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Abstract

In this work, we evaluate aggressive undervolting, i.e., voltage under-

scaling below the nominal level to reduce the energy consumption of

Field Programmable Gate Arrays (FPGAs). Usually, voltage guardbands

are added by chip vendors to ensure the worst-case process and envi-

ronmental scenarios. Through experimenting on several FPGA architec-

tures, we confirm a large voltage guardband on FPGAs. In turn, sig-

nificant power consumption is saved, by eliminating this voltage guard-

band; however, further undervolting may cause reliability issues as the

result of the circuit delay increase, and faults might start to appear. We

perform a detailed fault characterization in terms of the rate, location,

type, as well as experimentally analyzing the sensitivity to environmen-

tal temperature, with a primarily focused on FPGA on-chip memories,

or Block RAMs (BRAMs). Understanding this behavior can allow to de-

ploy efficient mitigation techniques, and in turn, FPGA-based designs

can be improved for better energy, reliability, and performance trade-

offs.

Finally, as a case study, we evaluate a typical FPGA-based Neural Net-

work (NN) accelerator when the FPGA voltage is underscaled. In con-

sequence, the substantial NN energy savings come with the cost of NN

accuracy loss. To attain power savings without NN accuracy loss below

the voltage guardband gap, we propose a novel technique and also eval-

uated the built-in ECC mechanism of BRAMs. Hence, we develop an



application-dependent BRAMs placement technique that relies on the

deterministic behavior of undervolting faults and mitigates these faults

by mapping the most reliability sensitive NN parameters to BRAM

blocks that are relatively more resistant to undervolting faults. Finally,

as a more general technique, we apply the built-in ECC of BRAMs and

observe a significant fault coverage capability thanks to the behavior of

undervolting faults, with a negligible power consumption overhead.

Keywords: FPGA, Voltage Scaling, Power Consumption, Reliability
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1
Introduction

In this chapter, we provide background information about the scope of the thesis

and later on, explain the key challenges, motivations, our solutions, and finally,

introduce the thesis outline.

1.1 Background

The concentration of this thesis is on aggressive undervolting for commercial Field

Programmable Gate Arrays (FPGAs). Hence, in this section, we briefly introduce

these concepts.

1.1.1 FPGA Architecture

In modern computing systems, FPGAs play a crucial role to accelerate state-of-

the-art applications, thanks to their inherent capability to execute computations

in streaming fashion on a massively parallel substrate. FPGAs are increasingly

employed within the modern data centers and are expected to be in 30% of data

centers by 2020 [7]. They are used to accelerate many state-of-the-art applications

such as database query processing [19], [139], [141], [140], Neural Networks (NN)

[59], [74], and genome sequence analytic [14], among others. FPGAs combine the

1
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High-performance I/O 
Transceiver Technology 

Logic Fabric 
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Precise Clocking 
MMCM 

Figure 1.1: FPGAs among other digital devices (source: Intel/Altera [2]).

flexibility of CPUs with the efficiency of Application-Specific Integrated Circuits

(ASICs), see Figure 1.1. Hence, the concentration of this thesis is to study FP-

GAs with the aim of making them more power-efficient, which can suit them for

power-constrained environments. Modern FPGAs are composed of a wide range of

reconfigurable components, e.g., Block RAMs (BRAMs), Digital Signal Processors

(DSPs), Configurable Logic Blocks (CLBs), among others. These components in

a tightly-coupled structure can be efficiently exploited to accelerate computation-,

memory, or I/O-intensive applications to achieve the goal of high-throughput com-

putation. Usually, these components are floorplanned in a column-oriented way, as

2



1.1 Background

Figure 1.2: Voltage scaling in in Xilinx device family generations [10].

illustrated in Figure 1.1. For computations, corresponding components need to be

appropriately configured at run- or compile-time. Most of the state-of-the-art com-

mercial FPGAs including the studied commercial FPGAs in this thesis are Static

RAM (SRAM)-based, which means that the configuration bitstream is stored in on-

chip SRAMs and FPGA components get configured by reading the corresponding

parts of this bitstream.

1.1.2 Aggressive Undervolting

The power consumption of digital circuits, e.g., FPGAs is directly related to their

supply voltage level. Hence, any voltage underscaling can directly deliver pow-

er/energy efficiency gains. For instance, as shown in Figure 1.2, for Xilinx FPGA

generations, the nominal operating voltage has been lowered from 1V in Virtex-7

series (28nm) to 0.72V in Ultrascale+ series (16nm); resulting in 1.2X and 2.4X in

power and performance/watt efficiency, respectively [10]. As a more aggressive

effort, for each technology node, the supply voltage underscaling below the stan-

dard nominal level can deliver further power savings. We target this approach in

the thesis.

3



1. INTRODUCTION

For different types of chips such as CPUs [22], [72], [153], [127], [172], [171],

Graphics Processing Units (GPUs) [91], ASICs [165], Dynamic RAMs (DRAMs)

[36], and SRAMs [174] it has been experimentally shown that the nominal operat-

ing voltages set by vendors are extremely conservative for real-world applications.

This phenomenon is due to the voltage guardband added by vendors to ensure the

correct operation under worst-case environmental and process conditions. Thus, as

earlier mentioned, the promising approach to achieve energy efficiency is the ag-

gressive undervolting, i.e., voltage underscaling below the standard nominal level.

However, as the works above as well as our experimental studies confirm, the

potential of the aggressive undervolting is fully vendor-, chip-, architecture- de-

pendent. The concentration of this thesis is to study aggressive undervolting for

commercial FPGAs experimentally.

However, the downside of the aggressive undervolting is that voltage under-

scaling below the voltage guardband can cause reliability issues and faults might

start to appear. Unlike the DVFS technique, the frequency is not scaled down in the

aggressive undervolting approach. Therefore energy savings can be more signifi-

cant. However, aggressive undervolting leads to timing related faults, which can

cause applications to crash or terminate with wrong results. This thesis aims to

extend the aggressive supply voltage underscaling approach, i.e., power and relia-

bility trade-off, detailed fault characterization, and effective mitigation for FPGAs.

1.2 Key Challenges and Motivations

In comparison to ASICs, the power consumption of FPGAs is a first-order con-

cern, especially in nano-scale manufacturing technologies. It has been shown that

the power and energy efficiency of FPGAs is estimated to be ∼10X-∼20X worse

than in the corresponding ASIC designs [135], [183], [83], [122], [123] as it is also

4
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Figure 1.3: Detailed energy efficiency of FPGAs [1].

confirmed from industry perspective, see Figure 1.3. This gap is due to the inher-

ent structure of FPGA resources, which provide the configurability as an advantage

against ASICs; however, configurability incurs additional power consumption over-

head. The relatively lower power and energy efficiency of FPGAs can make them

less attractive for power-limited environments such as high performance embed-

ded computing scenarios and mobile environments, among others. Thus, the key

challenge that this thesis aims to tackle is the power/energy dissipation of FPGAs.

There are many techniques deployed to minimize the power consumption of FP-

GAs, such as architectural improvements [10] [3], power-aware tools [43] [85] [49],

bitstream compression [125], clock or voltage gating [126] [182], [95], [162] among

others. This thesis concentrates on an orthogonal approach, aggressive undervolt-

ing. As summarized in equations 1.1, 1.2, and 1.3, the total power consumption

including the dynamic, i.e., the signal transition power, and static power, i.e., leak-

age power, are directly functions of the supply voltage [5]; thus, as expected, any

5



1. INTRODUCTION

undervolting can directly lead to the power consumption reduction.

Ptotal = Pdynamic + Pstatic (1.1)

Pdynamic = α.C. f .V2 (1.2)

Pstatic = ∑ Leakage_Current.V (1.3)

, where α, C, f , V, and Leakage_Current are the technology-dependent con-

stant coefficient, capacitance, working frequency, supply voltage, and total leakage

current of the digital circuit, respectively.

With the aim of evaluating the aggressive undervolting technique to achieve

energy-efficient FPGA-based accelerators, the key research questions that are an-

swered by this thesis are listed below:

1. Is there any potential in FPGAs to take advantage of aggressive undervolting?

2. Do technology architecture, process variation, etc., play any role in the im-

pacts of aggressive undervolting in FPGAs?

3. Is the effect of aggressive undervolting on the reliability deterministic or

stochastic?

4. Which kind of real-world application can take advantage of the energy effi-

ciency through aggressive undervolting?

1.3 Scope of the Thesis

To have a thorough study, our experiments include several representative platforms

from Xilinx, a main vendor, i.e., VC707 (performance-optimized architecture) [11],

6
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ZC702 (FPGA integrated with ARM-core) [13], and two identical samples of KC705

(power-optimized architecture) [12] platforms. These four platforms allow us to

study different architectures and also the impact of die-to-die process variation for

KC705. Experimentally confirming the voltage guardband for multiple components

of FPGAs, we observe that data can be safely retrieved without any observable fault

when the supply voltage is underscaled below the nominal level, i.e., Vnom, and

until a certain minimum safe voltage level, i.e., Vmin. Further voltage underscaling

causes faults.

For a more detailed study, the concentration of this thesis is BRAMs, since

BRAMs play a key role in the acceleration of state-of-the-art applications such as

NNs and bioinformatics [14], and also, they considerably contribute in the total

power consumption of such FPGA designs of up to 30% [59]. Also, unlike many

FPGA components, the supply voltage of BRAMs can be independently regulated,

which allows detailed power and reliability trade-off analysis. Hence, the reliability

aspects of BRAMs under aggressively low-voltage operations are extensively stud-

ied. This study includes the characterization of faults in terms of the rate, location,

type as well as the impact of the environmental temperature.

As a case study application, we concentrate on the NN accelerator. NNs are

state-of-the-art applications that are increasingly used in the context of many real-

world environments such as autonomous cars [160], [143], [65], mobile scenarios

[86], [90], [73], personalized medicine [39], [51], [67], game industry [147], among

others. Also, due to the size of matrices that NNs needs to compute, the computa-

tion and power required is significant [146], [154]. To achieve energy-efficient NN,

hardware accelerators such as GPU- [124], FPGA- [134], and ASIC-based [70], [135],

[63] systems have recently received significant attention. Among them, FPGA-

based accelerators have unique features such as the relatively short deployment

time versus ASICs and more energy-efficient against GPUs. Hence, to achieve

7



1. INTRODUCTION

an energy-efficient FPGA-based NN accelerator, we push a typical accelerator to

operate under low-voltage FPGA BRAMs, and evaluate mitigation techniques to

prevent NN accuracy loss as the result of undervolting faults.

1.4 Contributions

This thesis aims to evaluate the aggressive undervolting technique for commer-

cial FPGAs empirically. Toward this goal, the thesis has three main contributions,

which are summarized as follows:

1. Voltage Guardband: This thesis is the first effort to empirically study ag-

gressive voltage underscaling of FPGAs below the standard nominal level.

Through experimenting on four platforms, we confirm a conservative volt-

age guardband until the minimum safe voltage level, i.e., Vmin for different

FPGA components. By eliminating this large voltage gap, a significant power

saving gain is achieved without compromising to the performance or reliabil-

ity, for instance, more than an order of magnitude power savings for on-chip

BRAMs.

2. Fault Characterization: We perform the first detailed experimental bit-level

characterization study of the behavior of faults when the supply voltage of

FPGA on-chip BRAMs is underscaled below Vmin. Understanding the behav-

ior of these faults can provide an opportunity to deploy efficient mitigation

techniques, and in turn, a better trade-off for low-voltage FPGA-based de-

signs can be achieved. More specifically, we observe that:

• The fault rate exponentially increases by further undervolting; however,

with a considerable difference among platforms, which is the result of

technological differences and also process variation.

8
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• The location and rate of undervolting faults do not considerably change

over time. In other words, undervolting faults exhibit a deterministic

behavior.

• Within BRAMs, faults usually occur in certain few columns; however,

these most-vulnerable columns are different among all BRAMs.

• Undervolting faults are fully non-uniformly distributed among BRAMs.

• Undervolting faults manifest themselves mostly as ’1’ to ’0’ bit-flips.

• On a given BRAM raw, undervolting faults lead mostly to single-bit type

faults. Multi-bit type faults start to appear as the voltage is further re-

duced.

• At higher environmental temperatures, the fault rate reduces as the re-

sult of the Inverse Temperature Dependence (ITD) property of the nano-

scale technology nodes [117].

• Undervolting faults follow the Fault Inclusion Property (FIP), i.e., faults

in a certain voltage level, stay (and potentially extend) in lower voltages,

as well.

