant W:

wj �
Wj�pi; t� if pi 2 �tnt�;
Wj�t; pi� if pi 2 t�n�t;
�W�pi; t� ÿW�t; pi��j if pi 2 t� \ �t ^W�pi; t� >W�t; pi�;
�W�t; pi� ÿW�pi; t��j if pi 2 t� \ �t ^W�t; pi� >W�pi; t�:

8>>><>>>:
Image computation based on transition relations can be

extended to bounded and weighted PNs by updating the

characteristic function of the relation Rt (see (6)) into:

Rt�q1 . . . qn; p1 . . . pn� �
YjPj
i�1

YKpi

j�0

qji � �t
j

i �p1; . . . ; pn�
� �

:

6.3 Boundedness Verification

The previous method works under the assumption that no

place will hold more than an upper bound k of tokens. This

bound can be either estimated by the designer or limited by

the structure of the PN.
When using a binary encoding for places, a violation

of the required boundedness condition for place p can be

interpreted as an overflow in the operations to compute

the actual number of tokens. Hence, each time a

transition t is enabled to fire, the boundedness of the

PN can be verified by using the specific carry function in

each successor place of t, that is,
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4. �a � b� stands for �a� b�, �a > b� for �ab�, and �a � b� for �a�b�.



overflow�t� � From � Et �
X
p2t�

CKp

" #
6� 0:

It is also possible to verify if a place p exceeds a

particular token count N . If the upper bound N is described

as a vector of constants N0; . . . ; NKp , the relation M�p� > N

is described by the equation:

M�p� > N � �pKp > NKp�
� �pKp � NKp� � �pKpÿ1 > NKpÿ1�
� �pKp � NKp� � �pKpÿ1 � NKpÿ1� � �pKpÿ2 > NKpÿ2�
� . . . . . . :

Therefore, the markings that contain more tokens at p

than the upper limit N are characterized by the equation:

BN�p� �
XKp

i�0

�pi > Ni�
YKp

j�i�1

�pj � Nj�
" #

:

7 PETRI NET REDUCTIONS

Petri nets can be reduced to simpler ones by using

transformation rules that preserve the properties of the

system being modeled. By applying these reductions, the

complexity of the image computation can be effectively

reduced. Among others, a set of six transformations that

preserve the properties of liveness, safeness, and

boundedness in ordinary PNs [9] are well-suited to be

applied in the proposed symbolic framework (see Fig. 8).

These transformations are a little bit more restrictive than

those introduced in [9]. This section describes how these

transformations can be used to reduce the number of

reachable markings and the sequential depth of the PNs.
The original PN N is iteratively reduced into a smaller

PN N 0 by applying these transformations. Once the image

computation analysis has been completed on N 0, the set of

reachable markings �Moi of the original net N is derived

using an inverted transformation on the set of reachable

markings �M 0
oi of N 0. The inverted transformations are

shown in Table 2.

As an example, Fig. 8b depicts how a PN can be reduced

by fusing transitions t1 and t2 into transition t12 (eliminating

place p). Given the reachable markings of the reduced PN

(R0), the original set of reachable markings is derived as:

R � R0Et12
� �Et1 � p�NPMt1 � p� �R0Et12

� �Et1 � Et2�. The in-

verse transformation partitions the reachable markings into

two sets, where t12 is enabled and not enabled, respectively.

If t12 is not enabled, then neither t1 nor t2 can be enabled in

the original net (Et2 implies that p � 0). If t12 is enabled, two

additional situations arise. If t1 was enabled, then p � 0.

But, if t1 has been just fired, all fanout places of t1 are

marked and, therefore, p � 1 (see NPMt1 in Section 4).
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Fig. 8. Transformations preserving liveness, safeness, and boundedness of ordinary PNs.

TABLE 2
Petri Net Reductions for Ordinary PNs with Their Symbolic Inverse Transformations



8 VERIFICATION OF PROPERTIES

This section describes how different PN properties can be

symbolically verified on the set of reachable markings.

Three basic properties of PNs have been chosen as

examples: liveness, persistence, and concurrency.

8.1 Liveness

The definition of liveness given in Section 2 can be further

refined in five different levels (from L0-liveness to

L4-liveness) 9. A transition t is said to be:

. L0-live (dead) if t can never be fired in any firing
sequence.

. L1-live (potentially fireable) if t can be fired at least
once in some firing sequence.

. L2-live if, given any positive integer k, t can be fired
at least k times in some firing sequence.

