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ABSTRACT

In this paper, a complete analysis of Stewart–Gough platform kinematics by unit quaternions is proposed. Even
when unit quaternions have been implemented in different applications (including a kinematic analysis of the Stewart
platform mechanism), the research regarding the application of this approach is limited only to the analysis
of some issues related to the kinematic properties of this parallel mechanism. For this reason, a complete analysis of
the Stewart–Gough platform is shown.
The derivation of the inverse and forward kinematics of the Stewart platform using unit quaternions shows that they
are suitable to represent the orientation of the upper platform due to their simplicity, equivalence, and compact
representation as compared to rotation matrices. Then, the leg velocities are derived to compute these values under
different conditions.
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ANALIZA KINEMATYCZNA PLATFORMY STEWARTA–GOUGHA
Z ZASTOSOWANIEM KWATERNIONÓW
W niniejszym artykule zaproponowano analizę kinematyki platformy Stewarta–Gougha z zastosowaniem kwater-
nionów. Mimo że kwaterniony znalazły zastosowanie w różnych aplikacjach (w tym w analizie kinematycznej me-
chanizmu platformy Stewarta), to ich zastosowanie ogranicza się jedynie do analizy własności kinematycznych
mechanizmów równoległych. Z tego powodu przedstawiono pełną analizę kinematyczną platformy Stewarta–Gougha.
Uzyskanie kinematyki prostej i odwrotnej platformy Stewarta z zastosowaniem kwaternionów pokazuje, że są one
odpowiednie do reprezentowania orientacji górnej platformy. Przede wszystkim cechują się prostotą oraz zwartą re-
prezentacją w porównaniu do macierzy obrotów. Następnie wyznacza się prędkości podpór, w celu obliczenia warto-
ści w różnych warunkach.

Słowa kluczowe: platforma Stewarta, kinematyka równoległa, kwaternion, robotyka

1. INTRODUCTION

The Stewart–Gough platform is a well- known parallel
mechanism that consists of a lower (fixed) platform and,
upper (moving) platform that are connected by six legs
or limbs. This mechanism is mainly used in different kinds
of applications such as aircraft, vehicle simulators and
other implementations in the industrial and bio-mechani-
cal fields (Nanua, Waldron 1989; Tu et al. 2004; Chen et al.
2011; Omran, Kassem 2011; Yang et al. 2011; Morell
et al. 2013). It is important to obtain an accurate and well
defined kinematic model to analyze different issues regard-
ing the orientation of the Stewart–Gough platform, in
order to study the inverse and forward kinematics. There
are some kinematic and singularity analysis consider-
ing the orientation of the upper platform implementing
some novelties such as the classic kinematics models that
are used in the kinematic analysis of serial and parallel
robots and other applications (Funda, Paul 1990; Su et al.
2002; Duindam, Stramigioli 2008; Cao et al. 2010; He et
al. 2010; Morell et al. 2012; Portman et al. 2012; Tari

et al. 2012; Zhang 2012; Chen, Fu 2013; Quoc, Thanh
2013; Lou et al. 2014). Other derivations of the forward
and inverse kinematics can be found in (Huang, Fu 2004;
Huang, Fu 2005; Chen, Fu 2006; Ghobakhloo et al. 2006;
Dongya et al. 2007; Chen, Fu 2008), where a dynamic model
of the Stewart platform is obtained based on the forward
kinematics of the model in order to design efficient control
strategies for this mechanism. In (Wang et al. 2011) a new
forward kinematic methodology is derived using the inde-
pendent components analysis together with the Nelder and
Mead algorithm, where an efficient forward kinematic
study is done to obtain the orientation of the platform
in the space work. Despite this fact, the development of
the kinematic analysis models for the Stewart–Gough
platform is limited only to forward and inverse kinematics.

In this work, an extension of previous studies to obtain
a complete kinematic analysis of the Stewart–Gough plat-
form by unit quaternions is proposed to show other kine-
matic properties such as angular and linear velocity of
the platform and legs velocities. The Stewart–Gough kine-
matics is obtained from unit quaternions, so the problem to
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be solved here is to obtain a simplified mathematical rep-
resentation of the forward and inverse kinematics of this
parallel mechanism from unit quaternions considering
that other mathematical representations, such as rotation
matrices among others, are very complex.