3. FPGA-Based Accelerator: We perform the first study of the efficiency of NN

accelerators under the aggressively low-voltage operation of commercial FP-

GAs. We observe that the data sparsity of state-of-the-art NN benchmarks

makes them inherently robust against undervolting faults; however, by ag-

gressive undervolting, the NN accuracy is impacted. To attain the subsequent

power saving without NN accuracy loss, we present two fault mitigation tech-

niques, which rely on the behavior of undervolting faults.

9



1. INTRODUCTION

1.5 Outline

The subsequent sections of this thesis are structured as follows. The FPGA under-

volting experimental methodology, and also, the major behavior of the power and

reliability trade-off is explained in Chapter 2. The fault characterization under ag-

gressive low-voltage FPGA operations is detailed in Chapter 3. Chapter 4 explains

the effect of FPGA undervolting in the typical NN and evaluate the proposed fault

mitigation techniques. Chapter 5 reviews the recent related works and Chapter

6 summarizes our findings and lessons learned in this study. Finally, Chapter 7

includes the list of publications from the thesis.

10



2
Understanding FPGAs Undervolting

In this chapter, we introduce the experimental methodology, elaborate the FPGA

platform undervolting, and also, discuss the behavior of FPGA BRAMs under ag-

gressively reduced supply voltage.

2.1 Experimental Methodology

We perform our experiments on a set of representative commercial FPGA platforms

from Xilinx, i.e., one VC707, one ZC702, and two KC705s. Common for all plat-

forms, BRAMs are distributed all over the chip with a unique size of 16 Kbits each.

Each BRAM is a matrix of bitcells with 1024 rows, and 16 columns1. BRAMs can

be either individually accessed or cascaded to build larger memories (with some

overheads). This methodology provides flexibility for the FPGA designers to have

single-cycle access to on-chip memories as per bandwidth or size needs. More de-

tails of our tested platforms are shown in Table 2.1. All platforms are fabricated

with 28nm technology, and the standard nominal voltage of BRAMs is the same,

Vnom = 1V. However, VC707 is designed for performance while KC705 is opti-

mized for the power consumption. Also, a different design approach is used for

1Each row has two additional bits as parity that is not considered in this section. We will
elaborate on their role in Section 4.4.2.
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2. UNDERSTANDING FPGAS UNDERVOLTING

Table 2.1: Specifications of tested FPGA platforms.

Hardware Platform (Board) VC707 ZC702 KC705*

Device Family Virtex-7 Zynq7000 Kintex-7
Chip Model XC7VX485T XC7Z020 XC7K325T
Speed Grade -2 -1 -2

Number of BRAMs 2060 280 890
Basic Size of Each BRAM 1024*16-bit 1024*16-bits 1024*16-bits

Technology Node 28nm 28nm 28nm
Nominal VCCBRAM (Vnom) 1V 1V 1V

Design Consideration Performance FPGA-CPU Architecture Power
* Two identical samples of KC705 (A & B) are tested.

ZC702, which is targeted for hardware-software (FPGA-CPU) co-designs. Further-

more, we choose two KC705 platforms that allow us to evaluate the undervolting

effects on the same model, as well. Hence, for a thorough evaluation, we selected

these representative platforms.

2.2 FPGA Undervolting: Idle Power Minimization

Through the Power Management Bus (PMBUS) standard [4], it is possible to in-

dependently and dynamically regulate and monitor the supply voltage of such

FPGA components as BRAMs (VCCBRAM), core logic (VCCINT), i.e., Look-Up Tables

(LUTs) and Digital Signal Processors (DSPs), among others. An on-board voltage

regulator is responsible for this aim. Although there is no standard for the list of

these components with the capability of independently regulated, the difference

among our studied platforms is not significant. For instance, the on-board voltage

distribution is shown in Figure 2.1 for VC707. To modify supply voltages, we use

Texas Instrument (TI) PMBUS USB Adapter, and the provided C-based Applica-

tion Programming Interface (API), which facilitates accessing the on-board voltage

12



2.2 FPGA Undervolting: Idle Power Minimization

BRAMs
IO Transiver
I2C, JTAG, ...

Auxiliary IO

DDR
GTX Transiver
GTX Transiver

Oscillator
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1V
1.8V
1.8V

2V

1.5V
1V

1.2V

2.5V

1.8V
3.3V

0-3.3V

1V

Figure 2.1: On-board voltage regulator for FPGAs, shown for VC707 [11].

controller through the host [6]. Note that in the studied platforms, the voltage

regulator is hardwired to the host, and accessible through the PMBus standard.

As the first experiment, we aim to minimize the Idle power consumption of

the FPGA platform, i.e., the power that is dissipated when there is no application

running on the board and all components can go to the idle mode, through un-

dervolting the platform’s components listed in Figure 2.1. Toward this goal, we set

the supply voltage of the platform’s components at a minimum voltage level that

the platform does not crash, i.e., VidleMin. In turn, the on-board status LEDs are

changed from Figure 2.3a at the nominal voltage level to 2.3b below the VidleMin.

13



2. UNDERSTANDING FPGAS UNDERVOLTING

Figure 2.2: FPGA platform undervolting until the crash voltage level, shown for VC707
[11].

(a) At the standard nominal voltage level,
i.e., Vnom.

(b) Below the minimum Idle voltage level,
i.e., VidleMin.

Figure 2.3: Status LEDs under different voltages, shown for VC707 [11].

It means that further undervolting causes the system crashing, which is exposed

by an unset of the DONE pin. Note that at the VidleMin, there is no guarantee that

the system operates in a safe behavior; however, the FPGA bitstream is recognized

as correct. Through this undervolting mechanism, the idle power consumption is

significantly reduced, for instance, 1.9X for VC707 as shown in Figure 2.4.
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2.3 Safe, Critical, and Crash Voltage Regions

Figure 2.4: Minimized Idle power consumption through undervolting as detailed in Figure
2.2, shown for VC707 [11].

2.3 Safe, Critical, and Crash Voltage Regions

Unlike the idle power that is drawn when only the power supply is connected, ap-

plication running can consume additional power consumption. In this section, we

aim to discover the minimum safe voltage of such FPGA components as VCCINT and

VCCBRAM. These voltage rails feed the most important on-chip FPGA components.

As can be seen in Figure 2.5, for both VCCINT and VCCBRAM, there is a conservative

voltage guardband for all platforms below the nominal level (SAFE), which creates

an opportunity for energy savings. Further undervolting causes observable faults

(CRITICAL), until a voltage level that platforms stop operating (CRASH). Note

that for all platforms, the nominal voltage level of both voltage rails is 1V; however,

other voltage levels slightly vary among platforms. For the more detailed study,

we concentrate on VCCBRAM, since its independent voltage rail allows to evaluate

BRAMs individually in fine-grain level at the critical voltage region, unlike the
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2. UNDERSTANDING FPGAS UNDERVOLTING

VCCINT that feeds several components such as LUTs and DSPs. Further power and

reliability trade-off of the BRAMs at the critical region is discussed later in this

section.

The experimental setup of BRAMs evaluation is shown in Figure 2.6. It is com-

posed of two distinct hardware and software components. The task of the hardware

FPGA platform is to access BRAMs and transmit their content to the host, using a

serial interface. In ZC702, this serial interface is controlled by the ARM processor;

however, in other platforms, we built our hardware serial interface. Note that we

verify and validate that this interface is entirely reliable at any VCCBRAM level and

is not affected by the BRAMs undervolting. On the other side, the host issues the

required PMBUS commands to set a certain voltage to VCCBRAM. Also, it initializes

BRAMs and analyzes potentially faulty data retrieved from BRAMs. On this setup,

the reduced VCCBRAM can cause the timing violations and in turn, corrupting some

of the bitcells of some of BRAMs. We follow the method shown in List. 2.1 to

analyze the behavior of these faults comprehensively.

Then, we retrieve the contents of BRAMs one-by-one and within each BRAM

row-by-row, and transfer them to the host. In the host, we analyze the rate and

location of faults. This process is repeated 100 times for each voltage level to obtain

statistically significant results. The reported results in this chapter are the median

of these 100 tests. After a soft reset, we gradually decrease VCCBRAM by 10mV

and repeat the process until the lowest voltage that our design operate, Vcrash. For

each voltage level, the fault rate and power consumption of BRAMs are recorded.

Finally, to measure the power consumption with acceptable accuracy, we use a

power meter, while to extract the power contribution of BRAMs in the nominal

voltage level, we use Xilinx Power Estimation (XPE) tool. Thus, we report total

power consumption including dynamic and static, which are both directly reduced

by undervolting. Note that BRAMs considered in this thesis internally operate
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2.3 Safe, Critical, and Crash Voltage Regions

(a) VCCBRAM.

(b) VCCINT.

Figure 2.5: Undervolting FPGA components, i.e., Internal (VCCINT) and BRAM (VCCBRAM)
voltages. (SAFE: no observable fault occur. CRITICAL: faults manifest. CRASH: FPGA
stops operating.)

at a fixed frequency of ∼ 500Mhz [10], and externally the design is operating on

the maximum frequency without timing violation at the nominal voltage level,
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2. UNDERSTANDING FPGAS UNDERVOLTING
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Figure 2.6: Experimental setup to perform fault characterization through FPGA BRAMs
aggressive voltage underscaling.

List 2.1: Pseudo-code to restudy liability behavior of voltage scaling on FPGA BRAMs at
the CRITICAL, on the experimental setup of Figure 2.6.

1: VCCBRAM = Vmin;
2: while(VCCBRAM >= Vcrash) begin
3: while(numRun <= 100) begin
4: delay(1sec);
5: Transfer content of BRAMs to the host;
6: Analyse faulty data (rate and location);
7: numRun++;
8: end
9: VCCBRAM− = 10(mV);
10: end

determined by the FPGA compiling tools.

2.4 Power and Reliability Trade-offs

This section describes the overall behavior of FPGA BRAMs in terms of the power

consumption and reliability trade-off when their supply voltage is aggressively re-
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2.4 Power and Reliability Trade-offs

duced. We repeat experiments on all platforms, mentioned earlier. As can be seen

in Figure 2.7, our experiments on lowering the supply voltage of BRAMs below

nominal level, Vnom, demonstrate two thresholds. First, a voltage guardband, Vmin,

that separates the fault-free and faulty regions. Second, Vcrash that is the lowest

level of the voltage that our design practically operates. For all tested platforms,

Vnom = 1V due to the factory settings. However, through our experiments, we

observe a slight difference for Vmin and Vcrash. Note that repeating these tests in

more noisy and harsh environments, i.e., worst case environmental conditions, can

cause observable faults above observed Vmin, as well. Below the Vcrash region, we

observed that the DONE pin is unset, which at nominal levels indicates incorrect

bitstream. To have an initial exploration, we evaluated the environmental temper-

ature; however, the large guardband is experimentally observed.

The common observation for studied platforms is that when VCCBRAM >= Vmin,

no observable faults occur. However, underscaling VCCBRAM below Vmin the fault

rate exponentially increases, while the power consumption quadratically reduces

but with different scales for different platforms. When VCCBRAM = Vmin, signifi-

cant BRAMs power savings gain is achieved over Vnom = 1V, more than an order

of magnitude, without comprising any performance or incurring any reliability

degradation. As can be seen, both power consumption and reduction are less in

KC705 than VC707, which is the consequence of having relatively fewer BRAMs

and also the inherent power optimizations adopted for KC705 by the vendor. Also,

BRAMs power consumption in ZC702 is relatively less than other platforms, since

it is composed of a much smaller number of BRAMs.

Further undervolting below Vmin, the fault rate exponentially increases, up to

652, 153, 254, and 60 per 1 Mbits (∼ 0.06%, 0.01%, 0.03%, and 0.005%)1 at Vcrash,

1Since the overall fault rates are very small, instead of percentage (%), we present them in terms
of number of faults per 1Mbit, for clearer charts.
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2. UNDERSTANDING FPGAS UNDERVOLTING

(a) VC707. (b) ZC702.

(c) KC705-A. (d) KC705-B.

Figure 2.7: Major observations under low-voltage operations in FPGA BRAMs for studied
commercial platforms.
* Different scales for different charts.
** power results are reported as mWatts in ZC702 and in Watts for others.
*** At ambient temperature.

for VC707, ZC702, KC705-A, and KC705-B, respectively (with pattern= 16’hFFFF).

