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Chaos in the hysteretic grazing-sliding codimension-one
saddle-node bifurcation of piecewise dynamical systems.
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We present two ways of regularizing a parameter family of piecewise smooth dynamical systems undergoing a grazing-
sliding bifurcation. We use the Sotomayor-Teixeira regularization and prove that the bifurcation is a saddle-node (see [?]). Then
we perform a hysteretic regularization. However, in spite that the two regularization will give the same dynamics in the sliding
modes (see [?]), when a tangency appears, so is in the case of grazing-sliding, the hysteretic process generate chaotic dynamics.
Finally, we smooth the hysteresis by embedding the system in a higher dimension. Now the discontinuous control variable u is
also a continuous time dependent variable although a fast-fast one. We then encounter loop feedback chaotic behaviour.

1 The Sotomayor-Teixeira regulariza-
tion of a grazing-sliding bifurcation

Let variables z € R"~! and y € R satisfy the differential equa-

tion _

T = T,Y; U

y = g(@,yu)
where f and g are smooth functions of x, y, u, and where u (the
control) is given by

) u = sign(y) -

The values of the vector field either side of the switchy = 0
can be written as

(@) = fz,y;£1), 05 (2,y) = gz, y; £1) .

This is typical example of a piecewise smooth system.
There are many ways of regularization, that is, ways of un-
folding this system in a parametric family of smooth ( in the
switch also ) vector fields system. Different unfolding will pro-
duce, if any, different dynamics in the switch. So the regular-
ization used must be consistent with the dynamics we want in
the switching manifold.

One of the most popular regularization is the Sotomayor-
Teixeira regularization: (in two dimensional setting for sim-

plicity)
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So, the sign(y) function, is approximated in an € boundary
layer of the switching manifold y = 0, by ¢(¥). The usual
variable change v = ¥, transform it in:

© P 1+¢(U)f+( U)+1—+%v)f—(x’6v)
b = LG e) + 150 (o ev)

It is a slow-fast system. Fenichel theory says that, e-near
the sliding parts of the switching, there exists an exponentially
attracting manifold(s)and the flow there tends regularly to the
so called Filippov sliding mode:
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(7) fF(x) (.7;, 0)

j}:

Moreover, this manifold can be continued to non sliding
(non hyperbolic) points, a fold, for instance. In [?] we have
studied the behaviour when X T has a tangency to y = 0 ( a
fold ) in (0,0) and X ~ is transversal there. The results can be
summarized in Figure ?? and in Theorem (??)( see [?]).
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Figure 1: Dynamics of the Poincaré map P for the regularized
system (6). The large domain 7 is smashed to the small 7. The
dotted red parabola is the trajectory of X ™ passing through the
fold (0, 0).

Consider the regularized vector field (6) with ¢ of class
CP~l(p>2)andfixany 0 < A < ol
Then there exist ¢ > 0, L~ < O,constants o~ > 0, 8~ < 0,
a®™ <0, 8T > 0 depending on X+ and a(e) = x5 + a” e+
BN + O(e*1) such that, for 0 < € < €, the map P, re-
stricted to the interval Z := [L~, «(e)] is a Lipschitz function
with Lipschitz constant exponentially small in € and satisfies:

Pu(z) = zg +ate+ BH(1(0)2emT + O(e?1), Vo € T,
where 7)(u) is the unique solution of equation:

dn 2
du 477 _ ‘P(pT)I(l)up

®)

satisfying n(u) — %pgl)up — 0 as u — —oo. Moreover the
Poincaré map Q. is defined in the set [L~, —e*] x {e}, its Lip-

schitz constant is exponentially small in € and

p+1

9) Vo e [L7, =€, Qc(z) =no(0)e?=T + O(e¥1).

As the Fenichel solution attracts a wide region, this theorem
is particularly useful to study global behaviour in case that sys-
tem X has any recurrence. As a direct application consider
Z,,, a family of non-smooth planar systems having a grazing
sliding bifurcation of a hyperbolic attracting or repelling peri-
odic orbit of the vector field X, at = 0. Then we have:

Let Z,,, 1 € be a family of non-smooth planar systems that
undergoes a grazing sliding bifurcation of a hyperbolic periodic
orbit I, of the vector field X, at 4 = 0. We assume that, for
p > 0 the periodic orbit I',, is entirely contained in VT, it be-
comes tangent to 3. for 4 = 0 and intersects both regions V*
for p < 0.