It is important to consider that a goal of this study is
to obtain the inverse and forward kinematic model for
this mechanism. Then based on these results, the angular
and linear velocities are obtained to extend these out-
comes.

As a basis for this work, it is important to consider that
only the rotation angles of the Stewart platform are consid-
ered starting from the fact that only the rotation matrix
based on Euler angles is implemented, taking into account
that a rotational and translational movement can be repre-
sented by pure rotations.

Apart from the previous contribution, the main objec-
tive of this article is to extend this work to obtain a feasible
dynamic model, based on Euler–Lagrange equations, to
derive efficient control strategies in order to stabilize this
parallel mechanism in applications such as machine-tools
and, flight / vehicle simulators.

Nomenclature and abbreviations

It is important to notice that all of the quaternion opera-
tions used in this study are explained in (Chou 1992),
and the reader can refer to this reference for more details.
To define a rotation matrix using unit quaternions that
represent Euler angles, consider the following quaternion
p = [ p0, p1, p2, p3]T where p0 and p

��

 = [ p1, p2, p3] are the
scalar and vector quaternion part, respectively. The unitary

quaternion can be represented by cos sin
2 2

p u
θ θ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

with 0cos
2

p
θ⎛ ⎞ =⎜ ⎟⎝ ⎠

 and sin ,
2

p
θ⎛ ⎞ =⎜ ⎟⎝ ⎠

�
 with the unitary vector

.
p

u
p

=
�

�  The base platform frame (fixed platform) is denoted

by (x, y, z) while the top platform frame (moving platform)
is denoted by (x′, y′, z′). The vector from the origin of the
base frame to the top frame is denoted by P. The vector
from the base frame (x, y, z) to the bottom frame (xi, yi, zi) of
each leg is represented by Bi for i = 1, …, 6, while the vector
from the top frame (x′, y′, z′) to the top frame (xj, yj, zj)
of each leg is represented by Aj for j = 1, …, 6. For this
purpose it is important to notice the difference between
the lowercase p and uppercase P, where in the first case p is
a unit quaternion and P is the vector from the origin (x, y, z)
to (x′, y′, z′).  ⊗  is the quaternion product of the previously
defined quaternions and + is the quaternion addition.
Matrix R(p) is the rotation matrix obtained by the unit
quaternions, Li is the leg vector, Lcg is the vector Vcg with

respect to the base frame (x, y, z) and Velcg is the linear veloc-
ity vector of the Stewart platform. The vector from the top
frame (x′, y′, z′) to the center of gravity is called Vcg whose
components are Vcgx, Vcgy and Vcgz (see Fig. 1) These vectors
are necessary for the derivation of the forward and inverse
kinematics of this mechanism due to the simplicity of
quaternions in comparison with other approaches as
shown in (Nanua, Waldron 1989; Choi et al. 2007; Wang
et al. 2011).

2. STEWART PLATFORM KINEMATICS
BY UNIT QUATERNIONS

The forward kinematics consists of finding the orientation
of the Stewart–Gough platform given specific leg lengths.
Before deriving the respective equations for the inverse
and forward kinematics, a representation of a rotation
matrix by unit quaternions is derived in order to represent
the orientation by Euler angles as shown in (1), (2) and (3).

Fig. 1. Stewart platform diagram

In Figure 1 the frame axes and vectors of the Stewart
platform are depicted. The Euler angles are represented in
unit quaternions by the following operations (Campa et al.
2006; Fresk, Nikolakopoulos 2013):

( )
( )
( )

2 2 2 2
* 0 1 2 3

1 2 0 3

1 2 0 2

00

1
0 2
0 2

x
p p p p

R p p p
p p p p

p p p p

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ + − −⎢ ⎥⎢ ⎥= ⊗ ⊗ = ⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥
⎢ − ⎥⎣ ⎦ ⎣ ⎦

(1)
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( )
( )
( )

1 3 0 2*
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00
20
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1

z
p p p p

R p p p
p p p p

p p p p

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥= ⊗ ⊗ = ⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥

− − +⎢ ⎥⎣ ⎦ ⎣ ⎦

(3)