Note that through our experimental observations, the vast majority of these faults

are ’1’ to ’0’ bit flips, on average 99.9% for all platforms. We verify this observation

by repeating the same tests with other data patterns. The fault rate is proportional

to the number of ’1’ bits; for example, with pattern= 16’hFFFF the fault rate is
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2.4 Power and Reliability Trade-offs

Figure 2.8: The impact of the data pattern in the fault rate on VC707 (similar behavior is
observed for other platforms.)

almost double than pattern= 16’hAAAA, and with pattern=16’h0000 few faults are

observed, as shown as an example on VC707 in Figure 2.8. In the same line, we did

not observe any meaningful correlation in the various permutations of ’0’ and ’1’ in

the data pattern, for instance, as can be seen, the fault rate of pattern= 16’hAAAA,

16’h5555, and a random pattern are almost the same.
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3
Fault Characterization Through FPGA BRAMs

Undervolting

In this section, we comprehensively characterize the behavior of faults, where

VCCBRAM is underscaled at the CRITICAL voltage region from Vmin to Vcrash. Con-

sidering the impact of the data pattern that is explained in Section 2, the detailed

fault characterization in this section is for data pattern= 16’hFFFF, which corre-

sponds the highest fault rate since as shown in Section 2, ’1’-to-’0’ bit flips are

much more common than ’0’-to-’1’ flips.. Understanding the behavior of under-

volting faults can allow the deployment of efficient fault mitigation techniques and

in turn, better reliability, energy, and performance trade-off can be achieved for

FPGA designs.

3.1 Fault Stability Over Time

As earlier mentioned, we repeat each test 100 times to get statistically significant

results. We did not observe a significantly different results among different runs,

as shown in Table 3.1. Thus, the fault rates and as experimentally observed, faults

locations show a stable behavior over time without meaningfully changing over

the time. This observation is considered in our application-aware fault mitigation
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3. FAULT CHARACTERIZATION THROUGH FPGA BRAMS
UNDERVOLTING

Table 3.1: Fault rate stability over time. (Fault rate analysis of 100 runs at Vcrash with
pattern=16’hFFFF.)

Parameter VC707 ZC702 KC705-A KC705-B

AVERAGE fault rate* 652 153 254 60
MINIMUM fault rate* 630 140 237 51
MAXIMUM fault rate* 669 162 264 69
STD. DEV of fault rates 7.3 5.9 4.8 1.8
* per 1 Mbit.

technique that is discussed in Chapter 4.

3.2 Fault Variability Among BRAMs

By statistically analyzing the experimental results, we observe that faults are not

uniformly distributed over different BRAMs. Common for all platforms, we ob-

serve that a big percentage of BRAMs, e.g., 38.9% in VC707 at the lowest voltage

level Vcrash = 0.54V, never experience faults; however, faults manifest in a small

percentage of them. For instance, on VC707 when VCCBRAM = Vcrash = 0.54V, the

maximum, minimum, and average fault rate within BRAMs are 2.84%, 0%, and

0.04%, respectively. For further analysis, we clustered this statistical information in

low-, mid-, and high-vulnerable classes of BRAMs, using the k-means clustering al-

gorithm. For all platforms, a vast majority of BRAMs are clusted as low-vulnerable.

For instance, we show detailed results of VC707 in Figure 3.1. As can be seen, 88.6%

of BRAMs are recognized as low-vulnerable with an average fault rate of 0.02%, ∼

3.4 faults within an individual BRAM with the size of 1024*16-bits.

The fault rate variability among BRAMs is the result of the within-die process

variation and as discussed earlier is permanent. Accordingly, we construct a chip-

dependent Fault Variation Map (FVM). FVM is extracted by mapping the observed

fault rates to the physical location of BRAMs on the tested chips. Through Vivado,
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3.3 Fault Variability Within BRAMs

Xilinx toolkit, we extract the required information to build FVM, including the

floorplan of the chip and the placement information of BRAMs. For instance, FVM

of VC707 is shown in Figure 3.2, when VCCBRAM is underscaled from Vmin = 0.61V

to Vcrash = 0.54V. FVM has the granularity of BRAM. Note that in this figure other

FPGA components are ignored for the sake of more clarity of FVM.

3.3 Fault Variability Within BRAMs

We performed a statistical analysis to analyze the fault distribution schema within

those faulty BRAMs, from both column- and row-wise view.

3.3.1 Column-wise Fault Analysis

Our observations reveals that faults mostly occur in a few certain columns within

BRAMs. In other words, for each faulty BRAM, a few (one or two) most vulnerable

column of bitcells exist, among 16 available columns, as illustrated in Figure 3.3.

Figure 3.4a shows the number of most vulnerable columns within faulty BRAMs.

As can be seen, more than 80% of faults occur in a single column, 17% in two

Figure 3.1: Clustering BRAMs to low-, mid-, and high-vulnerable classes using K-mean
algorithm.
* This figure shows the clustering at Vcrash = 0.54V for only VC707 since very similar
behavior is observed for other platforms.
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Figure 3.2: BRAMs Fault Variation Map (FVM), scaling VCCBRAM from Vmin = 0.61V to
Vcrash = 0.54V.
* Each small rectangular box represents a BRAM mapped to the corresponding X and Y
physical location on FPGA, shown for Virtex-7 FPGA in VC707 platform containing 2060
BRAMs.
** White boxes represent the empty physical locations of BRAMs.
*** For a clearer representation, other FPGA components such as LUTs and DSPs are not
shown.

columns, and so on. However, these most vulnerable columns do not occur in

identical column indexes, for different BRAMs. As can be seen in Figure 3.4b,

there is almost a uniform distribution of fault rate in different 16 available column

indexes, when fault rate is averaged for all BRAMs.

3.3.2 Row-wise Fault Analysis

By a statistical analysis of locations of faults within faulty BRAMs, we observe that

there is a spatial correlation between faulty rows. Our hypothesis is that the BRAM

wordlines are weaker than bitlines to support low voltage operation. However, we

were not able to verify this hypothesis since there is no publicly available document

that details the circuit level design of Xilinx BRAMs. In other words, by increasing

the distance between rows, the probability of the fault is considerably reduced. As
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Figure 3.3: Illustration of column-wise fault distraction within BRAMs.

shown in Figure 3.5, within our BRAMs with 1024 rows, the minimum distance of

more than 90% of faulty rows is on average of 20. A similar behavior is discussed

for systematic process variation [145], [89]; thus, our conclusion is that the behavior

observed about the undervolting faults is the direct consequence of the systematic

process variation.

3.4 The Impact of the Die-to-Die Process Variation

We perform a further analysis of understanding the effects of voltage scaling on

two samples of the same platform, i.e. KC705-A and KC705-B, which can show
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(a) Column vulnerability within individual BRAMs.

(b) Column vulnerability among individual BRAMs.

Figure 3.4: Column-wise fault characterization within BRAMs.
* Shown for VCCBRAM at Vcrash = 0.54V for VC707.

the impact of the die-to-die process variation. As earlier noted, KC705-A shows a

significantly higher fault rate. Furthermore, with extracting their FVMs, we observe

a significant difference in the fault map among BRAMs, see Figure 3.6, thanks to
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3.4 The Impact of the Die-to-Die Process Variation

Figure 3.5: Row-wise fault characterization within BRAMs.
* Shown for VCCBRAM at Vcrash = 0.54V for VC707.

(a) KC705-A. (b) KC705-B.

Figure 3.6: FVM for two identical samples of KC705 at Vcrash. Different fault rates and fault
locations (FVM) are experimentally observed.

the die-to-die process variation. For instance, BRAM#(116,1) has high-vulnerability

in KC705-A; however, it has low-vulnerability in KC705-B.
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3.5 Fault Inclusion Property (FIP)

Fault Inclusion Property (FIP) is a property that we experimentally observed by

monitoring the fault location and rate under various supply voltages below Vmin =

0.61V. FIP is said to exist if all the faulty bits in a certain level of VCCBRAM are still

faulty in further reduced levels of voltage. FIP was previously observed for CPU

cache structures [58], here we confirm that FIP holds for FPGA on-chip memories

as well, as visualized in Figure 3.7a for VC707 (verified for other platforms, as

well). While it may not be the best representation as the figure shows the stacked

fault rates; however, through our experimental results we observed both location as

well as rate of faults in a certain voltage level are exactly repeated in lower voltage

levels. Also, FIP in the BRAM-level can be seen in the FVM of Figure 3.2.

3.6 Type of Faults: Single-, Double-, Or Multiple-Bit?

We categorize faults into or single-bit, double-bit, and multiple-bit faults. Figure

3.7b shows a histogram of these fault types, in different voltage levels at the critical

voltage region, i.e., from Vmin = 0.61V to Vcrash = 0.54V on VC707. We observe

that first, a vast majority of these faults are single- or multiple-bit faults; for in-

stance, more than 90% and a further 7% at Vcrash = 0.54V, respectively. Second,

by further voltage underscaling, single-bit faults manifest before double-bit, and in

turn, double-bit faults manifest before multiple-bit faults. The faults behavior men-

tioned above is the consequence of the FIP. In other words, within a memory row

which experiences faults, by further undervolting, those initial faulty bits are still

faulty and also potentially expanded to other bits. Consequently, single-bit faults

can be potentially converted to double-bit and similarly, double-bit faults can be

potentially converted to multiple-bit faults.
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3.7 Impact of the Environmental Temperature

(a) Fault Inclusion Property (FIP).

(b) Single-, Double-, or Multiple-bit faults.

Figure 3.7: Further analysis of faults location, undervolting BRAMs from Vmin = 0.61V to
Vcrash = 0.54V, shown for VC707.

3.7 Impact of the Environmental Temperature

We perform an experiment to study the effect of the environmental temperature

on the behavior of faults when VCCBRAM is lowered below Vmin. Toward this goal,
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(a) On-board Temperature= 50◦C. (b) On-board Temperature= 60◦C.

(c) On-board Temperature= 70◦C. (d) On-board Temperature= 80◦C.

Figure 3.8: The correlation among on-board temperature, supply voltage of BRAMs, tech-
nology, and fault rate.
* x-axis: VCCBRAM from Vmin = 0.61V to Vcrash = 0.54V.
** y-axis: the fault rate per 1Mbit.

we place the hardware board inside a heat chamber where we regulate the temper-

ature. We monitor the on-board temperature using PMBus commands. Through

experiments, BRAMs fault rates are extracted and shown in Figure 3.8 under the

on-board temperatures of 50◦C (default temperature), 60◦C, 70◦C, and 80◦C. As

can be seen, with heating up, the fault rate constantly reduces; for instance, by

more than 3X in VC707, when the temperature is increased from 50◦C to 80◦C.

This observation is the consequence of the Inverse Thermal Independence (ITD)
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Figure 3.9: Different fault rate changes of the studied FPGA platforms over different tem-
peratures at VCCBRAM = Vcrash.

property [117]. ITD is a thermal property of digital devices with nano-scale tech-

nology nodes; and states that under ultra low-voltage operations, the circuit delay

reduces at higher temperatures. The reason is that as the technology node scales

down, the supply voltage approaches the threshold voltage. Hence, at low-voltage

regimes, increasing the temperature reduces the threshold voltage and allows the

Table 3.2: Summary of fault characterization in FPGA-Based BRAMs and comparing with
the modern DRAMs, i.e,. DDR-3.

BRAM [our work] DRAM [36]
Large voltage margin. Large voltage margin.
Fault type: stuck-at-0 Fault type: No Info!
Pattern-dependent Faults Pattern-free Faults
Exponential Fault Rate up to ∼0.1% Exponential Fault Rate up to ∼20%
Significant Variation among BRAMs Significant Variation among DRAM Banks
Follows Fault Inclusion Property (FIP) No Info!
Inverse Relation of Temperature
and Fault Rate

Direct Relation of Temperature
and Fault Rate
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device to switch faster. In turn, with the circuit delay decreasing, the number of

critical paths, and subsequently, the fault rate reduces. This property is experimen-

tally verified in our case, for commercial FPGAs. Also, as can be seen in Figure

3.9, the fault rate in VC707 is reduced more aggressively than KC705-A. A rela-

tively 156% more fault rate in 50◦C is reduced to 11.6% less fault rate in 80◦C, for

VC707 vs. KC705-A. The architectural and technological difference between these

platforms can be the reason since their design goal is different, i.e., performance

(VC707) vs. power (KC705-A). Also, by heating up, the fault rate is significantly

lower for VC705-B than KC705-A, as the consequence of the process variation.

