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Immunization of complex networks
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Complex networks such as the sexual partnership web or the Internet often show a high degree of redun-
dancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environ-
ment for the spreading of infective agents. Here we show that the random uniform immunization of individuals
does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free
properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealisti-
cally high densities of randomly immunized individuals. The absence of any critical immunization threshold is
due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can
be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In
particular, targeted immunization schemes, based on the nodes’ connectivity hierarchy, sharply lower the
network’s vulnerability to epidemic attacks.
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I. INTRODUCTION

The relevance of spatial and other kinds of heterogen
in the design of immunization strategies has been wid
addressed in the epidemic modeling of infectious disea
@1,2#. In particular, it has been pointed out that populati
inhomogeneities can substantially enhance the spread of
eases, making them harder to eradicate and calling for
cific immunization strategies. This issue assumes the gre
importance in a wide range of natural interconnected syst
such as food webs, communication and social netwo
metabolic and neural systems@3,4#. The complexity of these
networks resides in the small average path lengths am
any two nodes~small-world property!, along with a large
degree of local clustering. In other words, some spe
nodes of the structure develop a larger probability to es
lish connections pointing to other nodes. This feature
dramatic consequences in the topology of scale-free~SF! net-
works @5–7# that exhibit a power-law distribution

P~k!;k2g ~1!

for the probability that any node hask connections to othe
nodes. For exponents in the range 2,g<3, this connectivity
distribution implies that, for large network sizes, the nod
have a statistically significant probability of having a ve
large number of connections compared to the average
nectivity ^k&. This feature contrasts with what is found fo
homogeneous networks~local or nonlocal! in which each
node has approximately the same number of links,k.^k&
@8,9#. The extreme heterogeneity of SF networks finds
most stunning examples in two artificial systems, the Wor
wide web@5,10# and the Internet@6,11,12#. Along with these
technological networks, it has also been pointed out t
sexual partnership networks are often extremely hetero
neous@1,13,14#, and it has been recently observed that
network of sexual human contacts possesses a well-de
scale-free nature@15#.
1063-651X/2002/65~3!/036104~8!/$20.00 65 0361
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In homogeneous networks, an epidemic occurs only if
rate of infection of ‘‘healthy’’ individuals connected to in
fected ones exceeds the so-calledepidemic threshold; in
other words, if the disease cannot transmit itself faster t
the time of cure, it dies out@1,2#. In heterogeneous networks
on the other hand, it is well-known that the epidemic thre
old decreases with the standard deviation of the connecti
distribution @1#. This feature is paradoxically amplified i
scale-free networks that have diverging connectivity fluct
tions. In fact, as it was first noted in Refs.@16,17#, epidemic
processes in SF networks do not possess, in the limit o
infinite network, an epidemic threshold below which di
eases cannot produce a major epidemic outbreak or the
of an endemic state. SF networks are, therefore, prone to
spreading and the persistence of infections, whatever v
lence the infective agent might possess.

In view of this weakness, it becomes a major task to fi
optimal immunization strategies oriented to minimize t
risk of epidemic outbreaks on SF networks, task with imm
diate practical and economical implications. This paper p
sents a parallel comparison of the effect of different imm
nization schemes in the case of two different comp
networks: the Watts-Strogatz model@9# and the Baraba´si and
Albert model@5#. The first is a homogeneous network exhi
iting small-world properties, while the second one is the p
totype example of SF network. By studying the susceptib
infected-susceptible model@2# in presence of progressivel
greater immunization rates, we find that uniformly appli
immunization strategies are effective only in complex n
works with bounded connectivity fluctuations. On the co
trary, in SF networks the infection is not eradicated even
the presence of an unrealistically high fraction of immuniz
individuals. Actually, SF systems do not have any critic
fraction of immunized individuals and only the total immu
nization of the network achieves the infection’s eradicatio
In order to overcome these difficulties we define optim
immunization strategies that rely on the particular SF str
ture of the network. The developed strategies allow us
©2002 The American Physical Society04-1
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achieve the total protection of the network even for e
tremely low fractions of successfully immunized individua