Considering that Rx( p), Ry( p) and Rz( p) are vector
quaternions, this means that their scalar part is zero,
the following representation of the rotation matrix is
obtained as a 3 × 3 matrix because these are vector quater-
nions:

R( p) = [Rx( p) Ry( p) Rz( p)] (4)

where the Euler angles are obtained as follows (Fresk,
Nikolakopoulos 2013):

( )( )
( )( )

( )( )

2 2 2 2
0 1 2 3 0 1 2 3

0 2 3 1
2 2 2 2

0 3 1 2 0 1 2 3

arctan2 2 ,

arcsin 2

arctan2 2 ,

p p p p p p p p

p p p p

p p p p p p p p

⎡ ⎤+ − − +φ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥θ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ψ ⎢ ⎥⎣ ⎦ + + − −⎢ ⎥⎣ ⎦

(5)

A rotation matrix obtained from quaternions can also be
derived by the following formulas (Campa et al. 2006):

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 2

2 2

T T

TT

R p I S

I S S S

= η − ε ε + η ε + εε =

= η + ε ε + η ε − ε ε
(6)

where:

1

0 2

3

p

p p

p

⎡ ⎤
⎢ ⎥η = ε = ⎢ ⎥
⎢ ⎥⎣ ⎦

(7)

where I is the identity matrix. Finally:

( )
3 2

3 1

2 1

0
0

0

p p

S p p

p p

−⎡ ⎤
⎢ ⎥ε = −⎢ ⎥
⎢ ⎥−⎣ ⎦

(8)

2.1. Inverse kinematics of Stewart platform
by unit quaternions

As explained in (Liu et al. 2000; Ji, Wu 2001; Wang
et al. 2011) the inverse kinematics of the Stewart–Gough

platform is obtained straightforwardly by computing
the leg lengths for a given orientation represented by unit
quaternions. So, in order to obtain the inverse kinematic
model, the origin of the base and top axes of the legs are
positioned in the following coordinates:

2 2 2 2
cos , sin , 0

6 6i l
i i

b r
− −⎛ ⎞⎛ ⎞ ⎛ ⎞= π π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(9)

for i = 1, 3, 5

2 3 2 3
cos , sin , 0

6 6i l
i i

b r
− −⎛ ⎞⎛ ⎞ ⎛ ⎞= π π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(10)

for i = 2, 4, 6

2 3 2 3
cos , sin , 0

6 6i u
i i

a r
− −⎛ ⎞⎛ ⎞ ⎛ ⎞= π π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(11)

for i = 1, 3, 5

2 3 2 3
cos , sin , 0

6 6i u
i i

a r
− −⎛ ⎞⎛ ⎞ ⎛ ⎞= π π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(12)

for i = 2, 4, 6

where rl is the radius of the base platform and ru the radius
of the top platform. Coordinates bi and ai represent
the origin of the legs axes in the base and top platform with
respect to the (x, y, z) and (x′, y′, z′) axes, respectively.

With the previous definitions, the inverse kinematics
of the Stewart platform with unit quaternions can be
obtained by the following (Ji, Wu 2001):

( )
( )
( )

*

*

*

i x ix

y iy

z iz i

L p d p a

p d p a

p d p a P B

= ⊗ ⊗ +

+ ⊗ ⊗ +

+ ⊗ ⊗ + −

(13)

Considering that *
rp d p⊗ ⊗  is a vector quaternion for

r = x, y, z, then vectors Ai and Bi (as shown in Fig. 1) are
represented by the following:

,
ix ix

i iy i iy

iz iz

a b

A a B b

a b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

(14)
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Defining the following vector quaternions:

0 0 0
1 0 0

, ,
0 1 0
0 0 1

x y zd d d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(15)

vector quaternion P is given by:

( )*
zP p d p r= ⊗ ⊗ (16)

where r is the distance between the origins of the (x, y, z)
and (x′, y′, z′) axes when these two axes are aligned in re-
spect to the frame. Then, the leg vector obtained in (13) can
be calculated using a matrix representation of the rotation
matrix as shown in (17):

( )i i iL R p A P B= + − (17)

and finally the leg lengths given a specific orientation de-
fined by R( p) is obtained by (Morell et al. 2013):

( )2
i i iL R p A P B= + − (18)

From (18) the leg lengths can be calculated for any
orientation given by the rotation matrix R( p) in terms
of quaternions.