3.8 Summary

We presented comprehensive fault characterization results under BRAM under-

volting below Vmin. Our experimental observations such as stuck-at-0 behavior of

faults and significant fault rate variability among BRAMs, can provide an oppor-

tunity to optimize power-reliability trade-offs in aggressively low-voltage regimes,

for applications implemented onto FPGAs. We summarize our observations and

findings in Table 3.2. Also, we compare our observations with a recent character-

ization work on DDR-3 [36], mostly in the behavioral-level. Although, there is a

technological difference between them, i.e., BRAMs are SRAM-based while DDR-3

are DRAM-based, the comparison highlights their significant similar fault behavior

under low-voltage operations; although, there are some differences, as well. For

instance, the effect of the environmental temperature and also the type of faults

(mostly ’1’-to-’0’ bit flips for BRAMs versus more uniform for DDR-3) are the main

differences, which can be due to the architectural difference among two memories.
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4
Evaluating FPGA-based NN Accelerator on

Low-Voltage FPGA BRAMs

In this chapter, we present and discuss the results of our study on the impact of the

BRAM voltage scaling below nominal level, Vnom = 1V, in a typical FPGA-based

NN accelerator. More specifically, our study includes the power consumption and

NN accuracy trade-off, and investigation of two fault mitigation technique when

NN is operating below Vmin, i.e., a proposed intelligent placement technique and

also, built-in ECC. First, we briefly describe the NN resilience and the experimental

methodology, and later on, discuss the efficiency of low-voltage FPGA-based NN.

4.1 Background on NN Resilience

Machine learning models and in particular NNs are increasingly being used in

the context of nonlinear "cognitive" problems, such as natural language process-

ing and computer vision. These models can learn from a dataset in the training

phase and make predictions on a new, previously unseen data in the inference/pre-

diction/classification phase with ever-increasing accuracy. However, the compute-

and power-intensive nature of NNs prevents their effective deployment in resource-

constrained environments, such as mobile scenarios [175]. Hardware acceleration,
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e.g., FPGAs offers a roadmap for enabling NNs in these scenarios [152], [94], [135],

[42], [16], [74]. However, similar to general purpose devices, hardware accelerators

are also susceptible to faults (permanent/hard and transient/soft), as more specif-

ically studied in this thesis, as the result of the aggressive voltage underscaling

approach.

In recent years NN resilience is studied with different approaches, e.g., software-

level simulations or theoretical analyzes [156], [132], SPICE simulations [135], [93],

[180], [181], and experimenting on the real hardware operating on low-voltage

regimes, e.g., SRAMs [165], [174], [173]. Among them, it is evident that software-

level simulations and theoretical analyzes lack the information of the underlying

hardware platform and are relatively less precise. In contrast, SPICE-based studies

are more precise; however, these studies require significant circuit-level efforts.

Among the most relevant existing works on the NN resilience, Minerva [135]

performs a characterization on the sparsity of data and analyzes the efficiency of

leveraging fixed-point data representation model. In the same line, [157] studied

the vulnerability of various layers of NN. Also, recently [93] studied the fault prop-

agation in an ASIC model of NN focused on the vulnerability of different NN

layers. This thesis approaches the resilience study on real faults that are generated

through aggressive undervolting.

4.1.1 The Architecture of the NN Accelerator

Specifications of the experimented RTL NN with a baseline configuration is sum-

marized in Table 4.1. Our study features a typical fully-connected NN that is also

widely used in the structure of other NN models [135]. Our study targets the in-

ference phase of NN since training is normally a one-time process; additionally,

the inference is repeatedly performed to classify unknown data. As can be seen

in Figure 4.1(a), this NN model is composed of input, hidden, and output layers,
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where all adjacent layers are fully connected to each other. The first/last layer is the

input/output layer and has one neuron for each component in the input/output

vector. Between the input and output layers, there are single/multiple hidden lay-

ers. The interconnection between neurons of adjacent layers is determined based

on a collection of weights and biases, whose values are tuned in the training phase.

Each NN neuron uses an activation function to determine its output. Finally, in the

output layer, a softmax function generates the final output of the NN. We perform

our experiments on a 6-layer NN, i.e., ({Li, i ∈ [0, 5]}), one input, four hidden, and

one output layer(s). The four hidden layer sizes are fixed at 1024, 512, 256, 128

while input and output layer sizes are benchmark-dependent (784, 54 and 2437 for

input while 10, 8 and 52 for output layers for the three NN applications studied

in this thesis, i.e., MNIST [87], Forest [24], and Reuters [25], respectively.). Thus,

there are five matrix multipliers among adjacent layers, i.e., ({Layerj, j ∈ [0, 4]}),

where Layerj refers to the matrix multiplication of Lj and Lj+1. Among bench-

marks, MNIST is a set of black and white digitized handwritten digits, each image

composed of 784*8-bit pixels, the output infers the number from 0 to 9 (10 output

classes), with 60000 training- and 10000 inference images. Forest includes carto-

graphic observations for classifying the forest cover type. Reuters covers news

articles for text categorization. MNIST is most widely-used by the ML commu-

nity to evaluate the efficiency of novel NN methods. Hence, we use MNIST as the

main benchmark to evaluate our resilience studies. To demonstrate the generality

of experimental observations, we briefly present results for Forest and Reuters, as

well.

For experiments, we first export weights and biases of the trained NN that is

performed off-line using a MATLAB implementation, initialize BRAMs of FPGA,

and then start streaming 10000 input images to perform the inference. Also, for

representing data, we use the fixed-point low-precision model. Note that lowering

37



4. EVALUATING FPGA-BASED NN ACCELERATOR ON LOW-VOLTAGE
FPGA BRAMS

 Off-Chip Memory

w0(0,j)

wN(1,j)

On-Chip
Memories Classifier

......

Registers

multipliers/adders

weights ** * * **

++ + +

+ +

+

......

...

......

adder tree

.....

.....

.....

Input
Layer

Hidden
Layer(s)

Output (softmax)
Layer

Underlying Hardware

.....

I

H0

H(K-1)

O
w 

w 

w 

......

(a) A typical Neural Network (NN)  (b) FPGA Implementation of the given Neural Network (NN)

Figure 4.1: The overall methodology to resilience study of the RTL NN Accelerator.

the precision of data is a common technique for applications in the approximate

computing domain, in particular for NNs performing inference [60], to achieve

power and performance efficiency with negligible accuracy loss. Following this

approach, we use a per-layer minimum precision fixed-point model. The bit-width

of data (input, weights, and intermediate) is fixed to 16-bits, composed of the sign,

digit, and fraction components. Toward this goal, with a pre-processing analysis,

we extract the minimum bit-widths of the sign and digit components per layer, and

the fraction component fills the rest of the 16 bits. As we experimentally observed,

this quantification does not lead to any considerable accuracy loss in comparison

to a full-precision data model. The minimum precision is used in this thesis is

summarized in Figure 4.2.

4.2 Experimental Methodology of NN Evaluations

We perform our studies on the NN that is that is shown in Figure 4.1(b) and sum-

marized in Table 4.1. In our system architecture, weights of the NN are located

inside BRAMs and input images are being streamed through the off-chip DDR-3.

The required calculation of the image classification, matrix multiplication plus sig-

moid function activation, are performed in parallel by leveraging DSPs and LUTs
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Table 4.1: Detailed specifications of the baseline RTL NN setup.

Neural Network (NN)

Type Fully-Connected
Phase Inference
Topology (number of layers) 6L (1L input, 4L hidden, 1L output)
Per Layer Size (number of neurons) (784, 1024, 512, 256, 128, 10)= 2714
Total Number of Weights ∼1.5 million
Original Activation Function Logarithmic Sigmoid (logsig)

Original Benchmark

Name MNIST [87]
Type Handwritten Digits (Images)
Number of Images Training: 60000, Inference: 10000
Number of Pixels per Image 28*28= 784
Number of Output Classes 10

Additional Benchmarks

1. Forest (cartographics of forest types) [24]
2. Reuters (articles for text categorization) [25]

Data Representation Model

Type 16-bits Fixed-Point (Figure 4.2)
Sign-bit Precision Minimum per layer (1 or 0 bit)
Digit-bit(s) Precision Minimum per layer
Fraction-bit(s) Precision 16- (number of sign- and digit-bits)

An Example Synthesize Results

FPGA Platform-Chip VC707-Virtex7
Maximum Operating Frequency 100Mhz
BRAM Usage (Total: 2060) 70.8%
DSP Usage (Total: 2800) 8.6%
FF Usage (Total: 303,600) 3.8%
LUT Usage (Total: 607,200) 4.9%
Number of PEs 64
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Figure 4.2: Minimum precision to represent data of RTL NN, i.e., Inputs (IRs), Weighs
(WRs), and Intermediate (IMRs).

of the FPGA and results are streamed to the host computer to perform the final step

of the NN accuracy analysis. This setup is typical for most of the FPGA-based NN

accelerator, as surveyed in [59]. In this section, we present results for the VC707

platform since a very similar efficiency is observed for other platforms.

On this setup, the on-chip power breakdown at various VCCBRAMs, i.e., Vnom =

1V, Vmin = 0.61V, and Vcrash = 0.54V, is shown in Figure 4.3. As can be seen, more

than an order of magnitude BRAM power dissipation is reduced from Vnom = 1V

to the guardband gap on Vmin = 0.61V, which in turn delivers 24.1% total on-

chip power reduction. Further voltage lowering to Vcrash = 0.54V, reduces 40%

of BRAM power over Vmin = 0.61V; however, as a result of the timing faults, the

NN classification error is in turn impacted. This impact and the proposed fault

mitigation technique are discussed later in this section.

40



4.2 Experimental Methodology of NN Evaluations

Figure 4.3: On-chip power breakdown of our FPGA-based NN at Vnom, Vmin, and Vcrash

(VC707). Rest includes on-chip power consumption of DSPs, LUTs, routing resource, etc.

Figure 4.4: Impact of BRAM voltage scaling in the NN classification error, lowering
VCCBRAM from Vmin = 0.61V to Vcrash = 0.54V.
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4.3 Impact of Voltage Scaling Below Vmin on the NN
Accuracy

When VCCBRAM is underscaled in the critical region between Vmin = 0.61V and

Vcrash = 0.54V, faults occurring in some of BRAMs bitcells degrade the NN accu-

racy. In fact, the classification error is increased from 2.56% (inherent classification

error without any fault) to 6.15% when VCCBRAM = Vcrash = 0.54V, see Figure 4.4.

The NN classification error (left y-axis) increases exponentially, correlated directly

with the fault rate increase in BRAMs (right y-axis), as expected. Also, we observe

that the fault rate in BRAMs filled with the NN weights is significantly less than

the default pattern= 16h’FFFF. The reason is that weights are sparse, our statistical

analysis indicates that 76.3% of the bits having the logic value ’0’. These bits have

a negligible probability to be flipped, especially considering that most of the tim-

ing faults in the critical low voltage operation are stuck-at-0. This experimentally

verified failure characteristic is the reason that MNIST application on our NN is in-

herently fault-tolerant against faults in extremely low-voltage operations on FPGA-

based BRAMs. Through statistical experimentation, we confirm this data sparsity

for other NN benchmarks such as Forest [24] and Reuters [25]. Also, other state-of-

the-art has also confirmed the sparsity of many other NN benchmarks [135], [112],

and a wider range of other applications, as well [8]. It means these applications

would be inherently fault-tolerant for the type of failures experienced in FPGA

BRAM undervolting.

4.4 Fault Mitigation Techniques

To prevent NN accuracy loss under low-voltage operations, we evaluate two tech-

niques, i.e., a novel BRAM placement technique and built-in ECC.
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Figure 4.5: Methodology of Intelligently-Constrained BRAM Placement (ICBP).

4.4.1 Intelligently-Constrained BRAM Placement (ICBP)

The overall methodology of the proposed fault mitigation technique, Intelligently-

Constrained BRAM Placement (ICBP), is shown in Figure 4.5. It can be used for

low-voltage regions below Vmin = 0.61V. The principal motivation is that low-

voltage operations dramatically reduce power consumption (for our case, 40% in

Vcrash = 0.54V over Vmin = 0.61V); however, cause faults, which, in turn, leads to

NN accuracy loss (for our case, 3.59% additional NN classification error in Vcrash =

0.54V). The objective is to achieve this power-savings without significant impact

on the NN classification error.

Elaborating ICBP

ICBP relies on two key observations:

• 1 As detailed in Section II, we observed that faults occur in reduced volt-

age BRAMs have deterministic and chip-dependent behavior with an entirely

non-uniform distribution between different BRAMs that is exposed as FVM.