Consider the regularized family Z,, ..

e If I', is attracting, the regularized system has a periodic
orbit I',, . for any €, . small enough. No bifurcation oc-
curs in the regularized system.

e If T',, is repelling, the regularized system has a peri-
odic orbit I';, . for any 1o > 0 and 0 < € < eo(p)
which co-exists with the periodic orbit I, contained in
Vvt n{(x,y), y > €} This result is also true for
i = O(e). For p < 0 small enough, the system has
no periodic orbits near I'y if € is small enough. There-
fore the family Z,. undergoes a bifurcation of periodic
orbits near y = 0.
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Figure 2: The position of fields X, and X~ = (0,1) with
respect to the switching line y = 0 for the different values of

Figure 3: Periodic orbit of the regularized family Z,, . when
X :[ has a repelling periodic orbit I, (the red dotted orbit). For
p < 0 and p = 0 the regularized system has no periodic or-
bits. For p > 0 the regularized system has a periodic orbit I',,
which coexists with I',,. A bifurcation of periodic orbits in the
regularized system corresponding with the grazing-sliding bi-
furcation in the Filippov system can occur.

So only in the repelling case there is a bifurcation. In [?] we
prove it and also we present numerical evidence that the bifur-
cation is of saddle-node type, but not a rigourous proof. Now
we have just ended a proof and will present it in a forthcoming
paper.

In the hypothesis of Theorem (2?), and if I, is repelling,
the regularized system has a periodic orbit I',, . for any pz > 0
and 0 < € < ¢o(p) which co-exists with the periodic orbit I',,
contained in V* N {(z,y), y > €}. This result is also true for
i = O(e). For p < 0 small enough, the system has no periodic
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orbits near Iy if € is small enough.The family Z . undergoes a
saddle node bifurcation of periodic orbits near ;1 = 0.
The steps to prove Theorem (??)are:

e As Theorem (??) says,the parameter of bifurcation must
satisfy 0 < p < jie

o If the orbit of the regularized system enters to the inte-
rior of the unstable circle through y = € then this orbit
will be trapped by the focus. That’s for two dimensional
topological reasons of a focus and the fact that in |y| < e
the regularized system is bounded by X .

e Then, the bifurcation must occur when the Fenichel so-
lution(s) and the upper segment of the periodic orbit col-

lide. Thatis = € — wgé + O(e3)

o In the neighbourhood of this parameter the Poincare map
Q. is decreasing and concave, and the external P€ is con-
vex. Then P¢ o Q. is convex

e Necessarily, the bifurcation must be a saddle-node.

As an example, let’s take the family of vector fields Z,, =
(X5, X, ) where X is given by

a0 ° =flz,y,p) = —y+p+l+a(r—1)
y =g(@yp)= z+@y—p-1r-1),
with r=/22+ (y—p—1)2and X~ = (0,1).

ProQ.

Figure 4: The Poincare map P° o Q. defined in [—1, 0] and for
e =.05and 1123 = € — (.5,.5623, .6)5% has two, one and
zero fixed points.

2 Hysteresis

But the regularization Sotomayor-Teixeira is a special one. We
now introduce hysteresis as another way of regularizing discon-
tinuous systems. In a 'negative’ boundary layer we define an
overlap in the non smooth system:

u=+1y> -«
u=—-1,y <+«
uwe[-1,1], |yl <«

Y

In [?] we proved

Let’s fixed T' > 0, if the solution of the Filippov equation
(??) satisfies |zp(t)] < M for 0 < t < T, then the histeretic
solution (x(t), yr(t)) tends to the the Filippov solution z ()
iny =0as

(12) |zp(t) —2zp(t)| <La 0<t<T

We can illustrate the hysteretic regularization method with
a simple example proposed by Utkin in order to illustrate the
disparity between Filippov’s and Utkin’s methods to define a
flow in the switching manifold.

Consider the planar piecewise smooth system

(13) & =03+u>

y=-05—u u = sign(y) .