2.2. Forward kinematics of Stewart platform
by unit quaternions

The main idea, in order to find the orientation of the plat-
form given the legs lengths, is to obtain a nonlinear algebraic
equations system to be solved numerically. To derive
the forward kinematics of the Stewart platform by this
approach, the following assumption must be considered
(Ji, Wu 2001):

Assumption 1: Since the two hexagons of the base plat-

form and top platform are similar, the following condition
holds:

Ai = μBi (19)

for i = 1, …, 6. The constant μ is called the scaling factor.

This assumption is important because the number of
variables to be solved from the obtained system of nonlinear
algebraic equations is reduced, as shown in the Appendix.
To establish the system of nonlinear algebraic equations

to find a unique solution it is necessary to express (18)
in the following form:

( )( ) ( )( )2 T
i i i i iL R p A P B R p A P B= + − + − (20)

for i = 1, …, 6, where P is the vector quaternion specified
in (16). The coordinates of the leg Bi with respect to the
base frame (x, y, z) are:

0

ix

i iy

b

B b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

(21)

and the coordinates of the leg Ai with respect to the top
frame (x′, y′, z′) are denoted by (22). Due to Assumption 1,
Ai is expressed in terms of the components of Bi:

0

ix

i iy

b

A b

⎡ ⎤μ
⎢ ⎥= μ⎢ ⎥
⎢ ⎥
⎣ ⎦

(22)

In order to find the required system of nonlinear alge-
braic equations, (23) is derived from (20):

( ) ( )

( ) ( )

2 T TT T T
i i i i i i

T T T T
i i i i

T T
i i i

L A A A R p P A R p B

P R p A P P P B B R p A

B P B B

+

= + − +

+ + − −

− −

(23)

Then, the vectors shown in (24) can be obtained
from (23) in order to derive the system of nonlinear equa-
tions to find the unique rotation quaternion and its equiva-
lent rotation matrix:

( ) ( )

( )

( )

1

2

3

4

T T T
i i i

TT T T
i i i

TT T
i i

T
i i

W A P R p B R p

W A R p P B

W A R p P

W B

= + −

= + −

= − −

= −

(24)

for i = 1, …, 6. Finally, with the formulas explained in (24),
the system of nonlinear algebraic equation (25) can be
obtained resolving for the components of the quaternion p,
which represents the orientation of the platform:

2
1 2 3 4i i i i i i i iL W A W P W B W B= + + + (25)
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for i = 1, …, 6. Equation (25) corresponds to a system
of 6 × 4 (six equations with four variables) nonlinear alge-
braic equations. It is necessary to solve the system for the
quaternion components p0, p1, p2, p3 in order to obtain
the quaternion, which represents the orientation of the top
platform. The vectors Wi1, Wi2, Wi3, Wi4 in terms of
the quaternion p are defined in the Appendix.

3. STEWART PLATFORM VELOCITIES
BY UNIT QUATERNIONS

In this section, the angular and linear velocity of the plat-
form along with the velocities of the legs are derived to
extend the kinematic analysis of the Stewart–Gough plat-
form, considering the results of the previous section.

3.1. Linear and angular velocity of platform

To derive the linear velocity of the platform, consider the
vector located at the center of gravity of the upper platform
in the upper frame (x′, y′, z′), represented by Vcg as shown
in Figure 1. The components of Vcg are:

cgx

cg cgy

cgz

V

V V

V

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(26)

and Lcg is obtained by:

Lcg = R( p)Vcg + P (27)

where R( p) is the rotation matrix in terms of quaternions
shown in (4) and P is the vector in (16). Therefore, substi-
tuting these equations in (27) and reorganizing, yields:

( )
( )
( )( )

*

*

*

cg x cgx

y cgy

z cgz

L p d p V

p d p V

p d p V r

= ⊗ ⊗ +

+ ⊗ ⊗ +

+ ⊗ ⊗ +

(28)