II. THE MODEL

In order to estimate the effect of an increasing density
immune individuals in complex networks, we will invest
gate the standard susceptible-infected-susceptible~SIS!
model@2#. This model relies on a coarse-grained descript
of individuals in the population. Namely, each node of t
graph represents an individual and each link is a connec
along which the infection can spread. Each suscept
~healthy! node is infected with raten if it is connected to one
or more infected nodes. Infected nodes are cured and bec
again susceptible with rated, defining an effective spreadin
rate l5n/d ~without lack of generality, we setd51). The
SIS model does not take into account the possibility of in
viduals’ removal due to death or acquired immunization@2#,
and thus individuals run stochastically through the cycle s
ceptible→ infected→ susceptible. This model is general
used to study infections leading to endemic states wit
stationary average density of infected individuals.

A. Homogeneous complex networks

A wide class of network models@8,9# have exponentially
bounded connectivity fluctuations. A paradigmatic exam
of this kind of networks that has recently attracted a gr
deal of attention is the Watts-Strogatz~WS! model@9#, which
is constructed as follows: The starting point is a ring withN
nodes, in which each node is symmetrically connected w
its 2K nearest neighbors. Then, for every node each
connected to a clockwise neighbor~thus K links for each
node! is kept as originating from the original node and r
wired to a randomly chosen target node with probabilityp.
This procedure generates a random graph with a connect
distributed exponentially for largek, and an average connec
tivity ^k&52K. It is worth remarking that even in the cas
p51 the network keeps the memory of the construction
gorithm and is not equivalent to a random graph. In fact,
definition each node emanates at least theK links which have
been rewired from the clockwise neighbors to randomly c
sen nodes; a property that affects also the clustering pro
ties of the graph~for details see Ref.@18#!.

For the class of exponentially bounded networks, one
generally consider that each node has roughly the same n
ber of links,k.^k&, and, therefore, we can consider them
fairly homogeneous in their connectivity properties. At
mean-field level, the equation describing the time evolut
of the average density of infected individualsr(t) ~preva-
lence! is

dr~ t !

dt
52r~ t !1l^k&r~ t !@12r~ t !#. ~2!

The mean-field character of this equation stems from the
that we have neglected the density correlations among
different nodes, independently of their respective connect
ties. The first term on the right-hand side~rhs! in Eq. ~2!
considers infected nodes becoming healthy with unit ra
03610
-
.

f

n

n
le

me

-

s-

a

e
t

h
k

ity

l-
y

-
er-

n
m-
s

n

ct
he
i-

e.

The second term represents the average density of ne
infected nodes generated by each active node. This is
portional to the infection spreading ratel, the number of
links emanating from each nodek.^k&, and the probability
that a given link points to a healthy node,@12r(t)#. After
imposing the stationary conditiondr(t)/dt50, the most sig-
nificant and general result is the existence of a nonzero
demic thresholdlc5^k&21 @2# such that

r50 if l,lc , ~3!

r;l2lc if l>lc. ~4!

In other words, if the value ofl is above the threshold,l
>lc , the infection spreads and becomes endemic. Below
l,lc , the infection dies out exponentially fast. The ex
tence of an epidemic threshold is a general result in epide
modeling, present also in different models such as
susceptible-infected-removed model@2#. In analogy with
critical phenomena@19#, this kind of behavior can be identi
fied as an absorbing-state phase transition, in whichr plays
the role of the order parameter in the phase transition anl
is the tuning parameter, recovering the usual mean-field
havior @19#.

