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Abstract The incompressible Navier-Stokes equations form an excellent mathe-
matical model for turbulent flows. However, direct simulations at high Reynolds
numbers are not feasible because the convective term produces far too many rele-
vant scales of motion. Therefore, in the foreseeable future, numerical simulations of
turbulent flows will have to resort to models of the small scales. Large-eddy simu-
lation (LES) and regularization models are examples thereof. In the present work,
we propose to combine both approaches in a spectrally-consistent way: i.e. pre-
serving the (skew-)symmetries of the differential operators. Restoring the Galilean
invariance of the regularization method results into an additional hyperviscosity
term. In this way, the convective production of small scales is effectively restrained
whereas the destruction of the small scales is enhanced by this hyperviscosity ef-
fect. This approach leads to a blending between regularization of the convective
term and LES. The performance of these improvements is assessed through ap-
plication to Burgers’ equation, homogeneous isotropic turbulence and a turbulent
channel flow.
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1 Introduction

The incompressible Navier–Stokes (NS) equations form an excellent mathematical
model for turbulent flows. In primitive variables they read

∂tu+ C(u,u) = Du−∇p ; ∇ · u = 0, (1)

where u denotes the velocity field, p represents the pressure, the non-linear convec-
tive term is defined by C(u,v) = (u ·∇)v, and the diffusive term reads Du = ν∆u,
where ν is the kinematic viscosity.

Preserving the symmetries of the continuous differential operators at discrete
level has been shown to be a very suitable approach for direct numerical simu-
lation (DNS) (see the work by Verstappen and Veldman [41] or the more recent
review by Perot [25], for example). Doing so, certain fundamental properties such
as the inviscid invariants - kinetic energy, enstrophy (in 2D) and helicity (in 3D)
- are exactly preserved in a discrete sense. However, direct simulations at high
Reynolds numbers are not feasible because the convective term produces far too
many relevant scales of motion. Therefore, a dynamically less complex mathe-
matical formulation is needed. In the quest for such a formulation, we consider
regularizations [17,12,18] of the nonlinearity. The first outstanding approach in
this direction goes back to Leray [20]. In this regard, simulations using the Leray-
α model can be found in many works [6,28,13,24,29,15,26]. The Navier–Stokes-α
model also forms an example of regularization modeling (see the works [10,12,
16], for instance). The regularization methods basically alter the convective terms
to reduce the production of small scales of motion. In doing so, Verstappen [38]
proposed to preserve exactly the symmetry and conservation properties of the
convective terms. This requirement yielded a family of symmetry-preserving reg-

ularization models: a novel class of regularizations that restrains the convective
production of smaller and smaller scales of motion in an unconditionally stable
manner, meaning that the velocity cannot blow up in the energy-norm (in 2D
also: enstrophy-norm). In our previous works [37,36,33], we restrict ourselves to
the C4 approximation: the convective term in the NS equations (1) is then replaced
by the following O(ǫ4)-accurate smooth approximation C4(u,v) given by

C4(u,v) = C(u,v) + C(u,v′) + C(u′,v), (2)

where the prime indicates the residual of the filter, e.g. u′ = u− u, which can be
explicitly evaluated, and (·) represents a self-adjoint linear filter with filter length
ǫ that commutes with differential operators. Therefore, the governing equations
result in

∂tuǫ + C4(uǫ,uǫ) = Duǫ −∇pǫ; ∇ · uǫ = 0, (3)

where the variable names are changed from u and p to uǫ and pǫ, respectively, to
stress that the solution of (3) differs from that of (1). Note that the C4 approx-
imation is also a skew-symmetric operator like the original convective operator.
Hence, the same inviscid invariants as the original NS equations are preserved for
the new set of PDEs (3). In this paper, regularizations of the NS equations that
preserve this fundamental property are called spectrally-consistent. Similarly, we
also call a discretization of the NS equations spectrally-consistent when the discrete
representation of the (skew-)symmetric differential operators are given by a ma-
trix which is spectrally equivalent: e.g. the skew-symmetric convective operator is
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given by a skew-symmetric matrix, whereas the symmetric diffusive operator is
represented by a symmetric matrix. From a physical point-of-view, this implies
that the discrete convective terms redistributes energy over the scales of motion
without dissipating it and the spatial discretization of diffusion dissipates energy
from a scale without transporting energy to other scales of motion [35]. The C4
regularization method has already been applied to several configurations [38,37].
However, two main drawbacks have been observed: (i) due to the energy conser-
vation, the model solution tends to display an additional hump in the tail of the
spectrum and (ii) for very coarse meshes very stringent conditions are required for
the linear filter.

