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Abstract

Larger supercomputers allow the simulation of more complex phenomena
with increased accuracy. Eventually this requires finer and thus also larger
geometric discretizations. In this context, and extrapolating to the Exas-
cale paradigm, meshing operations such as generation, deformation, adap-
tation/regeneration or partition/load balance, become a critical issue within
the simulation workflow. In this paper we focus on mesh partitioning. In par-
ticular, we present a fast and scalable geometric partitioner based on Space
Filling Curves (SFC), as an alternative to the standard graph partitioning
approach. We have avoided any computing or memory bottleneck in the
algorithm, while we have imposed that the solution achieved is independent
(discounting rounding off errors) of the number of parallel processes used to
compute it. The performance of the SFC-based partitioner presented has
been demonstrated using up to 4096 CPU-cores in the Blue Waters super-
computer.

Key words: space filling curve, SFC, mesh partitioning, geometric
partitioning, parallel computing

1. Introduction

Mesh partitioning is traditionally based on graph partitioning, which is
a well-studied NP-complete problem generally addressed by means of mul-
tilevel heuristics composed of three phases: coarsening, partitioning, and
un-coarsening. Different variants of them have been implemented in pub-
licly available libraries such as Metis/ParMetis [1], Scotch/PT-Scotch [2] and
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Zoltan [3]. All these libraries enable parallel partitioning, but with a limited
parallel performance and a decreased quality of the parallel partition [4, 5.
Both aspects make graph-based partitioning a potential bottleneck in the
simulation workflow. However, taking into account the evolution of the com-
puting HPC systems, any potential bottleneck becomes an effective bottle-
neck if not addressed in time. Motivated by these circumstances, we present
a fully parallel geometric partitioning alternative.

Geometric partitioning techniques obviate the topological interaction be-
tween mesh elements and perform its partition according to their spatial
distribution. If we consider as unitary element the mesh cell, then its mass
center can be used to determine its spatial location. A Space Filling Curve
(SFC) is a continuous function used to map a multi-dimensional space into a
one-dimensional space with good locality properties, i.e. it tries to preserve
the proximity of elements in both spaces. The idea of geometric partitioning
using SFC is to map the mesh elements into a 1D space and then easily
divide the resulting segment into equally weighted sub-segments. A signifi-
cant advantage of the SFC partitioning is that it can be computed very fast
and it is easy to parallelize, especially when compared to graph partitioning
methods. However, while the load balance of the resulting partitions can be
guaranteed, the data transfer between the resulting subdomains, measured
in terms of edge-cuts in the graph partitioning approach, cannot be explicitly
measured and thus neither be minimized.

In this paper we describe and evaluate the performance of a parallel SFC
based partitioner. We have avoided any computing or memory bottleneck
that could limit the scalability of the algorithm, imposing that the solution
achieved is independent (discounting rounding off errors) of the number of
parallel processes used to compute it. The structure of the paper is as fol-
lows: Section 2 contains a short overview of the Hilbert SFC; in Section 3
we describe in detail the sequential and parallel versions of our SFC-based
partitioner. In Section 4 the performance of the initial implementation is ana-
lyzed and some optimizations are evaluated; moreover, the partitions quality
is compared with the quality of the equivalent ones computed with Metis.
Finally, general conclusions are outlined section 5.

2. Hilbert Space Filling Curve

There are many possible definitions of SFC based on different mapping
options, among them the well-known Peano [6] and Hilbert [7] approaches.



Figure 1: Hilbert SFC recursive generation, 1D (top) and 3D (bottom)

A complete overview is given in [8]. In this paper the Hilbert SFC is selected,
however switching to another mapping option would be straightforward in
our implementation.