. L3-live if t can be fired infinitely often in some firing
sequence.

. L4-live (or simply live) if t is L1-live for every
reachable marking.

Finally, a PN has a deadlock if there exists a marking where

no transition can be fired.
The set of markings where a deadlock occurs can be

computed as:

Deadlock�PN� � �Moi �
Y
t2T

Et:

The set of markings where a transition t is potentially fireable

is computed as:

Fireable�t� � �M0i � Et:

Then, if Fireable�t� � 0, transition t is L0-live; otherwise, it

is at least L1-live.
Verifying that a transition can be fired an infinite number

of times (L3-liveness) or an infinite number of times from

any reachable marking of �Moi (L4-liveness) requires a more

complex analysis. Both problems are reduced to the

computation of the Strongly Connected Components in the

reachability graph.

A Strongly Connected Component (SCC) U of a directed
graph G � �V ;E� is a maximal set of vertices U � V such
that, for every pair of vertices u; v 2 U , v is reachable from u
(u e> v) and u is reachable from v (v e> u), that is, vertices u
and v are mutually reachable. A SCC is called trivial if it
only contains a single vertex. A SCC U is called terminal
(TSCC) if, from the vertices in U , it is not possible to reach
any vertex outside U .

A transition t enabled in all the markings of all the
TSCCs of the reachability graph is L4-live, because from any
marking of �Moi we will reach some TSCCi, where t can be
fired an infinite number of times. L4-liveness of transition t
can be computed as follows:

L4-live�t� � 8i �TSCCi � Et 6� 0�:
A transition t is L3-live if there is an SCCi that contains two
markings, M and M 0, and M�tiM 0, that is, there is a cycle in
which t can be fired an infinite number of times. L3-liveness
for transition t can be calculated as follows:

L3-live�t� �X
8i

SCCi�p1; . . . ; pn� � Et � Rt � SCCi�q1; . . . ; qn�� � 6� 0:

The algorithm to compute the TSCCs and SCCs of a PN

is shown in Fig. 9. Initially, the Transitive Closure (CT ) of the

Transition Relation is computed, where CT �x; y� � 1 if there

is a firing sequence from x that leads to y (x e> y) [8]. Given

CT , CY � CT �x; y� � CT �y; x� and CNY � CT �x; y� � CT �y; x�
can be computed, where CY �x; y� � 1 if x e> y and y e> x

and CNY �x; y� � 1 if x e> y, but there is no firing sequence

leading from y to x (y 6e> x). Next, the sets of markings that

are in any SCC (InSCC) or in any TSCC (InTSCC) are

computed. Finally, each individual SCC (TSCC) is obtained

from InSCC (InTSCC).
The individual SCC extraction is implemented sequen-

tially. Function extract_SCCs randomly takes one marking
and generates its associated SSC. The SCC is calculated by
multiplying the marking with the transitive closure,
abstracting the variables representing the current state,
and, finally, renaming the next state variables into current
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Fig. 9. SCC and TSCC sets computation algorithm.



state variables. Note that trivial SCCs without a reflexive arc
are eliminated in this step. The SCC (or the individual
marking if no SCC was generated) is eliminated from the
overall set of markings. The process is repeated until all
markings have been covered.

More recently, Xie et al. presented an algorithm to
compute the SSC and TSSC components in a sysstem
without using its transitive closure, which is the main
computational step [17]. Their algorithm can be directly
applied in this framework.

8.2 Persistence

A PN is said to be persistent if, for any two enabled

transitions, the firing of one transition will not disable the

other. The algorithm depicted in Fig. 10 verifies the

persistence of each transition in a PN. For each transition

t1, the set of markings in which t1 is enabled is computed.

Next, the set of markings reachable in one step by firing any

transition different from t1 is obtained. If t1 is not enabled in

any of those markings, then the net is not persistent.

8.3 Concurrency Relations

The dynamic behavior of a PN is indirectly defined by

analyzing which pairs of transitions are concurrent, i.e., if

there exists a reachable marking where both transitions can

fire without disabling each other. Formally, the Concurrency

Relation is a binary relation CR between pairs of transitions

T � T of the PN. Two transitions t1 and t2 are concurrent if

there exists a marking in which both transitions are enabled

and the firing of t1 or t2 does not disable the other, i.e.,

8t; t0 2 T : �t1; t2� 2 CR , 9M 2 �Moi : M�t1t2i ^M�t2t1i:
The algorithm to compute the pairs of transitions that are

concurrent is described in Fig. 10. For each pair �t1; t2� that

must be tested, the set of markings in which both transitions

are enabled is computed as Enabled � �Moi � Et1 � Et2 . From

these markings, both transitions t1 and t2 are independently

fired. The sets of reached markings are further restricted to

those in which transitions t2 and t1 are still enabled, i.e.,

Reach t1 :� Img�t1; Enabled� � Et2

and

Reach t2 :� Img�t2; Enabled� � Et1 :

The emptiness of either of the sets indicates the non-
concurrency between both transitions.