B. Scale-free networks

This standard framework is radically changed in the cl
of SF networks@16,17#, in which the probability distribution
that a node hask connections has the formP(k);k2g and
the connectivity fluctuations,̂k2&, diverge in infinite net-
works for any value 2,g<3. The paradigmatic example o
SF network is the Baraba´si and Albert~BA! model @5#. The
construction of the BA graph starts from a small numberm0
of disconnected nodes; every time step a new vertex
added, withm links that are connected to an old nodei with
probability P(ki)5ki /( j kj , whereki is the connectivity of
the i th node. After iterating this scheme a sufficient numb
of times, we obtain a network composed byN nodes with
connectivity distributionP(k);k23 and average connectiv
ity ^k&52m. For this class of graphs, the absence of a ch
acteristic scale for the connectivity makes highly connec
nodes statistically significant, and induces strong fluctuati
in the connectivity distribution that cannot be neglected.
order to take into account these fluctuations, we have to re
the homogeneity assumption used for homogeneous
works, and consider the relative densityrk(t) of infected
nodes with given connectivityk; i.e., the probability that a
node with k links is infected. The dynamical mean-fiel
equations can thus be written as@16,17#

drk~ t !

dt
52rk~ t !1lk@12rk~ t !#Q„r~ t !…, ~5!

where also in this case we have considered a unity reco
rate. The creation term considers the probability that a n
with k links is healthy@12rk(t)# and gets the infection via
a connected node. The probability of this last event is p
portional to the infection ratel, the number of connection
k, and the probabilityQ„r(t)… that any given link points to
4-2
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an infected node. The probability that a link points to a no
with s links is proportional tosP(s). In other words, a ran-
domly chosen link is more likely to be connected to an
fected node with high connectivity, yielding

Q„r~ t !…5

(
k

kP~k!rk~ t !

(
s

sP~s!

, ~6!

where(ssP(s) is identical to^k& by definition. In the sta-
tionary state@drk(t)/dt50#, Eq. ~5! yields the following
infected node density form:

rk5
lkQ

11lkQ
. ~7!

By inserting the above expression forrk in Eq. ~6!, we ob-
tain the self-consistency equation

Q5
1

^k& (
k

kP~k!
lkQ

11lkQ
, ~8!

whereQ is now a function ofl alone@16,17#. The solution
Q50 is always satisfying the consistency equation. A no
zero stationary prevalence (rkÞ0) is obtained when the rh
and the lhs of Eq.~8!, expressed as function ofQ, cross in
the interval 0,Q<1, allowing a nontrivial solution. It is
easy to realize that this corresponds to the inequality

d

dQ S 1

^k& (
k

kP~k!
lkQ

11lkQ DU
Q50

>1 ~9!

being satisfied. The value ofl yielding the equality in Eq.
~9! defines the critical epidemic thresholdlc , that is given
by

(
k

kP~k!lck

^k&
5

^k2&

^k&
lc51⇒lc5

^k&

^k2&
. ~10!

This result implies that in SF networks with connectivi
exponent 2,g<3, for which^k2&→`, we havelc50. This
fact implies in turn that for any positive value ofl the in-
fection can pervade the system with a finite prevalence,
sufficiently large network@16,17#. For smalll it is possible
to solve explicitly Eq.~8! for SF networks and calculate th
prevalence in the endemic state asr5(kP(k)rk as shown in
Refs. @16,17#. Calculations can be carried out by using t
continuousk approximation, valid for largek @20#, that as-
sumeŝ kn&5*m

`knP(k)dk, wherem is the minimum number
of connections of any node andP(k) is a properly defined
probability density of connections. For the particular case
the BA network we haveP(k)52m2k23 @5#, that in the limit
of an infinitely large network yields the prevalence@16,17#

r.2 exp~21/ml!. ~11!
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Obviously, ^k2& assumes a bounded value in finite si
networks, defining an effective thresholdlc(N).0 due to
finite size effects, as customarily encountered in nonequi
rium phase transitions@19#. This epidemic threshold, how
ever, is not anintrinsic quantity as in exponential network
and it is vanishing for increasing network sizes; i.e. in t
thermodynamic limit. Since real networks have always a
nite size, however, it is interesting to calculate how the e
demic threshold scales with the system size@21#. By consid-
ering the continuousk approximation, it is possible to
calculate the finite size distribution moments as^kn&
5*m

kcknP(k)dk, wherekc is the largest connectivity presen
in the finite network. For networks composed byN nodes,kc
is obviously an increasing function ofN. In the particular
case of the BA model, we readily obtain^k&.2m and ^k2&
.2m2 ln(kc /m) askc→`. Substituting this values in the Eq
~10! we obtain a thresholdlc.@m ln(kc /m)#21. In order to
find the size dependence oflc , we have to relate the maxi
mum connectivitykc with the network sizeN. This relation
is given bykc.mN1/2 @20,22#, yielding finally a threshold

lc~N!5
^k&

^k2&
;

1

ln~N!
. ~12!