The Hilbert SFC is defined by means of a geometric recursion. For the
2D case, on the p'th level of the recursion a discrete function is obtained:

hoe{l,..,2%} — {1,..,2°}{1,...,2F} (1)

determining the ordering of the curve through a 2P x 2P cartesian grid. The
four initial steps of this recursion are represented in Figure 1(top). On the
first step, the curve has a “I” shape traversing a 2 x 2 grid. This is refined
into the curve that traverses the 4 x 4 grid corresponding to the second step.
This 4 x 4 grid can be decomposed into four 2 x 2 sub-grids, where the curve
takes the shapes “337, “M”, “M” and “C”, respectively. Following a specific
refinement pattern for each of these basic 2 x 2 shapes we obtain the third
level, and this process is continued until the desired level of refinement is
achieved. Therefore, the process of generating a Hilbert curve, is based on
recursively applying a specific refinement pattern to the basic 2 x 2 shapes
generated at each level of the recursion. This algorithm can be implemented
by cyclic lookups to two arrays: the first storing the orderings which define
the basic 2 x 2 shapes, the second its refinement patterns, also referred as
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orientations. Details of this implementation approach can be found in [9)].
The same idea is followed in the 3D case, where the basic shapes are de-
fined on 2 x 2 x 2 sub-grids. The first four steps of the 3D recursion are
depicted in Figure 1 (bottom). Note that a Hilbert SFC can be defined on
any rectangular or cubic domain, by using a grid with 2”7 elements on each
axis.

A Hilbert SFC can also be generated in parallel following a multilevel
approach. An initial coarse grid is defined, and the SFC-index of each of
its elements, hereafter referred as coarse bins, determines the rank of the
parallel process continuing the recursion within it. If the proper orientation
is followed within each coarse bin, the resulting SFC generated in parallel
is the same that would be obtained sequentially. This process is illustrated
in Figure 2. Generating an SFC in parallel has two advantages: first it is
faster and second, since there is more memory available for the overall SFC, a
more refined one can be generated. Recalling that the ordering of the coarse
bins is based on an SFC, this imposes a restriction to the number of parallel
processes, P, generating the SFC: P, must be a power of 2¢, where d € {2, 3}
is the dimension of the domain.
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Figure 2: Hilbert SFC parallel generation. a) Initial coarse grid definition, b) orientation
of each parallel process to continue the recursion, c¢) recursive generation of SFC in each
parallel process.

3. SFC based mesh partitioning

3.1. Sequential version

Consider the problem of partitioning a mesh in M subsets using the
Hilbert SFC described in Section 2. A sequential algorithm to obtain the
desired partition is as follows:



1. Define a minimum bounding box enclosing the mesh.

2. Define a cartesian grid with 27 elements in each direction, its cells are
referred as bins. Note that p recursion steps will be necessary to generate
the corresponding Hilbert SFC.

3. Embed the mesh elements into the grid bins. For each mesh element
a weight is added to the grid bin containing it. A mesh partition can
be based on the distribution of nodes (vertices) or cells, in this paper
we consider cells. We use the mass center to determine the bin that
contains each cell, and the weight of a cell is defined as its number of
nodes.

4. Traverse the cartesian grid and label each bin with a partition number.
The SFC ordering is used to traverse the grid. The associated mapping
function requires p steps for each evaluation, therefore if N = (2¢)” the
cost of this step is O(Nlog(NN)). While the cartesian grid is traversed,
the bins weight is accumulated on a variable and, each time the o0b-
jective weight is reached, the partition number assigned to the bins is
incremented and the accumulation variable is reinitialized to zero. The
objective weight is initially defined as the total weight accumulated in
the grid divided by M. Then it is re-evaluated each time a subset is
completed, considering the remaining weight and subsets to complete,
to avoid the accumulation of discrete errors.

5. Infer the mesh partition from the bins partition. This step is straight-
forward, the partition number of each mesh element is the one of the
bin containing it.

The steps of the sequential partitioning algorithm are illustrated in Figure 3.

3.2. Parallel version

The parallel counterpart of the algorithm is described below. As initial
conditions, we assume that there is a list of N, cells distributed among P
parallel processes. We assume that P is a power of 2¢, i.e. P = 29 where
g. are the levels of the coarse SFC recursion. The initial distribution of the
mesh cells among the parallel processes could come from: i) a parallel read of
the mesh file, carried out at the initialization phase of the simulation; or ii)
a previous partition, when a mesh re-partitioning is considered, e.g. for load
balancing purposes. The parallel SFC-based mesh partitioning algorithm has
the following steps:



a) Embed mesh in grid c) Traverse the grid following SFC
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Figure 3: Sequential algorithm for mesh partitioning using the Hilbert SFC. a) The mesh
is embedded in a cartesian grid, b) a weight is assigned to each element of the cartesian
grid (“bins”) depending on the number of elements contained in it, ¢) the cartesian grid
is traversed in the SFC order, accumulating the weights of the bins and assigning subset
numbers depending on the objective weights of each subset.