The following property is important to derive the veloc-
ity of the platform (Chou 1992; Spong et al. 2006):

Property 1: Consider unit quaternion p and p*, which rep-
resents a rotation by the Euler angle. Then, vector quater-
nion 0

rd   for r = x, y, z is obtained from dr:

0 *
r rd p d p= ⊗ ⊗ (29)

Using Property 1, dr can be obtained from 0
rd  in the

form:

* 0
r rd p d p= ⊗ ⊗ (30)

The equivalences in (30) are used later to derive
the linear velocity of the center of gravity of the platform.
Now, taking the derivative of (28) the linear velocity of
the top platform is obtained as shown in (31):

( )
( )
( )( )

* * *

* * *

* * *

cg x x x cgx

y y y cgy

z z z cgz

L p d p p d p p d p V

p d p p d p p d p V

p d p p d p p d p V r

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+

+

+��

���

�

�

��

�

(31)

Susbtituting (30) in (31) for r = x, y, z, and considering
that 0,rd =�  the following equation is obtained (Chou
1992):

( )
( )
( )( )

* 0 0 *

* 0 0 *

* 0 0 *

cg x x cgx

y y cgy

z z cgz

L p p d d p p V

p p d d p p V

p p d d p p V r

= ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗

+

+

+ ⊗ ⊗ +

�

�

�

� �

�

�

(32)

The following property is used to reduce (32) (Chou,
1992):

Property 2: Consider the unit quaternion p and its conju-
gate p*, which represents a rotation by the Euler angle. From
Property 1, the following equivalence is obtained:

* *

* *

p p p p

p p p p

γ = ⊗ = − ⊗

ρ = ⊗ = − ⊗

�

�

�

�

(33)

Using Property 2 in (32) yields:

( )
( )
( )( )

0 0

0 0

0 0

cg cg x x cgx

y y cgy

z z cgz

Vel L d d V

d d V

d d V r

= = γ ⊗ − ⊗ γ +

+ γ ⊗ − ⊗ γ +

+ γ ⊗ − ⊗ γ +

�

(34)

Due to the fact that γ is a vector quaternion (Funda et al.
1990; Chou 1992):

0 0 0
r r rd C d C dγ ⊗ = − ⋅ + ×

� �� �
(35)
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where C
�

 and 0
rd
�

 are the vector parts of the quaternions γ
and 0,rd  respectively. The operations of the form:

0 0
r rm d d= γ ⊗ − ⊗ γ (36)

can be reduced due to γ and 0
rd  being vector quaternions as

shown in (35). Making the quaternion operations of (36)
yields:

( ) ( )0 0 0 0
r r r rm C d C d d C d C= − ⋅ + × − +⋅− ×
� � � �� � � �

(37)

Then, simplifying (37) and using the property of cross
product A × B = –B × A the equations (36) take the fol-
lowing form:

02 rm C d= ×
��

(38)

for r = x, y, z. Then, the linear velocity of platform (34) is
finally given in (39), by using (38):

( ) ( )
( )( )

0 0

0

2 2

2

cg x cgx y cgy

z cgz

Vel C d V C d V

C d V r

= × + × +

+ × +

� �� �

��
(39)

where vector quaternions γ and 0
rd are:

[ ]1 2 3

0 0 0 0
1 2 3

0, , ,

0, , ,

T

T
r r r r

c c c

d d d d

γ =

⎡ ⎤= ⎣ ⎦

(40)

It is important to notice that (39) can also be obtained
in matrix form. The reader can refer to (Chou 1992) to find
a matrix form representation of this formula.

The angular velocity of the top platform can be yielded
from (39), noticing that the linear velocity is V = ω × r
with radius r, or from (38) as a matrix form. Then, the angu-
lar velocity of the platform derived from (39) is finally
given by:

2cg Cω =
�

(41)

or in vector quaternion form:

2cgω = γ (42)

3.2. Velocity of legs

As noticed, the derivations of the linear leg velocities by
unit quaternions are very straightforward and follow a sim-

ilar procedure to the platform velocity. In this subsection,
vector Vbi represents the leg vectors and Ai, for i = 1, …, 6,
has previously been defined to obtain the leg linear velocity,
and it is given by (see Fig. 1) (Ji, Wu 2001; Wang et al.
2011):