This result can be generalized to SF networks with an a
trary connectivity distribution, which show an epidem
threshold vanishing as a power-law behavior inN with an
exponent depending on the connectivity exponentg @23#.

III. UNIFORM IMMUNIZATION STRATEGY

The simplest immunization procedure one can consi
consists of the random introduction of immune individuals
the population@1#, in order to get a uniform immunization
density. Immune nodes cannot become infected and, thus
not transmit the infection to their neighbors. In this case,
a fixed spreading ratel, the relevant control parameter is th
immunity g, defined as the fraction of immune nodes pres
in the network. At the mean-field level, the presence of u
form immunity will effectively reduce the spreading ratel
by a factor (12g); i.e. the probability of finding and infect
ing a susceptible and nonimmune node. By substitutingl
→l(12g) in Eqs. ~2! and ~5! we obtain the prevalence
behavior for progressively larger immunization rates.

In homogeneous networks, such as the WS model, i
easy to show that in the case of a constantl, the stationary
prevalence obtained from Eq.~2! is given by

r50 if g.gc , ~13!

r;gc2g if g<gc . ~14!

Here,gc is the critical immunization value above which th
density of infected individuals in the stationary state is n
and depends onl as

gc5
l2lc

l
. ~15!
4-3
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FIG. 1. ~a! Reduced prevalencerg /r0 from computer simulations of the SIS model in the WS network with uniform and targ
immunization at a fixed spreading ratel50.25. Extrapolation of the linear behavior ofrg for the largest immunization values yields a
estimate of the critical immunitygc.0.385.~b! Typical plots ofrg(t) as a function of time, averaged over 100 starting configurations,
the SIS model in WS networks with uniform immunization, for different values ofg. From top to bottom:g50.1, 0.14, 0.35, and 0.43. Fo
the last value ofg ~above the critical immunization! all runs die, independently of the network sizeN.
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Thus, the critical immunization that achieves eradication
related to the spreading rate and the epidemic threshol
the infection. Eq.~15! is obviously valid only forl.lc , and
it implies that the critical immunization allowing the com
plete protection of the network~null prevalence! is increas-
ing with the spreading ratel.

On the contrary, uniform immunization strategies on
networks are totally ineffective. The presence of immuni
tion depresses the infection’s prevalence too slowly, and
impossible to find any critical fraction of immunized ind
viduals that ensures the infection eradication. The absenc
an epidemic threshold (lc50) in the thermodynamic limit
implies that whatever rescalingl→l(12g) of the spread-
ing rate does not eradicate the infection except the casg
51. In fact, by using Eq.~10! we have that the immunizatio
threshold is given by

12gc5
1

l

^k&

^k2&
. ~16!

In SF networks witĥ k2&→` only a complete immunization
of the network~i.e.,gc51) ensures an infection-free statio
ary state. The fact that uniform immunization strategies
less effective has been noted in several cases of spatial
erogeneity@1#. In SF networks we face a limiting case due
the extremely high~virtually infinite! heterogeneity in con-
nectivity properties. Also in this case finite networks pres
an effective thresholdgc(N) depending on the number o
nodesN. As for the epidemic threshold, however, we are n
in presence of an intrinsic quantity and we have thatgc(N)
→1 in the thermodynamic limitN→`. In the case of the BA
model, inserting the expression~12! into Eq. ~16!, we ob-
serve that the immunization threshold scales as

12gc~N!;
1

l ln~N!
. ~17!
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Also in this case it is possible to generalize this result
arbitrary connectivity exponentsg @23#.