1. Define the bounding box and its cartesian grids. A minimum bounding
box is defined enclosing the mesh. This requires a collective reduction
communication (MPI_Allreduce), to find the maximum and minimum
value for each coordinate among the mesh nodes. Then a coarse grid
is defined dividing the box. Each parallel process will account for the
mesh portion contained in one of the coarse bins, in particular the one
with SFC-index equal to its rank. At this point it is also determined
the depth of the Hilbert recursion used within the coarse bins, referred
as ¢;. Consequently, the size of the local grids will be Né = (29", and
the size of the fine grid, resulting from joining the local grids, will be
Ngf — (Qd)l]qu'

2. Evaluate and redistribute of bins weight. Each parallel process evalu-
ates the weight of the elements of its sublist accumulating it into the
corresponding fine bins. Then the weights accumulated in the fine bins



are redistributed such that each parallel process ends up with the ones
contained in its local grid. In order to accumulate the fine bins weight
while looping trough the sublist of cells, it would be required an array of
size N, g , or an sparse data structure such as a hash table. Alternatively,
in this paper we split this evaluation into different sub-steps. These are
detailed below from the perspective of one of the parallel processes:

e Identify which coarse bins contain elements of its sublist (loop
around sublist required).

e For each of these:

— Allocate a buffer of size N, é to accumulate the weights in the
bins of the corresponding local grid.

— Loop around the mesh elements sublist accumulating weights
on the buffer.

— Store the non-zero weight bins on a new buffer (a loop around
the first buffer of size N} is required).

e Collective communication (MPI_Alltoall) so that each parallel pro-
cess gets the size of the buffers it will receive from other processes

e Point-to-point communications (MPI_Isend, MPI Irecv, MPI Wait)
to re-distribute weighted bins.

e Accumulate the bins weights in the local grid. The local bins weight
may have been received from other parallel processes or may have
been evaluated from the same process sublist. Note that, the pro-
cesses without any mesh element contained in its coarse bin will
end up with an empty local grid.

3. Gather the coarse bin weights to all processes. A collective MPI_Allgather
communications is carried out to obtain the weights distribution across
the parallel process.

4. Local grids partition. From the coarse weights distribution obtained in
the previous step, each parallel process can evaluate the relative weight
of its coarse bin, 7;, and the relative weight accumulated by the parallel
processes with lower rank, I'; = 3 i Vi Note I'; < 1 for all the parallel
processes. Recall M are the subsets desired for the final partition, then
I';M subsets will be completed by processes of rank lower than . In
order to generate the partition in a coherent way, the assignation of
the starting subset for each parallel process has to be done carefully.
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Consider the general case where I';M is not an integer number and
define the residual subset r; as r; = I';M — [[';M], where [] stands for
the floor function. The starting subset for parallel process i will be
[[;M] + 1 and the objective weight for this subset will be scaled by
the factor (1 — r;), given that the parallel processes with ranks lower
than ¢ have to cover the r; fraction of it. Once the starting partition
number and the objective weight for the first subset are known, the
parallel process can start its local partition. SFC partitioning methods
are flexible enough to generate subsets of different sizes. This situation
is illustrated in Figure 4, where a mesh is partitioned by four parallel
processes into five subsets. Each parallel process starts assigning subset
numbers according to the coarse weights accumulated by the parallel
processes of lower ranks. In the example, the first subset is filled by
ranks 0 and 1, the second by ranks 1 and 2, the third by 2 and 3, and
finally the fourth and fifth subsets are filled by rank 3. Note that joining
the local SFC partitions generated in parallel, the result is the same that
would be obtained sequentially.

5. Fine bins redistribution. The point-to-point communications (MPI_Isend,
MPI Irecv, MPI Wait) opposite to those made in step 2 are performed.
As a result each parallel process obtains the partition number of the bins
containing cells of its sublist.

6. Infer mesh partition. This step is straightforward, the partition number
of each element of the sublist is the one of the fine bin containing it
(received in previous step).

