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We present two ways of regularizing a parameter family of piecewise smooth dynamical systems undergoing a grazing-
sliding bifurcation. We use the Sotomayor-Teixeira regularization and prove that the bifurcation is a saddle-node (see [?]). Then
we perform a hysteretic regularization. However, in spite that the two regularization will give the same dynamics in the sliding
modes (see [?]), when a tangency appears, so is in the case of grazing-sliding, the hysteretic process generate chaotic dynamics.
Finally, we smooth the hysteresis by embedding the system in a higher dimension. Now the discontinuous control variable u is
also a continuous time dependent variable although a fast-fast one. We then encounter loop feedback chaotic behaviour.

1 The Sotomayor-Teixeira regulariza-
tion of a grazing-sliding bifurcation

Let variables x ∈ Rn−1 and y ∈ R satisfy the differential equa-
tion

ẋ = f(x, y;u)
ẏ = g(x, y;u)

(1)

where f and g are smooth functions of x, y, u, and where u (the
control) is given by

u = sign(y) .(2)

The values of the vector field either side of the switch y = 0
can be written as

f±(x, y) := f(x, y;±1), g±(x, y) := g(x, y;±1) .(3)

This is typical example of a piecewise smooth system.
There are many ways of regularization, that is, ways of un-
folding this system in a parametric family of smooth ( in the
switch also ) vector fields system. Different unfolding will pro-
duce, if any, different dynamics in the switch. So the regular-
ization used must be consistent with the dynamics we want in
the switching manifold.

One of the most popular regularization is the Sotomayor-
Teixeira regularization: (in two dimensional setting for sim-
plicity)

ẋ =
1+ϕ( yε )

2 f+(x, y) +
1−ϕ( yε )

2 f−(x, y)

ẏ =
1+ϕ( yε )

2 g+(x, y) +
1−ϕ( yε )

2 g−(x, y)

}
(4)

where ϕ is any function satisfying

ϕ = sign(w), |w| > 1
ϕ ∈ [−1, 1], |w| ≤ 1

ϕ′(w) ≥ 0

(5)

So, the sign(y) function, is approximated in an ε boundary
layer of the switching manifold y = 0, by ϕ(yε ). The usual
variable change v = y

ε , transform it in:

ẋ = 1+ϕ(v)
2 f+(x, εv) + 1−ϕ(v)

2 f−(x, εv)

εv̇ = 1+ϕ(v)
2 g+(x, εv) + 1−ϕ(v)

2 g−(x, εv)

}
(6)

It is a slow-fast system. Fenichel theory says that, ε-near
the sliding parts of the switching, there exists an exponentially
attracting manifold(s)and the flow there tends regularly to the
so called Filippov sliding mode:

ẋ = fF (x) := f+g−−f−g+

g−−g+ (x, 0)(7)

Moreover, this manifold can be continued to non sliding
(non hyperbolic) points, a fold, for instance. In [?] we have
studied the behaviour when X+ has a tangency to y = 0 ( a
fold ) in (0, 0) and X− is transversal there. The results can be
summarized in Figure ?? and in Theorem (??)( see [?]).
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Figure 1: Dynamics of the Poincaré map Pε for the regularized
system (6). The large domain I is smashed to the small J . The
dotted red parabola is the trajectory of X+ passing through the
fold (0, 0).

Consider the regularized vector field (6) with ϕ of class
Cp−1 (p ≥ 2) and fix any 0 < λ < p

2p−1 .
Then there exist ε0 > 0, L− < 0,constants α− > 0, β− < 0,
α+ < 0, β+ > 0 depending on X+ and α(ε) = x−0 + α−ε +
β−ε2λ + O(ελ+1) such that, for 0 < ε ≤ ε0, the map Pε re-
stricted to the interval I := [L−, α(ε)] is a Lipschitz function
with Lipschitz constant exponentially small in ε and satisfies:

Pε(x) = x+0 + α+ε+ β+(η(0))2ε
2p

2p−1 +O(ε
2p+1
2p−1 ), ∀x ∈ I,

where η(u) is the unique solution of equation:

dη

du
=

2

4η − ϕ(p)(1)
p! up

(8)

satisfying η(u) − ϕ(p)(1)
4p! up → 0 as u → −∞. Moreover the

Poincaré mapQε is defined in the set [L−,−ελ]×{ε}, its Lip-
schitz constant is exponentially small in ε and

∀x ∈ [L−,−ελ], Qε(x) = η0(0)ε
p

2p−1 +O(ε
p+1
2p−1 ).(9)

As the Fenichel solution attracts a wide region, this theorem
is particularly useful to study global behaviour in case that sys-
tem X+ has any recurrence. As a direct application consider
Zµ, a family of non-smooth planar systems having a grazing
sliding bifurcation of a hyperbolic attracting or repelling peri-
odic orbit of the vector field Xµ at µ = 0. Then we have:

Let Zµ, µ ∈ be a family of non-smooth planar systems that
undergoes a grazing sliding bifurcation of a hyperbolic periodic
orbit Γµ of the vector field Xµ at µ = 0. We assume that, for
µ > 0 the periodic orbit Γµ is entirely contained in V+, it be-
comes tangent to Σ for µ = 0 and intersects both regions V±
for µ < 0.