In this context, here we propose to alter diffusion term in the same vein as
convection. In Section 2, this new regularization method is presented and dis-
cussed. Firstly, a family of fourth-order accurate regularizations of convective term
is obtained. Then, the modification of the linear diffusive operator follows from
(approximately) restoring the Galilean invariance of the regularized equations.
The modified diffusive term introduces an hyperviscosity effect and consequently
enhances the destruction of small scales. Then, the only additional ingredient is
a self-adjoint linear filter whose local filter length is determined from the crite-
rion proposed in [33], i.e. the vortex-stretching mechanism must be stopped at
the smallest grid scale. Furthermore, a blending between regularization modeling
and Large-Eddy Simulation (LES) is proposed. This is addressed in Section 3.
The performance of the proposed method is assessed through application to a 1D
Burgers’ equation, homogeneous isotropic turbulence and a turbulent channel flow
in Section 4. Finally, relevant results are summarized and conclusions are given.

2 Spectrally-consistent regularization of the Navier–Stokes equations

2.1 Symmetries and conservation properties

For convenience, we firstly introduce the following notation:

d(u,v) = (u,Dv) and c(u,v,w) = (C(u,v),w), (4)

where the inner-product of functions is defined in the usual way: (a, b) =
∫
Ω
a ·bdΩ.

The bi-linear operator d(u,v) satisfies the following properties

d(u,v) = d(v,u) and d(u,u) < 0, (5)

whereas the tri-linear form c(u,v,w) satisfies two fundamental symmetry proper-
ties

c(u,v,w) = −c(u,w,v) if ∇ · u = 0, (6)

c(u,v, ∆v) = c(∆v,v,u) in 2D, (7)

provided that the contribution of boundaries vanishes. These properties are exten-
sively used to prove the conservation properties of the inviscid invariants of the
original NS equations. Namely, the skew-symmetry (6) ensures the conservation
of kinetic energy, 1/2(u,u), and helicity, (u,ω), where ω = ∇× u is the vorticity.
The enstrophy, 1/2(ω,ω), also forms an inviscid invariant in the case of 2D flows.
Actually, the stronger form of enstrophy invariance given by Eq.(7) also holds for
the NS equations. For details the reader is referred to [17], for instance.
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2.2 {CD}γ4 regularization modeling

Regularization aims to modify the convective term in such a way that a dynami-
cally less complex mathematical formulation results. Let us assume that we have
a self-adjoint linear filter (·) : u −→ u with the requirements that it filters out
high frequency components and it commutes with differential operators. Now, for
convenience, let us define the following conditional function

ϕi(u) =

{
u , if i = 0
u , if i = 1

(8)

Then, a family of modified (regularized) non-linear operators can be easily con-
structed

C̃(u,v) =
1∑

i,j,k=0

aijkC̃ijk(u,v), (9)

where C̃ijk(u,v) = ϕk(C(ϕi(u), ϕj(v))). Hence, regularization C̃(u,v) results into
a linear combination of (up to) eight terms. Among all the possible combinations
we find the regularization proposed by Leray [20], a100 = 1 (with the rest of
aijk = 0). Firstly, the equality

∑1
i,j,k=0 aijk = 1 must be satisfied to guarantee

that C̃(u,v) ≈ C(u,v)+O(ǫn) with n ≥ 2. Then, several restrictions can be applied
to the coefficients aijk. Namely,

aijk = aikj and aijk = ajik, (10)

where the latter ensures that the skew-symmetry property (6) is exactly preserved
whereas the former is needed to guarantee that the form of vorticity transport
equation is not altered. They impose four additional restrictions to the coefficients
aijk and lead to a family of second-order accurate regularization models. Among
them, we find the second-order approximation proposed by Verstappen [38],

C2(u,v) = C̃111(u,v) = C(u,v). (11)

It must be noticed that the following restriction

aijk = akji, (12)

is needed to preserve the strong form of the enstrophy invariance (7) and follows
automatically from the restriction given in (10). Then, to cancel second-order
terms three additional conditions must be imposed:

1∑

j,k=0

a1jk = 0
1∑

i,k=0

ai1k = 0
1∑

i,j=0

aij1 = 0. (13)

Finally, without the loss of generality we can restrict ourselves to solutions where
a000 = 0. This leads to a family of fourth-order accurate regularization methods

Cγ4 (u,v) = C0
4(u,v) + γE4(u,v), (14)
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where

C0
4(u,v) =

1

2

(
C̃001 + C̃010 + C̃100 − C̃111

)
(u,v), (15)

E4(u,v) =
(
C̃011 + C̃101 + C̃110

)
(u,v)− 1

2

(
C̃001 + C̃010 + C̃100 + 3C̃111

)
(u,v).(16)

Note that C0
4(u,v) = C(u,v) +O(ǫ4) whereas E4(u,v) = O(ǫ4). Even more impor-

tantly,
Cγ4 (u,v) = C(u,v) + (γ + 1)O(ǫ4) +O(ǫ6). (17)

Therefore, Cγ4 is fourth-order accurate except for γ = −1 that becomes sixth-order.
Actually for γ = 1 and γ = −1, Cγ4 becomes the C4 and C6 approximations proposed
by Verstappen [38],

C4(u,v) = Cγ=1
4 (u,v) = C(u,v) + C(u,v′) + C(u′,v), (18)