As earlier mentioned, FVM extraction is a pre-processing stage.

• 2 We observed that various layers of the given NN have a different inherent

vulnerability to faults. We conducted a pre-processing analysis and observed

that inner layers (layers closer to the output) are relatively more vulnerable,
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as similarly observed in [142], [157], [93], since faults in these layers have

relatively less probability to be masked through the quantification in the ac-

tivation functions. The sensitivity of NN layers, i.e., {Layerj, j ∈ [0, 4]} is

evaluated by injecting simulated randomly-generated faults in correspond-

ing weights of individual layers at the Register-Transfer Level (RTL). In other

words, we inject some random faults in weights of individual NN layers and

let the NN accomplishes the classification. By monitoring the classification

error of the faulty NN, we can evaluate the vulnerability of each NN level.

Due to these observations, ICPB introduces a simple yet effective BRAM

placement algorithm that maps the weights of the inner NN layers to low-

vulnerable BRAMs, targeting to mitigate faults and achieve power-savings

with minimized NN classification accuracy loss. Note that FPGAs are uniquely

suited to benefit from ICBP. In comparison, CPUÂt’s have inherent disadvan-

tages that make it challenging to apply aggressive undervolting ideas such

as ICBP for their on-chip memories due to two reasons: First, it is extremely

difficult, if not impossible to construct the undervolting fault map for CPU

on-chip memories such as caches. Second, it is very cumbersome, if not im-

possible, to reconfigure and remap application data into cache regions that

have a low vulnerability.

For further analysis, we present detailed statistical information of the different

layers of the given NN, i.e., the size (in terms of utilized number of BRAMs to locate

weights of the corresponding NN layer), number of faults, and the normalized

vulnerability of the individual layers, as shown in Figure 4.6. As can be seen, outer

layers (closer to the input layer) are relatively larger, which experience more faults,

as expected. Note that by statistical analysis, we observed that outer layers are

relatively more sparse; thus, the per-layer fault rate is not precisely proportional to
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Figure 4.6: Statistical analysis of NN layers: size (#BRAMs), #Faults (at Vcrash = 0.54V), and
normalized vulnerability.

the per-layer size; however, both size (number of BRAMs) and the number of faults

show an exponential behavior among various layers. Also, it is important to note

that we conducted a software-based statistical fault injection campaign to extract

the vulnerability of different NN layers. As can be seen, for instance, Layer5 is

around 6X more vulnerable than the first one, Layer0, which means that the same

rate of faults injected in Layer4 causes 6X NN classification error than injecting the

same number of faults in Layer0. The conclusion of analyzing different NN layers is

that inner layers are significantly smaller and relatively less probable to experience

faults; however, they are the most vulnerable layers. In other words, a fault in a

inner NN layer has a more significant impact on the quality of the result; thus, they

need better protection.

Implementation Methodology of ICBP

As earlier noted, in ICBP we aim to constrain the BRAM placement algorithm to

map the logical BRAMs of inner NN layers to low-vulnerable physical BRAMs in
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List 4.1: Illustrating Pblock Creation and BRAM Assignement for FPGAs.

1: create_pblock low-vulnerable_pblock
%Creation of a Pblock, low-vulnerable_pblock
2: resize_pblock [get_pblocks low-vulnerable_pblock] -add {RAMB18_X0Y44
RAMB18_X3Y91 RAMB18_X1Y26}
%Assigning 3 physical BRAMs to low-vulnerable_pblock
3: add_cells_to_pblock [get_pblocks low-vulnerable_pblock] [get_cells -quiet [list {l-
BRAM[0]}{l-BRAM[1]}]]
%Assigning 2 logical BRAMs to low-vulnerable_pblock

the chip. Note that logical BRAMs are defined in the high-level Verilog design

description and in contrast, physical BRAMs refers to the BRAM locations in the

FPGA. Toward this goal, we exploit the Physical Blocks (Pblocks) facility of Vivado,

a Xilinx implementation tool. Pblocks provides a fully flexible facility to constrain

logical blocks, e.g., BRAMs, to a physical region in the FPGA. As described in Sec-

tion 3.2, we classify physical BRAMs into low-, mid-, and high-vulnerable classes.

Having the list of physical locations of these BRAMs (XY), we first, create corre-

sponding low-, mid-, and high-vulnerable Pblocks and then, appropriately assign

the logical BRAMs into these Pblocks.

The example in List 4.1 illustrates the creation and BRAM assignment of Pblocks

using TCL commands. This example creates a Pblock (low-vulnerable_pblock), as-

signs three physical BRAMs in locations (X0Y44, X3Y91, and X1Y26), and adds two

logical BRAMs (l-BRAM[0] and l-BRAM[1]). This is a post-synthesize constraint

that is added to the Xilinx Design Constraints (XDC) file. In consequence, the

placement tool of Vivado will try to find the most efficient placement of these two

logical BRAMs into the specified three physical BRAMs locations. By following this

methodology, we create our three low-, mid-, and high-vulnerable Pblocks, each in-

cludes the corresponding physical BRAMs specified by our fault characterization.
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(a) The schematic of Low-
, Mid-, and High-vulnerable
Pblocks.

(b) The Schematic of the
Proposed ICBP in NN de-
sign.

(c) The schematic of the
Default Placement in NN
design.

Figure 4.7: Pblocks and its Impact in the Schematic of the NN Design Placement in VC707
Platform.

Figure 4.7a shows a schematic of the created Pblocks in the VC707 platform. As

expected, the low-vulnerable_pblock is dominating since it involves 88.6% of phys-

ical BRAMs. Also, the effect of ICBP in the final implementation of the design

can be seen by comparing its schematic view in Figure 4.7b with the default place-

ment (without any Pblock constraint) in Figure 4.7c. Note that Figure 4.7b refers

to the design that all logical BRAMs of our design including all weights (not only

the inner layers) are forced to be located in low-vulnerable BRAMs. As expected,

the default placement results in more compacted design since the low-vulnerable

BRAMs are distributed all over the chip, which limits ICBP to make a more com-

pacted design. This specific design increases the timing slack by 50% over the

default placement. However, as earlier noted, we aim to locate only inner layers of

the NN into low-vulnerable BRAMs, which can eliminate this overhead, thanks to

their significantly smaller sizes of inner layers. Later in this section, we discuss this

trade-off and different aspects of ICBP.
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Experimental Results of ICBP

We evaluate several variations of the proposed mechanism, where "ICBP-N" refers

to a version of ICBP that the last N layers of the NN are located in low-vulnerable

BRAMs, N ∈ {1, 2, 3, 4, 5}. For instance, "ICBP-1" version means that weights of

the "only last layer," i.e., Layer4, are forced to be located in low-vulnerable BRAMs,

while a normal BRAM placement is applied to the other layers. In the same line,

"ICBP-5" version means that all layers, i.e., ({Layerj, j ∈ [0, 4]}) are located in low-

vulnerable BRAMs, as its schematic placement is shown in Figure 4.7b. In Figure

4.8a, we compare the impact of different BRAM placement techniques in the NN

classification error when VCCBRAM = Vcrash = 0.54V, i.e., i) default BRAM place-

ment, ii) different variations of the proposed BRAM placement technique, ICBP-N,

N ∈ {1, 2, 3, 4, 5}, and iii) the worst-case placement where the inner NN layers

are located in the high-vulnerable BRAMs, the rest in mid-, and low-vulnerable

BRAMs in order. As can be seen, the classification error is decreased from 6.1%

with the default placement to 3.01% in "ICBP-1" version, where only Layer4 is

forced to leverage low-vulnerable BRAMs. Note that Layer4 is the smallest among

the NN layers and most sensitive layer to faults. Thus, its protection significantly

prevented the NN accuracy loss. By intelligently placing additional layers, the clas-

sification error is further decreased and reduces to 2.6%, which is very close to the

inherent classification error of 2.56%.

However, since the low-vulnerable BRAMs are distributed all over the chip,

ICBP may incur the timing overhead, as reported in Figure 4.8b in terms of the per-

centage of the timing slack increase over the default placement. As can be seen, the

timing slack is significantly increased in the more aggressive versions and reaches

to 50% in "ICBP-5", where all NN layers are located in low-vulnerable BRAMs.

However, for "ICBP-1" this overhead is negligible since a very small number of

BRAMs, two BRAMs, are forced to exploit the low-vulnerable BRAMs.
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(a) Classification error of NN with different BRAM placements at Vcrash =

0.54V.

(b) Timing slack overhead of ICBP-N.

Figure 4.8: Evaluating our fault mitigation technique, i.e., ICBP.

We repeat our most effective and timing cost-free version of the proposed mit-

igation technique, "ICBP-1", by lowering VCCBRAM from Vmin = 0.61V to Vcrash =

0.54V, to explore the optimal voltage level in terms of power consumption and NN

classification error trade-off, as shown in Figure 4.9. As can be seen in Figure 4.13a,
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(a) Power reduction and NN classification error.

(b) The optimal VCCBRAM, trading-off power and NN accuracy.

Figure 4.9: "ICBP-1" mitigation on various VCCBRAMs in [Vmin = 0.61V, Vcrash = 0.54V].

40% power savings is achieved in Vcrash = 0.54V over Vmin = 0.61V, by 0.6% NN

accuracy loss from the inherent fault-free classification error of 2.56%; however, the

same amount of power in the default placement is dissipated by more than 3.59%

NN accuracy loss.
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(a) Forest [24].

(b) Reuters [25].

Figure 4.10: Efficiency of ICBP on FPGA-based NN accelerator for Forest and Reuters
benchmarks on VC707.
* Different scales in y-axis.

Since VCCBRAM scaling inversely impacts power consumption and NN classifi-

cation error, we aim to find the optimal voltage level as the best trade-off. Toward
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this goal, experimental results are analyzed in terms of a new metric, the nor-

malized product of power consumption with NN classification error, as shown in

Figure 4.13b. As can be seen, first, due to this trade-off VCCBRAM = 0.56V is the

optimal voltage level for "ICBP-1", which leads to 28.1% of power saving achieve-

ments over the Vmin = 0.61V, while the classification error increase up to 2.66%

(0.1% overhead from the inherent fault-free classification error, 2.56%). Second, the

efficiency of "ICBP-1" technique in comparison to the default placement technique,

is relatively better manifested in lower levels of VCCBRAM since in relatively higher

voltage levels, the fault rate and its subsequent impact on the NN accuracy are not

considerable.

Also, we repeat the similar methodology for Forest and Reuters benchmarks

and as can be seen in Fig. 4.10a and Figure 4.10b, undervolting faults are signif-

icantly covered, which in turn, leads to prevention of the NN accuracy loss for

them, as well. Among studied benchmarks, Reuters is less sparse; thus, undervolt-

ing faults more significantly impact the NN accuracy loss; however, mostly covered

by ICBP.

4.4.2 Built-in ECC

BRAMs in Xilinx FPGAs are equipped with a built-in ECC with the capability of

single-bit correction and double-bit detection (but not correction), i.e., SECDED.

Leveraging the built-in ECC has the advantage of mitigating faults without any

major hardware or software modifications against other methods. For instance,

Razor [50] that dynamically underscales the voltage until a fault occurs, leverages

additional delay latches; and [36] presents a majorly-modified memory controller to

deal with the reduced supply voltages. It is worth noting that as earlier mentioned,

each row of BRAMs has two additional bits that can be either data or parity. In the

previous section, we skip these two bits since experiments are performed on the
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Figure 4.11: The efficiency of ECC to mitigate undervolting faults in the critical voltage
regions below Vmin

basic size BRAM without ECC capability. In this section, these bits are exploited as

parity. Hence, the size of each BRAM is 1024 *18-bits.

Experimental Methodology of Built-in ECC

The built-in ECC mechanism of BRAMs uses Hamming code. When ECC is acti-

vated, parity bits are generated during each write operation and stored along with

the data, at the granularity of a single row. These parity bits are used during each

read operation of a row to correct single-bit faults, or to detect (but not correct)

any double-bit fault, termed SECDED. In studied platforms, there are several op-

tions for BRAMs configurations. Our experimental setup is based on the following

configurations:

• Configuration modes: We use simple dual-port mode BRAMs since it is the

only mode that ECC can be activated.