Consider the regularized family Zµ,ε.

• If Γµ is attracting, the regularized system has a periodic
orbit Γµ,ε for any ε, µ small enough. No bifurcation oc-
curs in the regularized system.

• If Γµ is repelling, the regularized system has a peri-
odic orbit Γµ,ε for any µ > 0 and 0 < ε < ε0(µ)
which co-exists with the periodic orbit Γµ contained in
V+ ∩ {(x, y), y > ε}. This result is also true for
µ = O(ε). For µ ≤ 0 small enough, the system has
no periodic orbits near Γ0 if ε is small enough. There-
fore the family Zµε undergoes a bifurcation of periodic
orbits near µ = 0.

Figure 2: The position of fields X+
µ and X− = (0, 1) with

respect to the switching line y = 0 for the different values of µ

Figure 3: Periodic orbit of the regularized family Zµ,ε when
X+
µ has a repelling periodic orbit Γµ (the red dotted orbit). For

µ < 0 and µ = 0 the regularized system has no periodic or-
bits. For µ > 0 the regularized system has a periodic orbit Γµ,ε
which coexists with Γµ. A bifurcation of periodic orbits in the
regularized system corresponding with the grazing-sliding bi-
furcation in the Filippov system can occur.

So only in the repelling case there is a bifurcation. In [?] we
prove it and also we present numerical evidence that the bifur-
cation is of saddle-node type, but not a rigourous proof. Now
we have just ended a proof and will present it in a forthcoming
paper.

In the hypothesis of Theorem (??), and if Γµ is repelling,
the regularized system has a periodic orbit Γµ,ε for any µ > 0
and 0 < ε < ε0(µ) which co-exists with the periodic orbit Γµ
contained in V+ ∩ {(x, y), y > ε}. This result is also true for
µ = O(ε). For µ ≤ 0 small enough, the system has no periodic
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orbits near Γ0 if ε is small enough.The family Zµε undergoes a
saddle node bifurcation of periodic orbits near µ = 0.

The steps to prove Theorem (??)are:

• As Theorem (??) says,the parameter of bifurcation must
satisfy 0 < µ < µ̃ε

• If the orbit of the regularized system enters to the inte-
rior of the unstable circle through y = ε then this orbit
will be trapped by the focus. That’s for two dimensional
topological reasons of a focus and the fact that in |y| ≤ ε
the regularized system is bounded by X+.

• Then, the bifurcation must occur when the Fenichel so-
lution(s) and the upper segment of the periodic orbit col-
lide. That is µ = ε− η0(0)

2

2 ε
4
3 +O(ε

5
3 )

• In the neighbourhood of this parameter the Poincare map
Qε is decreasing and concave, and the external P e is con-
vex. Then P e ◦ Qε is convex

• Necessarily, the bifurcation must be a saddle-node.

As an example, let’s take the family of vector fields Zµ =
(X+

µ , X
−
µ ) where X+ is given by

ẋ = f(x, y, µ) = −y + µ+ 1 + x(r − 1)
ẏ = g(x, y, µ) = x+ (y − µ− 1)(r − 1),

(10)

with r =
√
x2 + (y − µ− 1)2 and X− = (0, 1).

Figure 4: The Poincare map P e ◦Qε defined in [−1, 0] and for
ε = .05 and µ1,2,3 = ε − (.5, .5623, .6)ε

4
3 has two, one and

zero fixed points.

2 Hysteresis
But the regularization Sotomayor-Teixeira is a special one. We
now introduce hysteresis as another way of regularizing discon-
tinuous systems. In a ’negative’ boundary layer we define an
overlap in the non smooth system:

u = +1, y > −α
u = −1, y < +α

u ∈ [−1, 1], |y| ≤ α

(11)

In [?] we proved

Let’s fixed T > 0, if the solution of the Filippov equation
(??) satisfies |xF (t)| < M for 0 ≤ t ≤ T , then the histeretic
solution (xh(t), yh(t)) tends to the the Filippov solution xF (t)
in y = 0 as

|xh(t)− xF (t)| ≤ Lα 0 ≤ t ≤ T(12)

We can illustrate the hysteretic regularization method with
a simple example proposed by Utkin in order to illustrate the
disparity between Filippov’s and Utkin’s methods to define a
flow in the switching manifold.

Consider the planar piecewise smooth system

ẋ = 0.3 + u3 ẏ = −0.5− u u = sign(y) .(13)

If we perform the hysteretic regularization we obtain the
trajectories shown in Figure ( ??).