Vbi = R( p) Ai + P – Bi (43)

Then, deriving (43) and considering that the derivative
of Bi is a zero vector, the following formula is obtained:

( )bi iV R p A P= +�� � (44)

Now, consider that the following condition:

R( p)R( p)T = I (45)

holds for the rotation matrix with quaternions compo-
nents, where I is the identity matrix (Spong et al. 2006).
Deriving (45) yields:

( ) ( ) ( ) ( ) 0T TR p R p R p R p+ =� � (46)

Define ( )S tω⎡ ⎤⎣ ⎦ as (Spong et al. 2006):

( ) ( )( ) ( )TS t R p R pω =⎡ ⎤⎣ ⎦ � (47)

The transpose of (47) is:

( ) ( ) ( )( )TTS t R p R pω =⎡ ⎤⎣ ⎦ � (48)

where ( )S tω⎡ ⎤⎣ ⎦  is a skew symmetric matrix. Then, using
this matrix, the following result can be obtained for linear
leg velocity (44) using unit quaternions:

( ) ( )bi iV S t R p A P= ω +⎡ ⎤⎣ ⎦ �� (49)

From equation (49), the linear velocities of the legs are
obtained in each frame.

4. NUMERICAL EXAMPLES

In this section, a series of numerical examples are shown
to test the theoretical background explained in this paper.
The two examples, in which unit quaternions are imple-
mented to derive the Stewart platform kinematics, are:

1) Forward kinematic analysis of the Stewart platform,
2) Linear and angular velocity of the Stewart platform.
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The parameters of Stewart platform used in these exam-
ples are shown in Table 1.

Table 1

Parameters of Stewart platform

The components of the inertia tensor Ixy, Ixz, Iyz, Iyx, Izx, Izy,
are zero. These values and the mass of the top platform are
found using SOLIDWORKS, and all the simulations have
been done with MATLAB.

4.1. Example 1

In this subsection the forward kinematics using unit
quaternions as explained in Section 2 is performed using
three series of leg lengths in order to find the orientation of
the platform with its respective rotation matrix. The three
series of leg lengths are shown in Table 2. Then, the results
are compared with a rotation matrix given by Euler angles
as shown in (Lopes 2009).

Table 2

Leg length series

The unit quaternions and rotation matrices, that repre-
sent the orientation of the Stewart platform for the three
series, are obtained by solving numerically a set of non-
linear algebraic equations (25), and the same is done
for the rotation matrix (Lopes 2009). It is used for com-
parison purposes and is given by R = Rz(γ)Ry(β)Rx(α)
where α, β, γ are the respective Euler angles. Consider that
the performance index obtained by solving numerically the
proposed approach is the nonlinear algebraic equation
solver evaluation function. It is proved later that due to
the simplicity of quaternions the results are more accurate
in comparison with the results shown in (Lopes 2009).

The rotation matrix and unit quaternion that represent the
orientation of the Stewart platform for series 1 are given
respectively by:

( )
1.780492 0.266144 0.026571
0.265719 1.780522 0.028751

0.030527 0.024511 1.800044

R p
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

(50)

[ ]1.3380515 0.0099515 0.0106680 0.0993727 Tp = − (51)

Then, the orientation of the Stewart platform, given
the unit quaternion (51) and rotation matrix (50), obtained
by the proposed approach, is depicted in Figure 2.

Fig. 2. Orientation of the platform for series 1
(proposed approach)

It can be noticed that there is a little difference in
the orientation of the platform due to some accuracy issues
in the solver, needed to find the solution of the nonlinear
algebraic equations for the given leg lengths of series 1. In
Figure 3, the orientation of the platform for series 1, ob-
tained with the compared approach, is very similar as
shown in Figure 2 but, as can be noticed in Table 3,
the results are more accurate in comparison with the com-
pared approach.