• Soft- vs. hard-core ECC: Two types of ECC are available in Xilinx BRAMs, i.e.,

53



4. EVALUATING FPGA-BASED NN ACCELERATOR ON LOW-VOLTAGE
FPGA BRAMS

soft- and hard-core with the same functionality. Unlike the hard-core, in the

soft-core ECC, FPGA resources such as LUTs are utilized to implement the

corresponding functionality. Thus, we make our study on hard-core built-in

ECC, which does not require any additional hardware.

• Bit-width: Our design is based on memory bitwidth of 64-bits since the built-

in ECC is optimized for memories with bitwidth ≥ 64-bits [9]. Note that since

the basic BRAMs bitwidth is 18-bits, the memory used in our study is built

by automatically cascading original BRAMs.

Efficiency of the Built-in ECC

This section evaluates the efficiency and overhead of this ECC in aggressive low-

voltage FPGA BRAMs, according to the behavior of undervolting faults. First, we

experimentally observe that by leveraging ECC in BRAMs, the fault rate in the

critical voltage region below Vmin is significantly reduced by an average more than

90% for all platforms, as detailed for VC707 in Figure 4.11.

Due to the capability of the built-in ECC in FPGA BRAMs, we categorize faults

into correctable (or single-bit), detectable (or double-bit), and undetectable (or

multiple-bit) faults, as illustrated in Figure 4.12a. Figure 4.12b shows a histogram

of these fault types, in different voltage levels at the critical voltage region, i.e., from

Vmin = 0.61V to Vcrash = 0.54V on VC707. We observe that:

• The vast majority of these faults are correctable or detectable (but not cor-

rectable) by the built-in ECC; for instance, more than 90% and a further 7% at

Vcrash = 0.54V are correctable and detectable, respectively, using the built-in

ECC. This efficiency is the consequence of the inherent type of the built-in

ECC, i.e., SECDED, which we experimentally find that it has very good fault
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Figure 4.12: The behavior of ECC-activated BRAM faults in terms of fault types, when
VCCBRAM is scaled down from Vmin = 0.61V to Vcrash = 0.54V for VC707.
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(a) NN classification error.

(b) Trading-off power and NN accuracy.

Figure 4.13: ECC efficiency of undervolted BRAMs on FPGA-based NN accelerator.
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coverage due to the relatively sparse distribution of undervolting faults, as

detailed in Chapter 3.

• By further voltage underscaling, correctable faults manifest before detectable,

and in turn, detectable faults manifest before undetectable faults. Through

this observation, we leverage the built-in ECC to discover the minimum safe

voltage of FPGA-based NN accelerator. The faults behavior mentioned above

is the consequence of the FIP, as detailed in Chapter 3. It means that due

to FIP, by further undervolting single-bit faults can be potentially converted

to double-bit and similarly, double-bit faults can be potentially converted to

multiple-bit faults.

The Overhead of the Built-in ECC

Table 4.2(a) includes the area utilization rate of the hardware design described in

Section 2.1, in order to evaluate the area cost of the built-in ECC. Toward this

goal, our hardware design accesses 512 memories each with the size of 1024 rows

of 64-bits, which leads to a full BRAMs utilization on VC707. As can be seen,

the built-in ECC does not incur considerable area cost since it is a hard-core unit

and internally embedded within BRAMs structure. Also, Table 4.2(b) includes the

power overhead of the built-in ECC. We report the power consumption of BRAMs

at Vnom = 1V, Vmin = 0.61V, and Vcrash = 0.54V. As can be seen, the ECC power

overhead is 13mW or 4.2% at Vcrash = 0.54V. In other words, the power consump-

tion of BRAMs are reduced from 0.31W to 0.211W (31.9% power reduction) with

the voltage underscaling from Vmin = 0.61V to Vcrash = 0.54V, by exploiting built-in

ECC to cover a vast majority of faults.
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Table 4.2: Power and area overheads of the built-in ECC.

a) Area Utilization (%)
BRAM LUT FF

Without ECC 96% 3% 0.25%
With ECC 100% 12% 0.25%

b) BRAM Power (W)
Vnom= 1V Vmin= 0.61V Vcrash= 0.54V

Without ECC 2.4 0.31 0.198
With ECC — — 0.211
—: Above Vmin, since there is no fault, no need for the ECC.

Tested Memory Size: 512 * (1024 * 64-bits)

NN on ECC-enabled BRAMs

Motivated by above experiments on the efficiency of the built-in ECC, and to attain

the power savings gain of the accelerator without compromising the NN accuracy,

we leverage built-in ECC of FPGA BRAMs. In consequence, the NN classification

error rate substantially reduces, thanks to the significant fault coverage by ECC,

as shown in Figure 4.13a. For instance, the NN classification error has a 0.56%

overhead, i.e., the NN error of 2.56% as the inherent error rate increases to 3.12%

at VCCBRAM = Vcrash = 0.54V, when BRAMs are equipped with built-in ECC. This

overhead is 6.1X less than experiments on default BRAMs configuration without

ECC, i.e., 3.44% vs. 0.56%. Also, since voltage scaling inversely impacts power

consumption and NN error, we analyze this trade-off at below Vmin = 0.61V volt-

ages, by defining a new metric, i.e., the normalized product of power consumption

and NN classification error. As can be seen in Figure 4.13b, due to this trade-

off, VCCBRAM = 0.56V is the optimal voltage level for ECC-activated case, which

leads to 28.1% of power saving achievements over the Vmin = 0.61V, while the

classification error increases to 2.66% (0.1% overhead from the inherent fault-free
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classification error, 2.56%).

For further analysis, the detailed power consumption and NN error rate results

are summarized in Table 4.3. Below Vmin = 0.61V, there are several voltage levels

that are important in our analysis, i.e., Vsa f e (the voltage that the first fault without

correction possibility is detected by ECCs within BRAMs. There is no NN accuracy

loss until this point.), Vopt (the voltage that leads to the least optimizing parameter

on the product of the power and NN error rate), and Vcrash (the lowest voltage that

accelerator operates with the lowest power consumption). Through experiments,

we measured Vsa f e = 0.58V, and as already discussed Vopt = 0.56V and Vcrash =

0.54V. By undervolting below Vmin = 0.61V, as earlier explained, faults occur;

however, correctable faults by the ECC appear earlier. Finally, at Vsa f e = 0.58V, the

first not-correctable but detectable fault manifests. In other words, there is no NN

accuracy loss until Vsa f e since all faults are corrected. Through this experimentally-

confirmed property, the Vsa f e can be dynamically at the run-time determined, as

is also in similar studied for modern processors [20]. In this thesis, we confirm

its potential for FPGAs, as well. By further undervolting, the power consumption

is more reduced; however, the NN accuracy is exponentially affected. In lower

voltages, we reach the best power-accuracy trade-off at Vopt = 0.56V, as earlier

discussed. Finally, further undervolting can be applied to achieve more power

savings gain until the system crashes at Vcrash = 0.54V; however, the NN accuracy

loss is up to 0.57%.

4.4.3 Discussion on the Mitigation Techniques

We evaluated two fault mitigation technique, in which both rely on the behav-

ior of undervolting faults that is extensively characterized in Chapter 3. In ICBP

approach, we leverage the significant fault rate variability among BRAMs; also,
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Table 4.3: Summary of trade-offs in NN accelerator with and without ECC capability at
below Vmin voltage level.

Vmin =

0.61V
Vsa f e =

0.58V
Vopt =

0.56V
Vcrash =

0.54V

Fault Rate (per 1Mbit)
(Without-ECC BRAMs)

0 3.24 66.33 653.73

Fault Rate (per 1Mbit)
(With-ECC BRAMs)

0 0.1 4.5 64.23

NN Accuracy Loss (%)*
(With-ECC BRAMs)

0% 0% 0.04% 0.57%

Power Saving (%)**
(With-ECC BRAMs)

0% 17.5% 26.5% 37.7%

* Absolute distance from the inherent NN classification error, i.e., 2.56%.
** Compared against the power consumption at Vmin = 0.61V.

by leveraging built-in ECC the vast majority of faults that are single-bit are cov-

ered. Both techniques show good fault coverage without considerable power, per-

formance, or area utilization overhead. However, ICBP requires a one-time pre-

process phase to extract per-chip variation map, or FVM, which can be generated by

the vendor, Original Equipment Manufacturer (OEM), or user. In contrast, leverag-

ing built-in ECC does not need for this pre-process phase; however, it is optimized

for relatively long bit-widths (≥ 64− bits). This short cost-benefit analysis among

evaluated mitigation techniques shows that the best technique can be traded-off;

however, we think that researches in this area, i.e., fault mitigation for undervolt-

ing FPGA faults, is not ended and more advanced mitigation techniques can be

deployed according to the behavior of the faults extensively characterized in this

thesis.
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In this section, first, we discuss the recent advances on the power and reliability of

FPGAs; later on, we review the related work in the power and reliability trade-off

of commuting devices and also memory systems. Then, we summarize the related

work in different aspects of the voltage lowering technique in commercial devices.

Finally, the recent related studies on the power efficiency and resilience of NNs are

reviewed.

5.1 Power-efficient and Reliable FPGAs

To bridge the energy-efficiency gap between FPGAs and ASICs, several approaches

have been studied. For instance, architecture-level optimizations are applied for In-

tel/Altera [3] and Xilinx [10] platforms, with the aim of more energy-efficient FP-

GAs. From the other approaches [41], [84], it can be mentioned to the low-power

Electronic Design Automation (EDA) tools including synthesizing [40], placement

[138], and routing [15]. In parallel, clock gating [126], voltage gating [95], and

multi-Vdd [54] are other techniques that are extensively evaluated for FPGAs. This

thesis has focused on the aggressive undervolting approach and evaluated its effi-

ciency for FPGAs. Unlike the other approaches mentioned above, aggressive un-
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dervolting does not need any modification on the architectures or tools.

Improvement of the reliability of FPGAs is also extensively studied in the academia

and industry [150], [118]. For instance, Triple Modular Redundancy (TMR) tech-

nique is exploited for faults in FPGAs [102], and in parallel, the placement and

routing tools are adapted to achieve more fault tolerant FPGA designs [116], [149].

Protecting on-chip SRAM against Single-Event Upsets (SEUs) is the other studied

technique [167]. This thesis focuses on the undervolting faults and presents opti-

mized techniques to mitigation them. Our approach to improving the reliability

does not need any modification on the architectures or tools.

5.2 Power and Reliability of FPGAs versus CPUs, GPUs,
and ASICs

FPGAs have collected the flexibility of CPUs/GPUs and the efficiency of ASICs.

Thanks to this property, in recent years, FPGAs have brought significant attention

to accelerate applications with a large size of data, e.g., NNs. However, it has

been shown that their energy efficiency is still the main concern in comparison

to ASICs. This energy gap is experimentally studied and shown to be dependent

on the architecture and applications; however, we summarize them ∼10X-∼20X

by reviewing the related work. For instance, for an NN application, recent CPU,

GPU, FPGA, and ASIC implementations are surveyed in [135]. As shown in this

paper, ASIC-based accelerators are significantly low-power, up to 100X. As another

example, in [122] and [123], by experimenting Binarized and Recurrent NNs on

Aria 10 FPGA, 14-nm ASIC, software on Xeon CPU, and Nvidia Titan GPU, it

has been experimentally shown that ASIC and FPGA are four and three orders of

magnitude more energy-efficient than CPU, respectively. Also, ASIC is ∼11X more

energy-efficient than FPGA.
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5.3 Power and Reliability of FPGA BRAMs versus DRAMs
and SRAMs

Since DRAMs and SRAMs (caches) are memory structures that have similar usage

to BRAMs in FPGAs, techniques developed to balance power and reliability for

these structures are orthogonal but relevant to the work developed in this thesis.

Therefore, we briefly review the existing works as follows:

• DRAM: Main memory (DRAM) consumes as much as half of the total system

power in a computer today, due to the increasing demand for memory capac-

ity and bandwidth [56]. In addition to the relatively high power consumption

of DRAMs, their reliability is also a main issue [36], [89]. To improve the

power efficiency and reliability of DRAMs which trade-off accuracy for ease

of design space exploration, there are many simulation-based research works

[23], [136], [34]. Instead, a more accurate approach is to evaluate the power

[56], [37] and reliability [36], [89], [35], [62], [64], [71], [75], [76], [77], [78], [79],

[82], [88], [96], [104], [113], [114], [130] of real DRAM chips. Below we explain

some of the most recent related work:

– Power: [56] performed a comprehensive experimental characterization of

the power consumed by modern real-world DRAM modules. Their exten-

sive characterization of 50 DDR3L DRAM modules from three major ven-

dors yields several key new observations about DRAM power consumption.