Figure 5: The hysteretic behaviour for the example for dimin-
ishing values of α. The line in red is the solution of Filippov
system xF (t) (??) with xF (0) = 5 and 0 ≤ t ≤ 10

In spite Theorem( ??) says that both hysteretic and
Sotomayor-Teixeira regularizations tend to Filippov sliding
mode,the way of approximation is different. And in the non-
sliding regions can differ totally. For instance, if we regularize
by hysteresis the grazing sliding family ( ??) the trajectories
have a chaotic behaviour as shows Figure( ??).
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Figure 6: A chaotic motion similar to "spiral type chaos", pro-
duced when the µ and α parameters are near. Here α = .05
and µ = .04968.... Note the many discontinuity points of the
Poincaré map

3 Smoothing the hysteresis

Of course, the hysteretic process we have defined is not smooth.
In [?] we faced the problem of "smoothing" the hysteresis. And
this requires to embed the system in a higher dimension, where
the control u is also a time dependent variable. To do so, we
can write the frame of the hysteretic process as a differential-
algebraic system

ẋ = f(x, y;u) ,
ẏ = g(x, y;u) ,
0 = Φ(y + αu)− u ,

(14)

where Φ is a set-valued step function defined as

Φ(z) = sign(z), z 6= 0
Φ(z) ∈ [−1, 1], z = 0.

}
(15)

This embeds, formally, the u-parameterized problem in vari-
ables (x, y), inside a surface u = Φ(y + αu) in the higher
dimensional space of variables (x, y, u). The (x, y;u) space is
divided by the plane y + αu = 0. On the right the equation
0 = Φ(y + αu) − u has the solution u = +1. On the left the
solution is u = −1. This express the form of the discontinuous
system. Inside the plane y+αu = 0 the solution is u ∈ [−1, 1],
that is, |y| ≤ α. This express the overlapping for α > 0. See
Figure (??).

Figure 7: The formal differential-algebraic system. The verti-
cal double arrows express the fast dynamics to be defined later
(see Figure ( ??)). Note that for α < 0, the system has also a
sense. This will fit Utkin convention in this setting. See [?]

But this is a static representation. To introduce hysteretic
dynamics, the form of this differential-algebraic system sug-
gest the singular perturbation system:

ẋ = f(x, y;u) ,
ẏ = g(x, y;u) ,
εu̇ = ϕ(y+αuε )− u ,

(16)

By the definition of ϕ, we have

lim
ε→0

ϕ(y+αuε ) ∈ Φ(y + αu) .(17)

Then, for ε = 0 the system ( ??) is formally equivalent to the
differential-algebraic system, but we had embedded a (x, y)
problem with a parameter u, in the higher dimensional space
(x, y, u), where u is now a fast variable that relaxes quickly
to u = ±1. And by letting α be either positive or negative,
we can consider both a hysteretic case for α > 0, and non-
hysteretic case for α < 0, due to the resulting shape of the
surface u = ϕ(y+αuε ), shown in Figure( ??). (See also [?])

Figure 8: The system ( ??) for ε 6= 0

As we also want α be small,we introduce a scaled variable
v = y/|α| and defining κ ≡ ε/α, the system transforms to

ẋ = f(x, |α|v;u) ,
|α|v̇ = g(x, |α|v;u) ,

καu̇ = ϕ(u+sign(α)v
κ )− u .

(18)
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As we can suppose that the ε relaxation is faster than the α
switching, we assume

0 < ε� |α| � 1(19)

which implies 0 < |κ| � 1. Now there are three time scales,
but we shall treat κ as fixed and nonzero to guarantee that the
embedded system is ‘sufficiently’ smooth to apply standard sin-
gular perturbation theory. That is, when we let α → 0 (and by
implication ε = ακ → 0), the system remains smooth pro-
vided κ remains bounded away from zero. This allows us to
use standard singular perturbation theory for small α. We have
the following result for the hysteresis:

Fix T > 0, consider xF (t) the solution of the Filippov Sys-
tem in Σ,

and assume that |xF (t)| < M for 0 ≤ t ≤ T . Then there
exist constants C,L, α0 > 0, such that, for any 0 < α ≤ α0, if
we take 0 < κ < 1

4 and δ0 satisfying

2e−
1

2κC < δ0 ≤ κα0,

the solution (x(t), y(t), u(t)) of the system with initial condi-
tion (x0, y0, u0), with |x0| < M , |y0| < α and ||u0| − 1| < δ0,
satisfies, for all t ∈ [0, T ],

|x(t)− xF (t)| < L(κ+
δ0
κ

+ κ

∣∣∣∣log
δ0
2

∣∣∣∣+ α), |y(t)| < α.

Taking κ = α and δ0 = α2, then (x(t), y(t), u(t)) satis-
fies:

|x(t)− xF (t)| < Lα |log(α)| , |y(t)| < α.

4 Route to chaos
Then we can embed the system ( ??)in a hysteretic relaxation,
and we will obtain chaotic behaviour. Figure( ??) shows the
bifurcation of a trajectory for α = .05 with κ = .5 and
µ = .055, .057, .06 and its projections in the (x, y) plane.

Figure 9: The route to chaos by embedding the saddle-node bi-
furcation ( ??) in a hysteretic relaxation. Note the small size
of the regularizing strip compared with the large loops of the
orbits. This obeys to the different orders between α and y .
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