In order to provide further support to the present me
field ~sometimes called the deterministic approximation! de-
scription, we study by means of numerical simulations
behavior of the SIS model on the WS and the BA networ
In these systems, because of the nonlocal connectivity, m
field predictions are expected to correctly depict the mod
behavior. In the present work we consider the parameterK
53 and maximal disorderp51 for the WS network, and
m055 andm53 in the case of the BA network.

In the presence of uniform immunization, we can stu
the system by looking at the infection’s prevalence in t
stationary regime~endemic state! as a function of the immu-
nity g. The uniform immunization is implemented by ran
domly selecting and immunizinggN nodes on a network o
fixed size N. Our simulations are implemented at a fixe
spreading ratel50.25. The number of nodes range fro
N5104 to N5106. We analyze the stationary properties
the density of infected nodesrg ~the infection prevalence!
for different values of the immunizationg. Initially we infect
half of the susceptible nodes in the network, and iterate
rules of the SIS model with parallel updating. The prevalen
is computed averaging over at least 100 different start
configurations, performed on at least 10 different realizatio
of the network. In Fig. 1~a!, we show the behavior of the
reduced prevalencerg /r0 ~wherer0 is the prevalence with-
out immunization! as a function of the uniform immuniza
tion g in the WS network. We observe that the prevalence
infected nodes decays drastically for increasing immuni
tion densities@see Fig. 1~b!#. In particular, we observe the
presence of a sharp immunization thresholdgc.0.385, in
fair agreement with the estimategc.0.36 from Eq.~15! with
the valuesl50.25 and the estimatelc.0.16 from Ref.@17#.
In the biological case, this effect motivates the use of glo
vaccination campaigns in homogeneous populations in o
to reach a density of immune individuals that secures fr
major outbreaks or endemic states. On the contrary, the
4-4
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FIG. 2. ~a! Reduced prevalencerg /r0 from computer simulations of the SIS model in the BA network with uniform and targe
immunization, at a fixed spreading ratel50.25. A linear extrapolation from the largest values ofg yields an estimate of the thresholdgc

.0.16 in BA networks with targeted immunization.~b! Check of the predicted functional dependencerg;exp@21/ml(12g)# for the SIS
model in the BA network with uniform immunization.
n-
i

e

o

ea
io

la-
to
ate

r of
ase
pe-

-
ent
n-
sults for the SF network, depicted in Fig. 2~a!, show a strik-
ingly different behavior. Namely, the density of infected i
dividuals decays slowly with increasing immunization, and
would be null only for the complete immunization of th
whole network (g51). Specifically, it follows from Eq.~11!
that the SIS model on the BA network shows forg.1 and
any l the prevalence

rg.2 exp@21/ml~12g!#. ~18!

We have checked this prediction in Fig. 2~b!. In other words,
the infection always reaches an endemic state if the netw
size is enough large@see Fig. 3~a!#. This points out the ab-
sence of an immunization threshold; SF networks are w
in face of infections, also after massive uniform vaccinat
campaigns.
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IV. OPTIMIZED IMMUNIZATION STRATEGIES

When fighting an epidemic in an heterogeneous popu
tion with a uniform vaccination scheme, it is necessary
vaccinate a fraction of the population larger than the estim
given by a simple~homogeneous! assumption@1#. In this
case, it can be proved@1# that optimal vaccination programs
can eradicate the disease vaccinating a smaller numbe
individuals. SF networks can be considered as a limiting c
of heterogeneous systems and it is natural to look for s
cifically devised immunization strategies.