Note that each parallel process does not account for more than 1/P of
the mesh elements of the fine grid at any step of the algorithm. There-
fore, the algorithm does not present any memory or computational bot-
tleneck. Regarding data transfers, there are three collective communica-
tions: in steps 1 (MPI_Allreduce), in step 2 (MPI_Alltoall) and in step
3 (MPI_Allgather); and two point-to-point communications: steps 2 and 5
(MPI_Isend, MPI Irecv, MPI Wait). Its influence on the parallel performance
is analyzed in the following section.

Regarding the restriction of P being a power of 2¢, imposed by the Hilbert
SFC, there are alternative SFC without such restriction, e.g. the Peano or
Morton SFCs [8]. In our case, we fix P as the largest power of 2¢ minor
or equal than M (the number of processes used for the simulation). An
alternative option is to use a coarse grid with more bins than partitioning



processes and assign more than one coarse bin to each parallel process.

The sequential and parallel executions of the algorithm produce an almost
identical partition if the fine grid resulting from joining the local grids is the
same than the one used for the sequential partition. However, since a larger
grid can result in a better balanced partition, the parallel execution can
produce more accurate results. An opposite behavior is observed with graph
partitioners, where sequential and parallels results are generally different
and the parallelization worsens the result [4, 5|. In case of identical grids,
there can be a minor difference between the parallel and sequential SFC
algorithms. This is because of the objective weight re-evaluation used to
distribute the discrete errors at generating the subsets (see step 4 of the
sequential algorithm). In the sequential case this re-evaluation is performed
P—1 times and affects all the subsets, while in the parallel case it is performed
locally within each coarse bin, the number of repetitions will depend on the
portion of mesh elements partitioned by each parallel process.

Finally, repartitioning and load balancing based on SFC has a significant
advantage: the partition adjustments consist in moving the cutting points
along the 1D segment defined by the SFC. Therefore, changes occur in the
extremes of the sub-segments obtained from the former partition and, in
general, most of mesh elements can be retained in the same subdomain.

The steps of the parallel partition algorithm are outlined in Algorithm 1.

Algorithm 1 Parallel SFC-based partitioning
1. Definition of a bounding box and its cartesian grids
Evaluation and redistribution of fine bins weight

Gather coarse bin weights to all processes
Local grids partition based on SFC
Fine bins redistribution

& Otk N

Infer mesh partition

4. Computational tests and optimizations

In this section we present the computational tests carried out and the
optimizations implemented according to the intermediate results obtained.
We have considered two test cases, the first one is the simulation of a sniff
flow in the respiratory system. The heterogeneous and anisotropic mesh
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Figure 4: Parallel mesh partitioning using SFC.

illustrated in Figure 5 (left) is used for this case. It is mainly composed
of prisms in the boundary layer and tetrahedra in the rest of the domain,
while some pyramids are required on the transition between both regions.
In total it has 17.7M cells. For the numerical solution of the sniff flow a
large-eddy simulation (LES) formulation of the Navier Stokes equations is
considered. This is coupled with a Lagrangian particle tracking solver to
evaluate depositions. An illustrative image of the results is shown in Figure 5
(right). Further details about this case can be found in [10, 11].

Figure 5: Geometric discretization of the respiratory system (left). Streamlines colored by
velocity magnitude and iso-surface of Q-criterion pointing by arrows in the nasal cavities
and throat(right).

The second case under consideration is the numerical simulation of a
swirling combustor. The computational domain is also discretized with a
highly anisotropic mesh composed of prisms, tetrahedra and pyramids; de-
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tails are shown in Figure 6 (left). The mesh is composed of 28.9M cells in
total. The numerical approach for the fluid is also a LES while the turbulent
combustion model is based on laminar premixed flamelets. Further details
on this case can be found in [12], an illustrative image of the flow dynamics
is presented in Figure 6 (right).

The computational tests have been carried out on the Blue Waters su-
percomputer from the National Center for Supercomputing Applications
(NCSA) at the University of Illinois (U.S.A). In particular we employed the
XE nodes composed of two 16-core AMD 6276 “Interlagos” processors (nom-
inal clock speed of at least 2.3 GHz), and connected by the Cray Gemini
torus network.