If we perform the hysteretic regularization we obtain the
trajectories shown in Figure ( 2?).
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Figure 5: The hysteretic behaviour for the example for dimin-
ishing values of «. The line in red is the solution of Filippov
system xp(t) (??) withzp(0) =5and 0 < ¢ < 10

In spite Theorem( ??) says that both hysteretic and
Sotomayor-Teixeira regularizations tend to Filippov sliding
mode,the way of approximation is different. And in the non-
sliding regions can differ totally. For instance, if we regularize
by hysteresis the grazing sliding family ( ??) the trajectories
have a chaotic behaviour as shows Figure( ??).
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Figure 6: A chaotic motion similar to "spiral type chaos", pro-
duced when the p and o parameters are near. Here o = .05
and p = .04968.... Note the many discontinuity points of the
Poincaré map

3 Smoothing the hysteresis

Of course, the hysteretic process we have defined is not smooth.
In [?] we faced the problem of "smoothing" the hysteresis. And
this requires to embed the system in a higher dimension, where
the control u is also a time dependent variable. To do so, we
can write the frame of the hysteretic process as a differential-
algebraic system

jj - (‘T ysu )7
(14) y = glz,yu),
0 = @(y+oau)—

where @ is a set-valued step function defined as

15)

This embeds, formally, the u-parameterized problem in vari-
ables (z,y), inside a surface u = ®(y + au) in the higher
dimensional space of variables (z,y, u). The (z,y;u) space is
divided by the plane y + au = 0. On the right the equation
0 = ®(y + au) — wu has the solution v = +1. On the left the
solution is u = —1. This express the form of the discontinuous
system. Inside the plane y+awu = 0 the solution is u € [—1, 1],
that is, |y| < a. This express the overlapping for o > 0. See
Figure (??).

Figure 7: The formal differential-algebraic system. The verti-
cal double arrows express the fast dynamics to be defined later
(see Figure ( ??)). Note that for o < 0, the system has also a
sense. This will fit Utkin convention in this setting. See [?]

But this is a static representation. To introduce hysteretic
dynamics, the form of this differential-algebraic system sug-
gest the singular perturbation system:

T = f(z,yu),
(16) v = g(z,y;u),
i = () _y

By the definition of ¢, we have

(17) lim(55%) € Dy + au)

Then, for e = 0 the system ( ??) is formally equivalent to the
differential-algebraic system, but we had embedded a (z,y)
problem with a parameter u, in the higher dimensional space
(z,y,u), where u is now a fast variable that relaxes quickly
to u = +1. And by letting « be either positive or negative,
we can consider both a hysteretic case for « > 0, and non-
hysteretic case for a« < 0, due to the resulting shape of the
surface u = np(y“‘“) shown in Figure( ??). (See also [?])
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Figure 8: The system ( ??) for € # 0

As we also want « be small,we introduce a scaled variable
v = y/|a| and defining x = €/, the system transforms to

z = f(z
oo

Nafviu)
(z, |afv;u) ,

SO( u+sigﬁn(o¢)v )

(18)

Kol —u.
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As we can suppose that the e relaxation is faster than the o
switching, we assume

(19) I<ek o«

which implies 0 < || < 1. Now there are three time scales,
but we shall treat « as fixed and nonzero to guarantee that the
embedded system is ‘sufficiently’ smooth to apply standard sin-
gular perturbation theory. That is, when we let « — 0 (and by
implication € = ax — 0), the system remains smooth pro-
vided x remains bounded away from zero. This allows us to
use standard singular perturbation theory for small . We have
the following result for the hysteresis:

Fix T' > 0, consider z ¢ (t) the solution of the Filippov Sys-
tem in 3,

and assume that |xp(t)] < M for 0 < t < T. Then there
exist constants C, L, g > 0, such that, for any 0 < « < ay, if
we take 0 < k < 1 and & satisfying

1
2e” 2 C < §g < Kag,

the solution (z(t), y(¢), u(t)) of the system with initial condi-
tion (20, Yo, uo), with |xg| < M, |yo| < e and ||ug| — 1| < do,
satisfies, for all ¢ € [0, 77,

|z(t) — xp(t)| < L(k + 5;0 +kK

1)
fog | + ) ly(0)] < .
Taking k = « and 6y = 2, then (z(t),y(t), u(t)) satis-
fies:

2(t) — a2 (t)] < Laflog(a)],ly(t)] < a.

4 Route to chaos

Then we can embed the system ( ??)in a hysteretic relaxation,
and we will obtain chaotic behaviour. Figure( ??) shows the
bifurcation of a trajectory for « = .05 with k = .5 and
= .055,.057, .06 and its projections in the (z,y) plane.

Figure 9: The route to chaos by embedding the saddle-node bi-
furcation ( ??) in a hysteretic relaxation. Note the small size
of the regularizing strip compared with the large loops of the
orbits. This obeys to the different orders between « and y .
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