A. Proportional immunization

A straightforward way to reintroduce an intrinsic immu
nization threshold in SF networks consists in using differ
fractions of immunized individuals according to their co
e SIS
s
0

FIG. 3. ~a! Typical plots ofrg(t) as a function of time, averaged over 100 starting configurations, from computer simulations of th
model in BA networks with uniform immunization for different values ofg. From top to bottom:g50.1, 0.14, 0.3, and 0.5. For all value
of g shown, the endemic state is reached in a sufficiently large network.~b!Typical plots ofrg(t) as a function of time, averaged over 10
starting configurations, for the SIS model in BA networks with targeted immunization for different values ofg. From top to bottom:g
50.1, 0.14, and 0.3.For the last value, larger than the critical immunization, all runs die for any network size.
4-5
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nectivity. Let us definegk as the fraction of immune indi
viduals with a given connectivityk. If we impose the condi-
tion

l̃[lk~12gk!5const, ~19!

we observe that Eq.~5! become identical and decouple
defining effectively a homogeneous system. The density
infected individuals is the same for all connectivitiesk, and
an epidemic thresholdl̃c51 is reintroduced in the system
This condition requires thatk(12gk) is constant for all
groups of connectivityk at the threshold, implying thatgk
;121/kl; i.e., a larger portion of individuals must be im
munized in groups with larger connectivity. In this schem
the total density of immunized individuals can be easily c
culated by averaginggk over the various connectivity
classes. The fraction of nonimmunized individuals 12gk
cannot be larger than one, thus we focus only on classes
connectivity such that the reproductive numberk.l21. To
eradicate the infection, we need thatgk>121/kl in all
classes with connectivityk.l21, defining the critical frac-
tion of immunized individuals as

gc5 (
k.l21

S 12
1

lkD P~k!. ~20!

In order to perform an explicit calculation for the BA mode
we use again the continuousk approximation@5#. In this case
we obtain that

gc5 1
3 ~ml!2. ~21!

This result can be readily extended to SF networks with
bitrary g values, and it is worth remarking that this recipe
along the lines of that introduced in the immunization
heterogeneously populated groups@1#. Recently, a similar
strategy has been put forward in Ref.@24# by proposing to
cure with proportionally higher rates the most connec
nodes.

B. Targeted immunization

While proportional immunization schemes are effective
finally introducing a well-defined immunization threshol
the very peculiar nature of SF networks allows to defi
more efficient strategies based on the nodes’ hierarchy
particular, it has been shown that SF networks posse
noticeable resilience to random connection failures@25–27#,
which implies that the network can resist a high level
damage~disconnected links!, without loosing its global con-
nectivity properties; i.e., the possibility to find a connect
path between almost any two nodes in the system. At
same time, SF networks are strongly affected by selec
damage; if a few of the most connected nodes are remo
the network suffers a dramatic reduction of its ability to ca
information @25–27#. Applying this argument to the case o
epidemic spreading, we can devise atargetedimmunization
scheme in which we progressively make immune the m
highly connected nodes, i.e., the ones more likely to spr
the disease. While this strategy is the simplest solution to
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optimal immunization problem in heterogeneous populatio
@1#, its efficiency is comparable to the uniform strategies
networks with finite connectivity variance. In SF network
on the contrary, it produces an arresting increase of the
work tolerance to infections at the price of a tiny fraction
immune individuals.

Let us consider the situation in which a fractiong of the
individuals with the highest connectivity are successfully i
munized. This corresponds, in the limit of a large network,
the introduction of an upper thresholdkt , such that all nodes
with connectivityk.kt are immune. The fraction of immu
nized individuals is then given by

g5 (
k.kt

P~k!, ~22!

a relation that renderskt an implicit function ofg. The pres-
ence of the cut-offkt(g) defines the new average quantiti
^k& t5(m

ktkP(k) and ^k2& t5(m
ktk2P(k), which are on their

turn function ofg. At the same time, all links emanating from
immunized individuals can be considered as if they w
removed. The probabilityp(g) that any link will lead to an
immunized individual is then given by

p~g!5

(
k.kt(g)

kP~k!

(
k

kP~k!

, ~23!

and if we consider that this fractionp(g) of links are effec-
tively removed, the new connectivity distribution after th
immunization of a fractiong of the most connected individu
als is @27#

Pg~k!5 (
q>k

kt

P~q!S q

kD ~12p!kpq2k. ~24!