The parallel SFC based partitioner developed in this paper and the physics
solvers used in the test cases are both integrated in Alya [13, 14],: the high
performance computational mechanics code developed in the Barcelona Su-
percomputing Center. The physics solvable with the Alya system include:
incompressible/compressible flow, solid mechanics, chemistry, particle trans-
port, heat transfer, turbulence modeling, electrical propagation, etc. Alya
is designed for massively parallel supercomputers [15], its parallelization in-
cludes both the MPI and OpenMP frameworks, as well as heterogeneous
options including accelerators. Alya is one of the twelve simulation codes of
the Unified European Applications Benchmark Suite (UEABS) of PRACE
and thus complies with the highest standards in HPC.

Figure 6: Geometric discretization of a swirling combustor (left). Instantaneous iso-surface
of stoichiometric mixture fraction colored by pressure (right).

4.1. Parallel performance of the partitioning process
4.1.1. Initial results

The first test carried out is the measurement of the time required for the
partition of the respiratory system mesh (17.7M cells), varying the number
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’ #CPU ‘ initial version ‘ no redist. ‘ no comm. ‘

8 1,31 0,45 (34%) | 1,27 (97%)
64 0,31 0,057 (18%) | 0,30 (97%)
512 0,18 0,0078 (4%) | 0,064 (36%)
4096 0,20 0,0037 (2%) | 0,023 (11%)

Table 1: Partitioning time (sec.) with different numbers of CPU-cores. For the initial
version of the partitioning algorithm (column 2). Skipping data redistributions (column
3) and skipping only MPI calls inside redistributions (column 4). In parenthesis percentage
of the total time. Respiratory system mesh (17.7M).

of CPU-cores from 8 up to 4096. Even when the execution with 4096 CPUs
is quite unrealistic, given that a load of 4.3K cells per CPU-core is very
low, it is useful to show the scalability barriers of the algorithm. Starting
with 8, the number of CPUs is incremented by a factor 8 on the successive
cases considered. In this way a SFC can be used to assign the coarse bins
to the parallel processes. While the size of the coarse grid is multiplied by 8
in the successive cases, the local grid size is divided by 8, therefore the fine
grid is kept constant. The partitions generated have 512 subsets, however,
the partitioning time is independent to this number. Results are shown in
column 2 of Table 1, and are depicted in Figure 8 (left), under the label
“SFC initial”, for its comparison with some optimizations described below.
The partitioning process is very fast: a minimum time of 0.18 seconds is
observed for partitioning this 17.7M elements mesh. However the scalability
is very limited: with 512 CPU-cores the parallel efficiency is only 11% and
1% with 4096 CPU-cores. Despite the algorithm may be fast enough in some
contexts we aim to further understand its scalability limitations, having in
mind its potential usage for repartitioning and load-balancing processes.

4.1.2. Analysis

Following the well known Amdahl’s law principle, the first step to do is
to find the part of the algorithm which dominates the execution costs. First,
we have skipped steps 2 and 5 of Algorithm 1, in which data redistributions
are carried out. As shown in column 3 of Table 1, the rest of the algorithm
takes only 34% of the partitioning time with 8 CPUs-cores, and ends up
representing only 2% with 4096 CPU-cores. This percentage decrease re-
flects a better parallel efficiency of the part being considered, which can be
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calculated from Table 1: 90% with 512 CPU-cores and 24% with with 4096
CPU-cores. In conclusion, our SFC partitioning algorithms is dominated by
the cost of the redistribution steps, the rest of the algorithm scales well - the
scalability achieved with 4096 is good considering the low workload per CPU
- and is extremely fast. Consequently, in the rest of this section we focus on
the analysis and the optimization of steps 2 and 5 of Algorithm 1.

Algorithm 2 Step 2 of Algorithm 1
1. Loop around the sublist of mesh elements to count #elements to be sent
to other proc.