The rotation matrix and unit quaternion found for se-
ries 2, are given, respectively, below:

( )
0.679737 0.432079 0.030406

0.432709 0.679918 0.011523

0.019472 0.026041 0.805358

R p
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

(52)

[ ]0.250857 0.014469 0.010897 0.861833 Tp = (53)

The orientation of the Stewart platform for series 2 ob-
tained by the proposed approach, is shown in Figure 4.

rl [m] 0.3 

ru [m] 0.2 

r [m] 0.1 

Leg length Series 1 [m] Series 2 [m] Series 3 [m] 

L1 0.486 0.592 0.876 

L2 0.518 0.621 0.985 

L3 0.484 0.595 0.897 

L4 0.513 0.624 1.010 

L5 0.477 0.596 0.911 

L6 0.511 0.624 1.006 
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Fig. 3. Orientation of the platform for series 1
(compared approach)

Table 3

Nonlinear algebraic equation solver error

Fig. 4. Orientation of the platform for series 2
(proposed approach)

The orientation of the platform for series 2 has some
differences due to the accuracy of the solver of non-
linear algebraic equations (25). In Figure 5 the orienta-
tion of the platform for series 2 is shown and, as can be
noticed, there are some differences between Figure 4
and Figure 5. The compared approach is less accurate and
more complex than the proposed approach, as shown
in Table 3.

Fig. 5. Orientation of the platform for series 2
(compared approach)

The rotation matrix and unit quaternion which repre-
sent the orientation of the Stewart platform for series 3 are
given by:

( )
2.53046 6.01070 0.90749
6.03694 2.60006 0.38782

0.71237 0.68299 6.51010

R p
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

(54)

[ ]2.134543 0.034571 0.189721 1.41103p = (55)

The orientation of the Stewart platform for series 3 for
the proposed approach is depicted in Figure 6.

Fig. 6. Orientation of the platform for series 3
(proposed approach)

As it is noticed in Figure 6, even when the orientation
of the platform is accurate, there are some differences, but
the solution of nonlinear algebraic equations is quite
equivalent to the true solution. Finally, the rotation ma-
trix multiplication RT( p)R( p) is not equal to the identity
matrix, but it is a positive diagonal matrix approximate

Series Solver error  
(proposed approach) 

Solver error  
(compared approach) 

1 0.0075 0.8873 

2 0.0018 0.8416 

3 0.1854 0.0910 
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to the identity matrix. In comparison with Figure 7, the
results shown in Figure 6 depict a more approximate orien-
tation even when the solver error is greater than the com-
pared approach. However, due to the simplicity of quater-
nions, the complexity of the systems of nonlinear algebraic
equations is reduced and more accurate results are ob-
tained. As a conclusion, the forward kinematics of the
Stewart platform can be obtained easily by unit quater-
nions solving a unique solution of the rotation matrix
in comparison with multiple solutions of the forward kine-
matic problem, as other methods found in the literature.

Fig. 7. Orientation of the platform for series 3
(compared approach)

4.2. Example 2

In this section, the linear and angular velocities of the cen-
ter of gravity of the platform are analyzed in the range of
the Euler angle 0 ≤ θ ≤ 2π. For this purpose, the center
of gravity of the top frame (x′, y′, z′), in this example, is
given by:

[ ]0 0.0025 0cgV = (56)

and the vector part of the unit quaternion p:

[ ]2.5 10 14Tp =� (57)

Then, the linear velocity Velcg of the center of gravity
(top platform) is shown in Figure 8 for the Euler angle
in the range 0 ≤ θ ≤ 2π.

In Figure 8 a parametric plot of the linear velocity
of the platform Velcg is shown while varying the Euler angle
0 ≤ θ ≤ 2π.

In Figure 9, a parametric plot of the angular velocity ωcg

of the Stewart platform is shown. The components of
the angular velocity ωcgx, ωcgy and ωcgz are depicted in this
figure. It can be noticed that the angular velocity of the

center of mass of the Stewart platform follows a similar
trajectory as the linear velocity of the platform. The plots
shown in Figure 8 and Figure 9 give an idea on how
the linear and angular velocity of the gravity center of the
platform behaves when the Euler angle θ varies. The imple-
mentation of Euler angle rotations, using unit quaternions,
has several advantages over other methods to describe
the linear and angular velocity of the platform, because
of the simplicity of unit quaternions and the possibility
to obtain an equivalent rotation matrix to specify the orien-
tation of the platform.