The new distribution~after cut-off introduction and link re-
moval! yields the first two momentŝk&g5^k& t(12p) and
^k2&g5^k2& t(12p)21^k& tp(12p) @27#. By recalling Eq.
~10!, the critical fractiongc of immune individuals needed to
eradicate the infection will be given by the relation

^k2&gc

^k&gc

[
^k2& t

^k& t
@12p~gc!#1p~gc!5l21. ~25!

An explicit calculation for the BA network in the continuou
k approximation yields that the density of immunized nod
is related to the connectivity threshold as

g512E
m

kt
P~k!dk5m2kt

22 . ~26!

By inverting this relation we obtain that the connectivi
threshold iskt5mg21/2, yielding that

p~g!5
1

2m S 12E
m

kt
kP~k!dkD 5g1/2. ~27!
4-6
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As well, we can obtain̂ k& t.2m and ^k2& t.2m2 ln(g21/2)
as kt5mg21/2→`. By inserting these values into Eq.~25!
we obtain the approximate solution for the immunizati
threshold in the case of targeted immunization as

gc.exp~22/ml!. ~28!

This clearly indicates that the targeted immunization p
gram is extremely convenient in SF networks where the c
cal immunization is exponentially small in a wide range
spreading ratesl. Also in this case, the present result can
generalized for SF networks with arbitrary connectivity e
ponentg.

In order to test the targeted immunization scheme we h
implemented numerical simulations of the SIS model on
WS and BA networks by immunizing thegN nodes with the
highest connectivity. Note that, for a given network, th
method is essentially deterministic: Once we identify the
erarchy in the node’s connectivity distribution, we proceed
protect those nodes on top of the list. Simulations are p
formed at a fixed spreading ratel50.25. In Fig. 1~a! we
report the behavior of the prevalence of infected nodes
the WS network with targeted immunization; the results c
responding to the BA graph are plotted in Fig. 2~a!. In the
case of the WS network, the behavior of the prevalence
function of g is equivalent in the uniform and targeted im
munization procedures. The connectivity fluctuations
small, and the immunization of the most connected node
equivalent to the random choice of immune nodes. This c
firms that targeted strategies do not have a particular
ciency in systems with limited heterogeneity. On the co
trary, in the case of the BA network, we observe a dra
variation in the prevalence behavior. In particular, the pre
lence suffers a very sharp drop and exhibits the onset o
immunization threshold above which no endemic state
possible~zero infected individuals!. A linear extrapolation
from the largest values ofg yields an estimate of the ver
convenient thresholdgc.0.16. This definitely shows that S
networks are highly sensitive to the targeted immunization
a small fraction of the most connected nodes@see Fig. 2~a!
and Fig. 3~b!#. While these networks are particularly weak
face of infections, the good news consist in the possibility
devise immunization strategies which are extremely eff
tive.

V. DISCUSSION AND CONCLUSIONS

The present results indicate that the SF networks’ sus
tibility to epidemic spreading is reflected also in an intrins
difficulty in protecting them with local—uniform—
immunization. On a global level, uniform immunization po
cies are not satisfactory and, in analogy with disease spr
ing in heterogenous populations, only targeted immuniza
procedures achieve the desired lowering of epidemic o
breaks and prevalence. This evidence radically changes
usual perspective of the regular epidemiological framewo
Spreading of infectious or polluting agents on SF networ
such as food or social webs, might be contrasted only b
careful choice of the immunization procedure. In particu
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these procedures should rely on the identification of the m
connected individuals. The protection of just a tiny fracti
of these individuals raises dramatically the tolerance to
fections of the whole population