2. For each proc. ¢ to which messages have to be sent:

(a) Allocate buffer of size N} (local grid of proc. ¢)

(b) Loop around the sublist to accumulate weight on the buffer

(c) Store in the “send to proc. q” buffer the bins with non-zero weight
3. MPI_Alltoall to generate the communication scheme
4. Point-to-point:

(a) For each other process sending a buffer to me MPI_Irecv

(b) Send all the buffers evaluated in step 2, MPI_Isend
(c) MPI_Waitall

5. Accumulate weight in local grid

The step 2 of Algorithms 1 is shown in detail in Algorithm 2. Step 5 is just
the point-to-point communications opposite to those made in step 2.4 (step
4 of Alg. 2). The next test considered is the execution of the Algorithms 1
discarding only the MPI calls of steps 2.3, 2.4 and 5, respectively. Results are
shown in column 4 of Table 1. The cost of the three communication episodes
eliminated is minimal (3%) up to 64 CPU-cores, but represents 64% and
89% of the partitioning time with 512 and 4096 CPU-cores, respectively. It
is thus clear that the principal scalability bottleneck are these three MPI
communications that have been omitted in this last test.

4.1.3. Optimizations

The first optimization that we have considered is hiding communications
under computations in Algorithm 2. In step 2.3 there is a MPI_Alltoall
communication used to get on each parallel process the size of the buffers
that it will receive from the others. The size of each buffer is proportional to
the number of weighted local bins to be sent to the corresponding process. In

13



step 2.1 are counted the number of elements of the initial sublist contained
in each coarse bin. This is an upper bound for the number of bins which
are finally sent, since more than one element can be contained in the same
local bin. Therefore, it is not possible to know the exact size of the buffers
until they are generated (step 2.2). However the upper bound evaluated in
step 2.1 is enough to start the communications because, according to MPI
specifications, the non-blocking MPI_Irecv instruction can be started using
as “count” parameter the “maximum number of elements in receive buffer”.
In conclusion, communications can be started before the buffering process is
carried out.

The corresponding optimized algorithm is shown in Algorithm 3. The
MPI_Alltoall communication has been advanced just after step 3.1 - the
#elements in each coarse bin are exchanged instead of the send buffers size.
Subsequently the MPI_Irecv instructions are started (step 3.3). Finally, the
non-blocking instructions MPI_Isend (step 3.4.d) are interleaved with the
weight evaluation and buffering (steps 3.4.a-3.4.c). On the other hand, in
the step 5 of Algorithm 1, such an overlapping is not possible because only
are performed a point-to-point communications without any substantial com-
putation.

Algorithm 3 Optimized step 2 of Algorithm 1: overlapping
1. Loop around the sublist of mesh elements to count #elements to be sent
to other proc.

2. MPI _Alltoall to generate the communication scheme
3. Point-to-point: for each other process sending a buffer to me MPI_Irecv
4. For each proc. ¢ to which messages have to be sent:
(a) Allocate buffer of size N} (local grid of proc. ¢)
(b) Loop around the sublist to accumulate weight on the buffer
(c) Store in the “send to proc. q” buffer bins with non-zero weight
(d) Point-to-point: send the buffer MPI_Isend
5. Point-to-point: MPI Waitall
6. Accumulate weight in local grid

The latency of the partitioning algorithm with this new version of step
2 is shown in column 3 of Table 2. With 8 and 64 CPU-cores the new
algorithm is slightly slower than the initial version. As previously shown in
Table 1, the communication costs represent a minimal part of the execution
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’ #CPU ‘ initial version ‘ opt. 1 ‘ opt. 2 ‘

8 1,31 1,37 (104%) | 1,37 (104%)
64 0,31 0,33 (106%) | 0,33 (106%)
512 0,18 0,078 (43%) | 0,071 (39%)
4096 0,20 0,28 (140%) | 0,037 (18%)

Table 2: Partitioning time (sec.) with different optimizations of the partitioning algorithm.
Opt. 1: overlapping communications and computations. Opt 2: overlapping + initial
redistribution. Respiratory system mesh (17.7M).

in these two cases (3%), therefore, there is not much to overlap. In fact,
as the results demonstrate, it is better to perform all the communications
together instead of interleaving them with calculations. In the execution with
512 CPU-cores, the benefit is noticeable, the partitioning time is reduced by
57%. Finally, in the extreme case with 4096 the new algorithm performs
much worse than the initial one (40%). In this case the communications
represent 89% of the partitioning time (see Table 1). Thus, like for the
first two cases, the ratio between communications and computations is very
unbalanced and there is not much to overlap. However, in this case the
dominant part are the communications instead of computations. Again it
is better to perform computations and communicators in two consecutive
blocks instead of interleaving them. Results in terms of strong speedup are
shown in Figure 8 (left).