9 EXPERIMENTAL RESULTS

In this section, we illustrate the power of using Boolean
reasoning and BDDs for the analysis of PNs. We have
chosen several scalable examples to show how the
approach can easily analyze large nets without taking
advantage of its regularity. Some fairly large nonscalable
PNs are also included. CPU times have been obtained by
executing the algorithms on a Sun ULTRA 30 workstation
with 128 Mbyte main memory. We present the results
corresponding to the calculation of the reachable set,
which dominates the complexity of the analysis. Most
properties can be verified in a straightforward manner
from �Moi, as shown in Section 8.

We have considered three different scalable examples.
The first example is the well-known dining philosophers
paradigm, n being the number of philosophers, represented
by the PN shown in Fig. 11a. The second example is the
Muller's C-element pipeline depicted in Fig. 11b, n being
the number of cells in the pipeline. The third models a
slotted ring protocol for Local Area Networks, shown in
Fig. 11c, n being the number of nodes in the network.

This section presents three sets of experiments. First, we
analyze the general behavior of the symbolic traversal
algorithms, the number of iterations, the evolution of the
BDD sizes, and computation times. The second experiment
justifies the benefits of the transition chaining heuristic. We
show that this method can drastically reduce the number of
iterations required to complete the traversal and indirectly
the CPU computation times. The final experiment presents
traversal results for a wide range of nets, comparing
iterations, CPU times, and number of BDD nodes for the
chained/nonchained symbolic traversal of a variety of safe
and bounded nets.

A good variable ordering for the BDD manipulation is
extremely important to achieve an efficient implementation.
In all examples, we let the BDD package choose the
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Fig. 10. Algorithms to verify PN persistence and compute transition concurrency.



ordering with some initial support from the structure of the

PN (the P-invariants of the net). We also include some

comparison values between optimized orderings and

nonoptimized orderings.

9.1 Symbolic Traversal Behavior

Table 3 shows the number of markings of the philosophers

PN. The BDD representing �Moi has been calculated by

using the traversal algorithm presented in Fig. 3. Columns

(maxDD) depicts the maximal number of BDD nodes

required by the package and (rsDD) the final number of

BDD nodes to represent the reachability set.
Fig. 12 depicts the number of reachable markings in the

original PN compared to the reachable markings in the

reduced net (without chaining). For that particular example,

the number of markings is reduced an order of magnitude

on average. Fig. 12 also depicts the number of reached

markings at each iteration of the traversal algorithm for the

reduced net. The slope between iterations 20 to 30 illustrates

the ability of the symbolic approach to process large sets of
markings in parallel.

Although the number of reached markings is small, the
size of the BDD ªReachedº at intermediate iterations can be
larger than the final BDD. This is a usual phenomenon in
the traversal of sequential machines using BDDs. Fig. 13
demonstrates that the peak size of the BDDs during the
traversal algorithm may grow much further than the final
size. Note that, in the worst case, the peak size of the
number of BDD nodes is more than 10 times larger than the
final size of the BDD. Fig. 13 also shows the relation
between the BDD sizes in both the original PN and its
reduced version. In this particular example, only a small
reduction in the BDD sizes is achieved by reducing the net.

9.2 Transition Chaining

The second set of experiments is applied to the Muller's
C-element pipeline. For this benchmark, we have analyzed
the influence of chaining techniques. Chaining drastically
reduces the number of traversal iterations required to
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Fig. 11. Petri net specification for (a) a dining philosopher, (b) Muller's C-element pipeline, (c) slotted ring protocol for one node.

TABLE 3
Results for Scalable Safe PNs



compute the reachability set. Fig. 14 shows how, for the
pipeline with 40 elements, the number of iterations is
reduced from 250 in the initial methodology to 30 applying
greedy chaining and to 12 iterations applying BFS chaining
techniques.