They concluded that because state-of-the-art DRAM power models do not

account for any of these key characteristics, they are highly inaccurate com-

pared to the actual, measured power consumption of 50 real DDR3L mod-

ules. Based on their detailed analysis and characterization data, they devel-

oped the Variation-Aware model of Memory Power Informed by Real Ex-

periments (VAMPIRE), which has the absolute percentage error of only 6.8%

63



5. RELATED WORK

compared to actual measured DRAM power. In the same line, [37] proposed

a new DRAM energy reduction mechanism, called Voltron. The key idea of

Voltron is to use a performance model to determine by how much they can

reduce the supply voltage without introducing errors and without exceed-

ing a user-specified threshold for performance loss. The evaluations showed

that Voltron reduces the average DRAM and system energy consumption by

10.5% and 7.3%, respectively, while limiting the average system performance

loss to only 1.8%, for a variety of memory-intensive quad-core workloads.

– Reliability: [36] comprehensively studied the effect of aggressive voltage

underscaling on modern DRAM chips from various vendors. Similar to FPGA

BRAMs in our work, they found that reducing the supply voltage below a

certain point introduces bit faults in the data. According to their detailed

characterization on the behavior of these faults, we observed significant sim-

ilarities with undervolting faults on FPGA BRAMs such as significant fault

variability and permanent behavior of faults. We also observed differences

in the case of thermal behavior, which we attribute to different technology

and architecture used in DRAMs versus FPGA BRAMs. They analyzed its

impacts on the DRAM’s access latency and reliability, by characterizing the

behavior of faults and presenting effective mitigation techniques. As another

recent study on the reliability of DRAMs, [89] empirically demonstrated a

new form of variation that exists within a real DRAM chip, induced by the

design and placement of different components in the DRAM chip: different

regions in DRAM, based on their relative distances from the peripheral struc-

tures, require different minimum access latencies for reliable operation. In

particular, they showed that in most real DRAM chips, cells closer to the pe-

ripheral structures could be accessed much faster than cells that are farther.
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In this paper, the aforementioned phenomenon is experimentally character-

ized and present techniques to improve the overall system performance while

ensuring reliable system operation.

• SRAM: SRAMs are architecturally different than DRAMs and mainly used

as cache and low-latency registers. However, the power and reliability of

these memories is also a hot research topic in recent years. For instance, [166]

proposed several architectural techniques that enable microprocessor caches

(L1 and L2), to operate at low voltages despite very high memory cell failure

rates. During high voltage operation, the proposed schemes allow the use

of the entire cache; however, during the low voltage operation, they sacrifice

cache capacity by up to 50% to reduce the minimum safe voltage. In the same

line, other works exists to study the power and reliability in CPU caches by

different techniques [44], [44], [176], [55], [148], [48], [97]. SRAMs can also

be used as on-chip memories. For instance, [174] and its later version [173]

evaluated the effect of supply voltage scaling in SRAMs that they specifically

fabricated. They reported that the supply voltage reduction of 310mV could

save 2.9X of power consumption. Also, a similar study for SRAM cells is

conducted in [52]. They observed that the ratio of faults in highly reduced

voltage levels is increased exponentially.

In parallel to memory systems, there are many recent studies on the reliability

and power optimizations of NAND Flash memories with the aim of improving

the life time and reliability in presence of process variation and thermal stress,

among others [99], [100], [29], [32], [31], [30], [98], [28], [27], [26]. Our thesis is an

orthogonal approach to study the power and reliability of on-chip memories of real

FPGAs through aggressive undervolting.
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5.4 Aggressive Undervolting

Below, we summarize the related work in the voltage guardband, voltage under-

scaling below this guardband with (without faults occurring) and without (with

faults occurring) frequency scaling on commercial devices.

5.4.1 Voltage Guardband

Most commercial devices are designed with a voltage guardband below the stan-

dard minimum nominal supply voltage to ensure the correct functionality in the

worst case environmental and process variations. This voltage guardband is fully

vendor- and system-dependent; for instance, it was measured to be 20% in mod-

ern GPUs [91] and 16% in modern DRAMs [36]. We experimentally determined

the voltage guardband for Xilinx FPGA on-chip memories to be 39%. This gap

provides an opportunity to decrease the supply voltage until Vmin without any reli-

ability degradation, in our case delivering more than an order of magnitude power

savings.

5.4.2 Simultaneous Voltage and Frequency Underscaling

Further voltage underscaling below the guardband gap, Vmin, impacts the timing

and increases the delay. In this regard, the simultaneous frequency lowering is

a common approach to prevent timing violations, termed Dynamic Voltage and

Frequency Scaling (DVFS). The DVFS mechanism guarantees that the design works

as close to, but always above, the Critical Operating Point (COP), i.e., the point

where further underscaling frequency or voltage will result in observable faults

[129].

DVFS is widely studied in different computing devices such as ASICs [144],

[53], [101], FPGAs [119], [121], [169], GPUs [103], [47], [177], [111], [68], CPUs [81],
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[164], [66], [33], heterogeneous systems [38], [128], [131], [169], as well as memory

systems [45], [46], [115], [105]. For instance, a recent DVFS mechanism imple-

mented on FPGAs, [120], showed 70% energy savings. However, the impediment

of DVFS is the performance degradation as a result of the frequency lowering,

which in practice, limits the efficiency and applicability of this approach. DVFS is

not targeted in this thesis.

5.4.3 Aggressive Undervolting into the Critical Voltage Regions

Tackling with the increased delay in low-voltage regions below Vmin, a more ag-

gressive approach is to allow designs to experience timing faults and in turn, tol-

erating faults. Characterizing and mitigating these faults can allow better power

and reliability trade-offs, without performance degradation, as is for the DVFS ap-

proach. This approach is studied in some real hardware as summarized as follows.

This thesis studies the procedure mentioned above, for the first time in commercial

FPGAs.

• Modern Processors: There are multiple studies on the voltage lowering be-

low Vmin in modern processors [21], [110], [108], [109], [106]. For instance,

[72] revisited the microarchitecture of the processor design to be adaptable

in beyond COP regions to minimize the voltage at which a soft architecture

encounters the maximum allowable fault rate, and [153] presented a method-

ology for reliability-aware design space exploration. [127] extends aggressive

undervolting to multi-core CPUs and [20] leveraged built-in ECC technique

to detect and mitigate undervolting faults in Intel Itanium II.

• GPUs: Aggressive undervolting is also considered as a promising energy ef-

ficiency improvement technique in GPUs [158], [159]. As an example of com-

mercial GPUs, [155] studied this approach in GPU register files and proposed
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an architectural solution that leverages long register dead time to enable reli-

able operations from unreliable register file at low voltages.

• ASICs: As an example of ASICs, [163] evaluated the Floating Point Units

(FPUs) under timing violations and accordingly, presented a bit-level fault

model.

Moreover, other components such as single CPU cores [57], Network On-Chips

(NOCs) [18], [133], [137], caches [17], [107] as well as memory systems that is briefly

surveyed in Section 5.3 are also studied by considering the aggressive undervolting

effects. To detect and/or mitigate faults several general techniques are proposed

in different domains such as TMR [168], Razor [50], [151], ECC using Hamming

code [171], Hardware Transnational Memory (HTM) [170], among others. These

techniques can be potentially customized to detect and/or mitigate timing faults

in low-voltage regions, as well; however, with timing, area, or power costs. Unlike

these relatively higher-overhead techniques, we performed our study to under-

stand the behavior of faults under low-voltage operations comprehensively and

accordingly, develop application-dependent efficient mitigation technique, more

specifically experimented on FPGA-based NN accelerator. Finally, [50] proposed

Razor as fault detection and mitigation technique that can be potentially exploited

to deal with the timing faults in low voltage regions, as well. For instance, [92]

studied the efficiency of Razor latches for FPGAs. It has been shown that the area

overhead of this technique is significant. Instead of this high-overhead technique,

we evaluate the built-in ECC of BRAMs to mitigate faults.

5.5 Recent Related Studies on NNs

NNs are inherently power-hungry applications, due to the computational, stor-

age, and data movement required for the large matrices. Addressing this concern,
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several application-level power-optimization techniques are proposed such as low-

precision data representation model [60], node pruning [178], data compressing

[61], among others. These techniques are customized for different underlying plat-

forms such as CPUs, GPUs, FPGAs, and ASICs, as in detail surveyed in [154].

Alternatively, as an architecture-level power-savings technique, voltage underscal-

ing of the underlying hardware is a promising approach. Since it has been shown

that NNs are inherently resilient and can tolerate with quite high fault rates [161],

[132], [157], the voltage lowering can lead to significant power savings. Below,

we summarize recent works on the voltage scaling and the subsequent resilience

studies, i.e., fault characterization and/or mitigation for NNs. The vast majority of

works are simulations-based; however, there are a few efforts on real hardware, as

well.

5.5.1 Simulation-Based Resilience Study of Low-voltage NNs

A vast majority of existing efforts on the NNs fault tolerance study is based on ei-

ther fault injection in the software level or theoretical analysis, as surveyed in [161].

More specifically, aggressive voltage underscaling has been recently studied mostly

on ASIC-based NN accelerators. For instance, Minerva proposed an automated co-

design approach across the algorithm, architecture, and circuit levels to optimize

ASIC accelerators of fully-connected NN using SPICE simulations for low-voltage

SRAMs [135]. As another recent effort, ThUnderVolt is proposed as a framework

to enable the voltage scaling study on ASIC-based Deep NN (DNN) accelerators;

however, they modeled timing faults via post-synthesis gate-level simulations in

ModelSim [180]. In the same line, [179] presents an in-memory NN classifier in

standard SRAM array and performs the subsequent fault study under low volt-

age operations; however, through Monte Carlo simulations. It is evident that this
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approach lacks the exact information of the fault model under very low-voltage op-

erations and their validation on the silicon remains a key question. Also, recently

[80] studied the NN accelerator in the learning phase with low-voltage SRAM cells

through circuit-level simulations. In [69], fault injection in the hardware neural

network is studied by modeling the temperature and voltage variations.

5.5.2 Real Hardware-Based Resilience Study of Low-voltage NNs

There is little publicly-available work on the aggressive voltage scaling for NN ap-

plications on real-hardware; however, there are some efforts for ASICs and SRAMs,

as summarized below:

– ASICs: There are several energy-efficient fabricated ASIC for NNs, e.g., Google

TPU [70], Eyeriss [42], YodaNN [16], and [165]. One of the contributions to achiev-

ing energy efficiency in these accelerators is the nominal voltage underscaling

in comparison to the state-of-the-art. However, only [165] has briefly studied

the behavior of NN below nominal level scaling beyond COP. They fabricated a

28nm System-On-Chip (SOC) with a programmable accelerator design for fully-

connected NN, where a Razor circuit is used to detect timing faults in the datapath

of aggressively reduced voltages. However, this paper targeted ASICs and did not

propose a detailed fault characterization study on NNs.

– SRAMs: [174], [173] proposed a partially silicon-validated NN study on ag-

gressively reduced voltage on SRAMs. In other words, they fabricated an 8KB

SRAM with 28nm technology and evaluated the resilience of NN, while input im-

ages are located on the reduced-voltage SRAM. However, its drawbacks are that i)

without detailed bit-level characterization, ii) this study is on only input data (not

weights), and iii) a software-level NN is used (the computations of NN are per-

formed on MATLAB), which does not allow to apply any mitigation technique on

the datapath of NN on the silicon. Also, tests are performed on specialized SRAM
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cells, not on standard SRAM library cell, which makes it difficult to expand the

results of this paper for real accelerators.

The key novelty of our FPGA-based NN accelerator is to experimentally study

the effect of the aggressive undervolting to power and reliability of such a design.

To the best of our knowledge, this thesis is the first experimental effort in this area.
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6
Conclusion

We conclude the thesis, discuss findings, and look into windows opened by this

thesis.

6.1 Summary and Conclusion

FPGAs are widely-used processing devices, thanks to their massively parallel ar-

chitecture and for efficient streaming execution model. However, the power/en-

ergy efficiency of FPGAs is the main concern, especially when compared against

ASICs. To effectively alleviate this issue, we evaluated aggressive undervolting, i.e.,

supply voltage underscaling below the standard nominal level. Since the power

consumption of digital circuits, e.g., FPGAs is directly related to their supply volt-

age level, the aggressive undervolting approach exhibited significant potential to

deliver energy saving of such devices. This thesis aims of this thesis was to study

the potential of aggressive undervolting for commercial FPGAs experimentally.