A second issue observed regarding the parallel performance is the load
imbalance. In concordance with the previous analysis, we are focusing on
the step 2 of Algorithm 1 and, in particular, on the communication opera-
tions performed in it. The MPI_Alltoall operation does not produce any
imbalance because has the same cost for all the parallel processes involved
in it. However, the number of calls to the MPI_Irecv and MPI _Isend func-
tions can be different among parallel processes and, eventually, produce an
imbalance.

In particular, the number of calls to the MPI_Isend function performed
by one parallel process, depends on the number of mesh elements composing
its initial sublist, and on how these are distributed in the domain. The more
the collisions in the same coarse bin the less the number of messages to be
sent. The more the collisions within bins of the local sub-grids the more are
reduced the buffer sizes. In our tests, we have distributed the mesh elements
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into sublists of the same size, using the default ordering coming from the
mesh generator.

On the other hand, the number of calls to the function MPI_Irecv by
each parallel process, depends on the number of mesh elements contained in
its coarse bin, and on how these are distributed among the initial sublists.
This is the most critical part in terms of load imbalance. The coarse bins
enclosing zones where the mesh is more refined, contain more mesh elements
and receive more messages from other parallel processes. In our example,
the mesh of the respiratory system is very anisotropic and is specially dense
on the nasal cavities and throat. Consequently the processes accounting for
these zones receive much more messages than the others. This produces a
significant imbalance. In fact, there are some parallel processes having an
associated coarse bin without mesh elements - corresponding to an empty
zone of the bounding box - and others receiving messages from more than
75% of the rest of parallel processes.

In order to reduce the imbalance generated in the data transmissions,
we have designed a multilevel strategy. If P is the number of partitioning
processes (or coarse bins), with P = 2%. We define a new grid, referred
as wvast grid, with Q = 29 elements, where ¢ < p. The P partitioning
processes can be divided into P/Q = 2%P~9 subsets with () processes each.
The ideas is to redistribute the elements of the initial sublists within each
subset of () processes, grouping the elements contained in the same bin of
the vast grid. With this redistribution, the number of calls to the functions
MPI_Isend and MPI_Irecv is bounded by P/Q, one per subset of () processes.
Moreover, this initial redistribution benefits the collision of element into bins
of the coarse and local grids. This optimization can be seen as a modification
to the input data of Algorithm 3. @ is chosen as a relatively low number
and the redistribution is performed with the MPI_Alltoallv function. The
new version of the step 2 of Algorithm 1 is presented in Algorithm 4. To
keep the coherence with this new version of the step 2, in the step 5 of
Algorithm 1 are carried out first the point-to-point communications opposite
to the MPI_Irecv/Isend instructions of steps 4.4 and 4.5.d. And then the
one opposite to the MPI_Alltoallv of step 4.1. This multilevel approach is
illustrated in Figure 7.

The result of this optimization is shown in column 4 of Table 2. We have
fixed () = 128, in the first two cases the redistribution is not carried out since
the number of partitioning processes is lower than ). With 512 CPU-cores
the partitioning time is reduced by 61% with respect to the initial version
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Figure 7: Tllustration of step 2 of Algorithm 1: initial version (top) optimized version with
redistribution of sublist elements (bottom).
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Algorithm 4 Optimized step 2 of Algorithm 1: overlapping and sublists
redistribution
1. if(P > Q) First level sublists redistribution: MPI_Allotoallv
2. Loop around the sublist of mesh elements to count #elements to be sent
to other proc.

3. MPI_Alltoall to generate the communication scheme
4. Point-to-point: for each other process sending a buffer to me MPI _Irecv
5. For each proc. ¢ to which messages have to be sent:
(a) Allocate buffer of size N} (local grid of proc. q)
(b) Loop around the sublist to accumulate weight on the buffer
(c) Store in the “send to proc. q” buffer bins with non-zero weight
(d) Point-to-point: send the buffer MPI_Isend
6. Point-to-point: MPI Waitall
7. Accumulate weight in local grid

’ #CPU ‘ initial version ‘ opt. 2 ‘

8 2.11 2,11 (100%)
64 0,58 0,57 (98%)
512 0,32 0,081 (25%)
4096 0,57 0,046 (8%)

Table 3: Partitioning time (sec.) with the initial version of the partitioning algorithm and
its final optimization, for the swirling combustor mesh (28.9M).

and, with 4096 by 82%. This final algorithm is capable of partitioning the
17.7M mesh of the respiratory system in less than 4 cents of second using
4096 CPU-cores. Results in terms of strong speedup are shown in Figure 8
(left).