It is also important to note that chaining techniques have a
direct impact on the peak sizes of the BDDs. The addition of
an extremely large number of markings at each traverse
iteration offers more options for paths recombinations in the
BDDs, thus drastically reducing its size. Fig. 15 shows how
the BDD peak sizes are one order of magnitude smaller and,
therefore, closer to the final BDD sizes. The combination of
the previous advantages, reduce the number of iterations and
reduce the number of BDD sizes, has a direct impact on the
performance of the traversal algorithms. Fig. 16 shows how
the CPU computation times are reduced several orders of

magnitude, allowing to complete in less than 2� 104 seconds

the verification of a Muller's pipeline with 100 stages.

9.3 Versatility

In this section, we present experimental results to demon-

strate the robustness of the proposed method. We analyze

the cost of generating the reachability set for various types

of PNs, both safe and bounded. For all cases, we provide the

number of Boolean variables required by the encoding (V),

the maximum number of BDD nodes required by the

package (maxDD), the final number of BDD nodes to

represent the reachability set (rsDD), the number of traverse

iterations (ite), and the computation times (CPU). All tables

compare the results for nonoptimized traversal and

optimized traversal when using chaining techniques and

allowing the BDD manager to improve the variable order.
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Fig. 12. Number of markings reached at each traverse iteration and the total number of markings in the original and reduced net for the dining

philosophers example.

Fig. 13. Number of BDD nodes in the original and reduced net and size of the BDD ªReachedº at each traverse iteration for the dining philosophers

example.

Fig. 14. Percentage of markings reached after each traverse iteration for Muller's pipeline.



Table 3 presents optimized results for scalable safe nets,
including the dining philosophers, the Muller's pipeline,
and the slotted ring protocol.

Table 4 presents the results for nonscalable safe nets. The
upper half of the table includes PNs modeling software
programs, among others, mutual exclusion algorithms,
readers and writers, etc. For these sets of PNs, results are
promising, chaining appears to be quite effective, but some
additional effort is needed to reduce the BDD sizes. The
lower half includes PNs modeling hardware devices,
including parallelizers, distributed mutual exclusion

elements (DME), and registers. For this set of PNs, results
are much worst. Most nonoptimized experiments do not
complete due to an Out-of-Memory (OM) condition. When
optimization is used, all experiments are completed, but
require extremely large BDD sizes. The main reason for this
behavior is that most examples include pairs of places to
describe the behavior of digital signals. This type of PNs are
extremely sensitive of the variable order. Note that, for all
safe nets, the linear programming techniques provide
enough information to determine before the symbolic
traversal that the PNs are actually safe.
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Fig. 15. BDD peak sizes for Muller's pipeline with and without applying chaining.

Fig. 16. CPU computation times for Muller's pipeline with and without applying chaining.

TABLE 4
Results for Safe PNs



Table 5 presents a mixture of results for nonscalable and
scalable bounded nets. The upper half of the table includes
simple PNs modeling a robot in a flexible manufacturing
environment. For these sets of PNs, the number of BDD
nodes required to represent the reachability set could be
even larger that the number of markings. These results
show that symbolic techniques have a constant overhead
that makes them efficient only for highly concurrent PN,
where the implicit parallelism of the method can be fully
exploited. The second set of scalable PNs models a
pipelined implementation of the instruction decoder of a
real microprocessor [16], the suffix in the name indicating
the number of columns, rows, and length of each cell. This
example shows that complex bounded PNs (on average,
three bits are used to encode each place) can be analyzed in
reasonable computation times.

10 CONCLUSIONS AND FUTURE WORK

This paper presents the combination of Boolean reasoning
and BDD algorithms to manage the state explosion produced
in Petri net analysis. It has been shown that BDDs can
efficiently represent and manipulate large sets of reachable
markings with a small number of BDD nodes. Once the
reachable markings have been generated, several proper-
ties, such as safeness, boundedness, liveness, persistence,
and concurrency, can be verified since they are reduced to
the computation of well-known Boolean formulas. There-
fore, BDDs are proposed as an alternative to the reachability
tree or other enumerative techniques, providing a compact
representation of the markings of any bounded PN.

Many issues are still under research to increase the
applicability of the approach. The ordering of variables is a
topic of major interest that must be studied in order to
reduce even more the size of the BDDs, thus speeding-up
BDD operations. As mentioned in Section 6, the encoding
methods for k-bounded nets must be further explored. The
combination of symbolic methods with structural and linear
programming techniques as described in [11], more power-
ful reduction methodologies, improved chaining traversal,
and more compact BDD variable encoding are clear areas
for future development.
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