Fig. 8. Linear velocity of the platform
while varying 0 ≤ θ ≤ 2π

Fig. 9. Angular velocity of the platform
while varying 0 ≤ θ ≤ 2π

The results obtained in this subsection show the relation
of the three components of the linear and angular velo-
city of the platform. The plots in Figures 8 and 9 provide
valuable information regarding these variables. The use
of the equations for Velcg and ωcg are useful to compute
the linear and angular velocities for the three axes.
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5. CONCLUSIONS

In this paper a complete kinematic analysis of the Stewart–
Gough platform using unit quaternions is shown, consider-
ing the advantages of this mathematical representation
given by Euler angles. Unlike other works found in the
literature, not only the forward kinematics of the Stewart
platform is derived in this paper, but other variables are
also presented (such as platform velocity and legs veloci-
ties). It has been proved, theoretically and numerically,
that a suitable forward and inverse kinematics model of
the Stewart platform can be derived by implementing unit
quaternions and then, for the forward kinematics case,
the orientation of the platform can be found by solving
a system of nonlinear algebraic equations numerically to
obtain the orientation of the platform. The velocities of
the platform are deduced by a suitable mathematical mod-
el derived by unit quaternions. A simpler and less compu-
tationally complex model is used to obtain these variables.
The leg velocities are derived using the rotation matrix giv-
en by unit quaternions. Because of the simplicity of quater-
nions to represent rotations, these variables can be found
efficiently by an accurate mathematical model. As a future
direction of this work, this study will be extended to the
derivations of a dynamic model starting from the Stewart–
Gough kinematics in order to derive efficient control strat-
egies for this mechanism implemented in applied research
projects.

Appendix

In this section, the components of the vectors Wi1, Wi2, Wi3

and Wi4 are detailed. Each vector Wir has components
Wir( j) for r = 1, …, 4 and j = 1, …, 3 given below.

( ) ( )
( )

( )

( ) ( )

( )
( )

( ) ( )

( )

( )

2 2 2 2
1 1 0 3 2

1 2 0 3

0 2 1 3

1 0 3 1 2

2 2 2 2
2 0 1 3

2 3 1 0

1 1 3 0 2

1 0 2 3

2 2 2 2
3 0 2 1

1

2 2

2 2

2 2 2

2 2

3 2 2

2 2

i ix x

y

z

i iy x

y

z

i x

y

z

W b rp p p p p

rp p p p p

rp p p p p

W b rp p p p p

rp p p p p

rp p p p p

W rp p p p p

rp p p p p

rp p p p p

= μ + + − − +

+ + +

+ − +

= μ + − + +

+ + − − +

+ +

= + +

+ − + +

+ + − −

(58)

( ) ( )
( )

( ) ( )

( )
( ) ( )

( )

2 2 2 2
2 1 0 3 2

0 3 1 2

2 1 2 0 3

2 2 2 2
2 0 1 3

2 0 2 1 3

2 3 1 0

1

2 2

2 2 2

3 2 2

2 2

i ix

iy x

i ix

iy y

i ix

iy z

W b p p p p

b p p p p rp

W b p p p p

b p p p p rp

W b p p p p

b p p p p rp

= μ + − − +

+ μ − + +

= μ + +

+ μ + − − +

= μ − + +

+ μ + +

(59)

( ) ( )
( )

( ) ( )

( )
( ) ( )

( )

2 2 2 2
3 1 0 3 2

0 3 1 2

3 1 2 0 3

2 2 2 2
2 0 1 3

3 0 2 1 3

2 3 1 0

1

2 2

2 2 2

3 2 2

2 2

i ix

iy x

i ix

iy y

i ix

iy z

W b p p p p

b p p p p rp

W b p p p p

b p p p p rp

W b p p p p

b p p p p rp

= −μ + − − −

+ μ − + −

= −μ + −

+ μ + − − −

= −μ − + −

+ μ + −

(60)

and finally:

 4 0i ix iyW b b⎡ ⎤= − −⎣ ⎦ (61)

where:

1 3 0 2

2 2 2 2
1 0 2 3 3 0 2 1

2 2

2 2

x y

z

p p p p p p

p p p p p p p p p

= + =

= − + = + − −
(62)
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