Finally, in Figure 8 (right) are compared the strong scalability of the
initial and final versions of the algorithm for the second example, the mesh
of the swirling combustor with 28.9M elements. The time measurements are
shown in Table 3. The final version of the algorithms is more than 10X
faster than the initial version using 4096 CPU-cores, in particular the mesh
is partitioned in only 5 cents of second.
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Figure 8: Strong speedup of the initial version of the partitioning algorithm and two
optimizations: overlapping communications and computations (optl), overlapping and
initial redistribution (opt2). Left: mesh of the respiratory system (17.7M). Right: mesh
of the swirling combustor (28.9M).

4.2. Partition quality

The present work is focused on the efficiency of the parallel partition al-
gorithm. However, given that the ultimate goal of mesh partitioning is to
enable the parallel execution of simulation codes, we compare the partition
quality obtained with the presented SFC algorithm with the one obtained
with Metis. To this end the Metis k-way algorithm with its default parame-
ters was selected, which is very common in practice. In Figure 9 we compare
the average time-step duration with different partitions for the two test cases
under consideration: the respiratory system (left) and the swirling combus-
tor (right). In each test case a different set of equations is solved, but in both
of them the time-step is composed of an explicit part, in which the linear
system is assembled, and an implicit part in which a linear solver is applied.

Results for both partitions and test cases are rather similar. Metis aims
to generate balanced partitions minimizing also communication costs, while
the SFC approach does not consider communication costs explicitly, but can
be very precise on the load balancing. In general, in a system like the Blue
Waters one, a load of ~ 35K mesh elements per CPU-core would be consid-
ered optimal for a simulation with Alya. Therefore, the most representative
executions of this test are the ones with 512 and 1024 CPU-cores. In the res-
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Figure 9: Average latency per time-step on the simulations of the sniff in the respiratory
system (left) and the combustion in a swirling combustor (right), for partitions generated
with SFC and Metis.

piratory system the SFC partition outperforms the Metis partition by 10%
and 3%, respectively; contrarily, for the combustor the Metis partition out-
performs SFC partition by 4% and 9%, respectively. The graph obtained
from the discretization of the irregular respiratory system geometry makes
difficult the balancing for Metis. When the load per CPU is very low com-
munication costs become critical and graph partitions are a better option.

Note that the SFC partitions have been generated in parallel, setting P
(the number of partitioning processes) as the highest power of 8 lower then
M (the number of subdomains generated), in other words, using the largest
possible subset of the parallel processes engaged on the simulation for the
mesh partitioning. On the other hand, Metis partitions have been generated
sequentially but some studies show a degradation of the partition quality
with its parallel version [5].

Finally, Figure 10 illustrates the partition of the respiratory system mesh.
The partition number assigned to each non-zero weighted bin of the fine grid
is plotted, this represents the output of step 4 of Algorithm 1.

5. Concluding Remarks

In this paper, a new SFC-based parallel mesh partitioner has been de-
veloped and implemented. The analysis and optimization of the algorithm
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Figure 10: SFC-partition of the respiratory system mesh (17.7M) elements.

have been presented in detail. The final version is fully scalable and does
not suffer any memory or computational bottlenecks, being able to partition
a mesh of 28.9M cells in 5 cents of second using 4096 CPU-cores.

Moreover, our method maintains or even improves the quality of the par-
tition at increasing the number of partitioning processes. We have compared
it with Metis, both methods generate partitions for which the simulations
performance is similar, differences obtained for different representative test
cases are below 10%. Even when a much more comprehensive study is still
necessary on this aspect, the SFC method seems to be competitive approach
for parallel mesh partitioning with a clear potential for dynamic load balanc-
ing.
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