A practical example is provided by the spreading of
ruses in the Internet@28#. The SF nature of this network i
the outcome of a connectivity redundancy, which is qu
welcome because it ensures a greater error tolerance th
less connected networks. On the other hand, despite the
use of antivirus software that is available in the mark
within days or weeks after the first virus incident report, t
average lifetime of digital epidemics is impressively lar
~10–14 months! @16#. Numerical simulations of the SIS
model on real maps of the Internet can provide further s
port to our picture. The SIS model is, in fact, well suited
describe Domain Name System–cache computer viruses@29#
~the so-called ‘‘natural computer viruses’’!, and different
digital viruses can be modeled by considering the rand
neighbor version of the model@19#!; i.e. infected emails can
be sent to different nodes that are not nearest neighbors.
map considered here, provided by the National Laborat
for Applied Network Research~NLANR! and available at
the web site http://www.moat.nlanr.net/Routing/rawdat
contains 6313 nodes and 12362 links, corresponding to
average connectivitŷk&53.92. The connectivity distribu-
tion is scale-free, with a characteristic exponentg.2.2 @12#.
Our simulations are performed at a fixed spreading ratl
50.25, averaging over at least 2500 different starting c
figurations. We implement both the uniform and the targe
immunization procedures. The results obtained clearly in
cate that the behavior is completely analogous to that fo
on the BA network. Fig. 4 illustrates that, while uniform
immunization does not allow any drastic reduction of t
infection prevalence—the immunization of 25% of the nod
reduces by less than a factor 1/2 the relative prevalence—
targeted immunization drastically removes the occurrence
endemic states even at very low value of the immunizat
parameter. The fact that SF

FIG. 4. Reduced prevalencerg /r0 from computer simulations
of the SIS model in a portion of a real Internet map with unifor
~main plot! and targeted~inset! immunization at a fixed spreadin
rate l50.25. We only consider values of the immunization f
which almost all the runs survive up to the end. This explains
short range of values ofg shown for the targeted immunizatio
case.
4-7
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networks can be properly secured only by a selective imm
nization, points out that an optimized immunization of t
Internet can be reached only through a global immuniza
organization that secures a small set of selected high-tr
routers or Internet domains. Unfortunately, the self-organi
nature of the Internet does not allow to easily figure out h
such an organization should operate.

The present results also appear to have potentially in
esting implications in the case of human sexual disease
trol @1,30#. Most sexually transmitted diseases cannot
characterized without including the noticeable differences
sexual activity within a given population. Epidemic mode
ing is thus based on partitioning population groups by
number of sexual partners per unit time@1#. This implicitly
corresponds to the knowledge of the probability distribut
functionP(k) that gives the fraction of the population withi
the k class. The recent observation that the web of hum
sexual contacts exhibits scale-free features@15# points out
that also sexually transmitted diseases are eventually spr
ing in a network with virtually infinite heterogeneity. It fol
lows that concepts such as the mean number of sexual
ners or its variance are not good indicators in this case
well, the definition of a core group of ‘‘superspreader’’ ind
viduals could be a non-well-defined concept because of
lack of precisely defined thresholds or characteristic mag
tudes in the scale-free distribution of sexual contacts. Ne
s
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theless, the striking effectiveness of targeted immunizat
indicates that control and prevention campaigns should
strongly focused at the most promiscuous individuals. Th
represent the most connected nodes of the network and
thus the key individuals in the spreading of the infection.

While the simple SIS model is very instructive, man
other ingredients should be considered in a more reali
representation of real epidemics@1,2#. One would also want
to add simple rules defining the temporal patterns of n
works such as the frequency of forming new connections,
actual length of time that a connection exists, or differe
types of connections. These dynamical features are hig
valuable experimental inputs which are necessary ingredi
in the use of complex networks theory in epidemic modelin
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@24# Z. Dezsöand A.-L. Barab´asi, e-print cond-mat/0107420.
@25# R.A. Albert, H. Jeong, and A.-L. Baraba´si, Nature~London!

406, 378 ~2000!.
@26# D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Wa

Phys. Rev. Lett.85, 5468~2000!.
@27# R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. R

Lett. 86, 3682~2001!.
@28# J.O. Kephart, S.R. White, and D.M. Chess, IEEE Spectrum30,

20 ~1993!.
@29# S.M. Bellovin, Comput. Commun. Rev.23, 26 ~1993!.
@30# A.L. Lloyd and R.M. May, Science292, 1316~2001!.
4-8