Below the standard nominal voltage level, usually, large voltage guardbands are

added by chip vendors to account for the worst-case process and environmental

scenarios. However, in real-world applications, these voltage margins are unnec-

essarily conservative and eliminating them can directly deliver significant power
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and energy efficiency without compromising to the performance or reliability. We

experimentally evaluated this voltage guardbands for state-of-the-art commercial

FPGAs. Our experiments included several representative platforms from Xilinx, a

main vendor, i.e., VC707 (performance-optimized architecture), ZC702 (FPGA with

integrated ARM-core), and two identical samples of KC705 (power-optimized ar-

chitecture) platforms. Through experimental analysis on these platforms, we found

that underscaling the supply voltage until a certain level, i.e., minimum safe volt-

age or Vmin, does not introduce any observable fault. We experimentally confirmed

the large voltage gap for all platforms that we study. For instance, for on-chip

BRAMs the voltage guardband was measured to be on average 39% of the nomi-

nal level, which in turn, resulted in more than an order of magnitude of BRAMs

power/energy.

However, we experimentally observed that further undervolting below the volt-

age guardband at Vmin, caused reliability issues, as the result of the circuit delay

increase. For this voltage region below Vmin, we performed a detailed reliability

study with preliminary focusing on BRAMs, since they play crucial roles in the

FPGA-based designs and also, according to voltage distribution architecture of the

studied platforms, the supply voltage of BRAMs are allowed to be independently

regulated. We extensively characterized the bit-level behavior of these faults in

terms of rate, location, type, the impact of the environmental conditions, etc. We

exploited this detailed information for deploying fault mitigation techniques.

More specifically, we experimentally observed that by further undervolting be-

low Vmin, the fault rate exponentially increases; however, it varies for different

studied platforms, which is the consequence of the process variation and architec-

tural differences among them. Also, for all platforms that we study, we observed

that i) faults are fully non-uniformly distributed over various BRAMs, ii) a vast ma-

jority of these faults are single-bit, iii) by on average 99.9% of these faults manifest
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themselves as ’1’ to ’0’ bit flips, and iv) the location of these faults do not change

over time that means to have a deterministic behavior at fixed voltage levels. Due

to these behaviors, we generated a chip-dependent Fault Variation Map (FVM) that

was leveraged in the further optimization of the FPGA-based accelerators. We also

confirmed the Fault Inclusion Property (FIP), i.e., a faulty bit at a certain voltage

level will stay faulty at lower voltages as well, with a possibility to be extended for

other bits of the corresponding row. As the result of the FIP phenomena, by further

undervolting single-bit faults manifest before double-bit faults. This property can

be efficiently considered in the design of fault mitigation techniques. Finally, we

evaluated the effect of the environmental temperature on the reliability of aggres-

sively low-voltage FPGA BRAMs. We observed that under aggressively low-voltage

operations, higher temperature leads to the reduced fault rates, which confirmed

the possibility of a lower Vmin scaling at higher temperatures. This phenomenon is

the consequence of the Inverse Temperature Independence (ITD).

Motivated by the above experimental results, we evaluated a typical FPGA-

based NN accelerator, where BRAMs play a crucial role to achieve significant

performance. We performed NN computations under aggressively low-voltage

BRAMs operations and observed the potential of achieving substantial power sav-

ing gains; however, with the cost of NN accuracy loss below Vmin. To attain

power savings without NN accuracy loss, we evaluated two mitigation techniques.

First, we developed an application-dependent BRAMs placement technique, i.e.,

Intelligently-Constrained BRAM Placement (ICBP) that relies on the deterministic

behavior of undervolting faults, and mitigates these faults by mapping the most re-

liability sensitive NN parameters to BRAM blocks that are relatively more resistant

to undervolting faults. By adding intelligent constraints to the BRAMs placement,

28.1% BRAMs power saving gains were achieved over Vmin, with 0.1% of NN ac-

curacy loss and without any timing-slack overhead. Second, as a more general

75



6. CONCLUSION

technique, we applied the built-in ECC of BRAMs, and observed a significant fault

coverage capability with a negligible power consumption overhead, thanks to its

SECDED design that fits the most of faults under extremely low-voltage operations

as we experimentally characterized. In consequence, the accuracy loss of the NN

at low-voltage regions was prevented, while significant power reduction gain was

achieved.

In consequence, further BRAM power is saved, by 28.1%, without considerable

NN accuracy loss of 0.1%. Also, our experiments on the built-in ECC reveals its

good fault coverage capability, thanks to its SECDED design, and by noting that a

vast majority of undervolting faults are single-bit. The power consumption over-

head of the built-in ECC is negligible.

6.2 Lessons Learned

This thesis is the first attempt to study the aggressive voltage underscaling for com-

mercial FPGAs, on real devices. We experimentally found a significant potential

of commercial FPGAs to safely operate below the nominal level, which in turn,

leads to minimized power consumption. Although, further undervolting cause

fault occurrence, through experimentally extensive characterization we discovered

the possibility of correcting or at least detecting the vast majority of these faults.

Hence, we practically showed that the trade-off between power consumption and

reliability for commercial FPGAs could deliver significant energy savings gain.

We believe that as the first experimental study of this thesis on the FPGA aggres-

sive undervolting and showing its significant potential for energy efficiency, it will

substantially impact the future studies. The research scopes that can potentially be

considered as the extension of this thesis are listed below:
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• Enterprise High-Performance Computing (HPC) Systems: As earlier noted,

FPGAs are going to be a major part of modern data centers, where, energy

dissipation is a key concern. Hence, we believe that aggressive undervolting

can be potentially applied to enterprise FPGA-based systems such as Mi-

crosoft Catapult [134] to improve their energy efficiency in comparison to

ASIC-based systems such as IBM TrueNorth [63] and Google TPU [70].

• Multiple FPGA vendors: In this thesis, we concentrated on Xilinx FPGAs.

However, there is another main FPGA vendor, Intel/Altera. This thesis does

not include experiments on the Intel/Altera platforms; however, we briefly

studied the voltage model of these platforms. We realize some differences

that may impact the power and reliability trade-offs differently. For instance,

Intel/Altera platforms are equipped with Smart Voltage ID (SmartVID) tech-

nology [3]. SmartVID enables the device to run at lower than default volt-

age while retaining the same performance level, reducing static and dynamic

power. During manufacturing testing, Intel determines the optimum oper-

ating conditions for the FPGA performance. A set of voltage values corre-

sponding to those conditions are then programmed into nonvolatile registers

in the device. The contents of these registers and information about the silicon

temperature control the output of the voltage regulators, minimizing power

consumption. This property does not exist for Xilinx platforms. To exper-

imentally explore the design considerations of different vendors, a promis-

ing approach is to extend the undervolting study to other vendors such as

Intel-Altera, Lattice, Actel, and Quicklogic, and also to other grades such as

industrial, military, and aerospace.

• Energy-constrained Scenarios: There are some environments, where energy-

efficiency is the key metric, such as IoT and mobile applications. In this type
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of environments, FPGAs can be very attractive since they inherently provide

energy-efficiency and throughput, simultaneously. To achieve further energy-

efficiency gains, we propose aggressive undervolting, since eliminating large

voltage guardbands can deliver significant energy saving without compro-

mising to the performance or reliability.

• Approximate Computing: Approximate computing is a computation tech-

nique which returns a possibly inaccurate result rather than a guaranteed

accurate result. It can be used for applications where an approximate result

is sufficient for its purpose such as Machine Learning, Fuzzy Systems, Signal

Processing, among others. This type of applications can take advantage of

aggressive undervolting even below the voltage guardband level, especially

considering the possibility to mitigate the effect of undervolting faults in this

voltage region. As a case study, we performed experiments on the Neural

Network application; however, we expect the significant efficiency of the ag-

gressive undervolting approach for other approximate application as well.

• Stochastic Computing: Stochastic computing (SC) is an unconventional method

of computation that treats data as probabilities. Typically, each bit of an N-bit

stochastic number (SN) X is randomly chosen to be 1 with some probabil-

ity pX, and X is generated and processed by conventional logic circuits. SC

has used in massively parallel systems and is very tolerant of soft errors. Its

drawbacks include low accuracy, slow processing, and complex design needs.

Its ability to efficiently perform tasks like communication decoding and neu-

ral network inference has rekindled interest in the field. Many challenges

remain to be overcome, however, before SC becomes widespread. In other

words, SC is specifically designed for the structures that are prone to bit flip

faults which are the case of undervolting BRAMs in FPGAs. For example, the

78



6.3 Future of Aggressive FPGAs Undervolting

coefficients of an NN may be saved in BRAMs using the format of stochastic

computing. Indeed, using the following references of stochastic computing

along with proposed the undervolting in FPGAs, it is possible to gain more

benefits

• Heterogeneous Computing: With the rise of data size and the diversity of

data and also due to the fundamental limitations of scaling at the atomic scale,

heterogeneous systems have recently brought significant attention. There re-

cently have been dramatically increased efforts toward heterogeneous com-

puting, including integration of heterogeneous cores on a die (ARM), utilizing

general-purpose GPUs (NVIDIA), combining CPUs and GPUs on the same

die (Intel, AMD, ARM), leveraging FPGAs (Altera, Xilinx), integrating CPUs

with FPGAs (Xilinx), and coupling FPGAs and CPUs in the same package

(IBM-Altera, Intel-Altera). Heterogeneity aims to solve the problems associ-

ated with the end of Moore’s Law by incorporating more specialized compute

units in the system hardware and by utilizing the most efficient compute unit

for each computation. As explained in Section 5, independent efforts exist for

voltage scaling on individual computing devices; however, a holistic study on

a heterogeneous system is missing. However, thanks to the potential shown

in this thesis for FPGAs as well as the previous studies for other devices like

GPUs, CPUs, and DRAMs, such a comprehensive study on heterogeneous

systems holds promise and potentially can lead to considerable energy sav-

ing gains.

6.3 Future of Aggressive FPGAs Undervolting

We think that this thesis opens new windows for further researches in the FPGAs

undervolting area. In this section, we list the major future potentials that our study
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provides. These proposals can be adopted by FPGA vendors or by further academic

studies to achieve better energy optimization:

• Constraints on the voltage regulation on commercial FPGAs: During the

experiments we faced several constraints by vendors. For instance, there are

many FPGA platforms from Xilinx without voltage scaling capability. For

those platforms equipped with PMBus (or any similar standard), FPGA com-

ponents are not fully isolated for the voltage scaling studies. We hope that by

showing the potential of undervolting FPGAs in this thesis, vendors can be

convinced to expose voltage margin options to users in the same manner that

they exposed advanced overclocking capabilities (i.e., turbo mode for CPUs)

a couple of years ago.

• Dynamic frequency scaling accompanied with voltage scaling: During our

experiments, we realized that FPGA BRAMs operate on the internal fixed

clock frequency. Thus, we could not modify their operating frequency; al-

though, unlike DVFS, undervolting delivers better energy savings gains since

frequency is not scaled down. We hope that this thesis convinces vendors to

provide more adjustable voltage and frequency setting of the FPGA compo-

nents. Also, another constraint is that the voltage regulator is hardwired to

the host. A more suitable design can be the possibility to regulate the supply

voltage from itself.

• Dynamic thermal management: Through our experiments, we realize that at

higher temperatures the reliability issues are relatively less. Thus, gradually

and dynamically underscaling the supply voltage at higher temperatures can

lead to even better results. This research direction needs an on-chip tempera-

ture sensor and an efficient voltage control unit to adjust the supply voltage.

Note that unfortunately in most of the recent FPGA platforms including four
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studied platforms, the voltage regulator is hardwired to the host (not to the

FPGA). It means that voltage adjusting needs to be applied by software run-

ning at the host. This is another practical constraint that we observed, and the

solution is to be able to regulate supply voltage from the FPGA logic, which

can facilitate to implement dynamic voltage scaling techniques. We hope that

this thesis can convince vendors to take this suggestion into account for their

future board designs.

• Analytically modeling and confirmation of the experimental studies: We

experimentally analyzed the power and reliability behavior of FPGAs as well

as detailed fault characterization of BRAMs under aggressively low-voltage

operations. However, to analytically modeling and in turn, confirming our

experimental results, detailed circuit-level information of the internal FPGA

architecture is required. Unfortunately, there is very limited publicly avail-

able information from the circuit-level structure of commercial FPGAs com-

ponents, which, in turn, we did not find the chance to extend our work to

analytically models, as well.
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