C6(u,v) = Cγ=−1
4 (u,v) = C(u,v) + C(u,v′) + C(u′,v) + C(u′,v′), (19)

respectively. Notice that the Cγ4 regularization can also be viewed as a linear com-
bination of C4 and C6

Cγ4 (u,v) =
1

2
((C4 + C6) + γ(C4 − C6))(u,v). (20)

The approximations Cγ4 maintains all the invariant transformations of the NS equa-
tions, except, in general, the Galilean transformation. These transformations are
listed in [27], for instance. To restore the Galilean invariance we need to replace
the time-derivative, ∂tuǫ, by the following forth-order approximation:

(∂t)
γ
4uǫ = ∂t(uǫ − 1/2(1 + γ)u′′

ǫ ) = Gγ
4 (∂tuǫ), (21)

where Gγ
4 (φ) = φ− 1/2(1 + γ)φ′′. Here, the double prime indicates the residual of

the residual of the filter, i.e. u′′ = (u′)′ = u′−u′. In this case, the new set of PDEs
reads

(∂t)
γ
4uǫ + Cγ4 (uǫ,uǫ) = Duǫ −∇pǫ; ∇ · uǫ = 0. (22)

Therefore, Galilean invariance of Cγ4 in Eq.(20) can be restored without modifying
the time-derivative by simply setting γ = −1. However, it can be shown that
such an approach has several drawbacks (read the first paragraph in Section 3.3).
Another possibility relies on modifying appropriately other terms, e.g. the viscous
dissipation. The total kinetic energy equation for (22) becomes

d

dt
(‖uǫ‖2 − 1/2(1 + γ)‖u′

ǫ‖2) = (uǫ,Duǫ) < 0, (23)

provided that the filter is self-adjoint and ‖u‖2 = (u,u). Therefore, modification
of the time-derivative term (21) constitutes a dissipation model. Recalling that
(Gγ

4 )
−1(φ) ≈ 2φ−Gγ

4 (φ) +O(ǫ6), we can obtain an energetically almost equivalent
set of equations by modifying the viscous diffusive term

∂tuǫ + Cγ4 (uǫ,uǫ) = Dγ
4uǫ −∇pǫ; ∇ · uǫ = 0, (24)

where the linear operator Dγ
4u is given by

Dγ
4u = Du+ 1/2(1 + γ)(Du′)′. (25)



6 F.X.Trias et al.

In this way, we are reinforcing the dissipation at the smallest grid scales. At this
point, there are two parameters that need to be determined; namely, the constant
γ and the local filter length, ǫ. The former will determine the exact form of the
regularization model whereas the latter will define the convolution kernel of the
linear filter. These two issues are addressed in the following sections.

3 Restraining the production of small scales of motion

3.1 Interscale interactions

To study the interscale interactions in more detail, we continue in the spectral
space. The spectral representation of the convective term in the NS equations is
given by

C(u,u)k = iΠ(k)
∑

p+q=k

ûpqûq, (26)

where Π(k) = I − kkT /|k|2 denotes the projector onto divergence-free velocity
fields in the spectral space. Taking the Fourier transform of Eqs.(24), we obtain
the evolution of each Fourier-mode ûk(t) of uǫ(t) for the {CD}γ4 approximation

(
d

dt
+ hγ4(Ĝk)ν|k|2

)
ûk + iΠ(k)

∑

p+q=k

fγ4 (Ĝk, Ĝp, Ĝq)ûpqûq = Fk, (27)

where Ĝk denotes the k-th Fourier-mode of the kernel of the convolution filter,
i.e., ûk = Ĝkûk. Notice that hereafter, for simplicity, the subindex ǫ is dropped.
The mode ûk interacts only with those modes whose wavevectors p and q form a
triangle with the vector k. Thus, compared with Eq.(26), every triadic interaction
is multiplied by

fγ4 (Ĝk, Ĝp, Ĝq) =
1

2
{(1 + γ)f4 + (1− γ)f6} (Ĝk, Ĝp, Ĝq), (28)

where the f4 and f6 are given by

f4(Ĝk, Ĝp, Ĝq) = ĜkĜp + ĜkĜq + ĜpĜq − 2ĜkĜpĜq, (29)

f6(Ĝk, Ĝp, Ĝq) = 1− (1− Ĝk)(1− Ĝp)(1− Ĝq), (30)

where 0 < fn ≤ 1 (n = 4, 6). On the other hand, the k-th Fourier mode of the
diffusive term is multiplied by

hγ4(Ĝk) = 1 + 1/2(1 + γ)(1− Ĝk)
2, (31)

where hγ4 ≥ 1. Moreover, since for a generic symmetric convolution filter (see [3],

for instance), Ĝk = 1 − α2|k|2 +O(α4) with α2 = ǫ2/24, the functions fγ4 and hγ4
can be approximated by fγ4 ≈ 1 − 1/2(1 + γ)α4(|k|2|p|2 + |k|2|q|2 + |p|2|q|2) and
hγ4 ≈ 1 + 1/2(1 + γ)α4|k|4, respectively. Therefore, the interactions between large
scales of motion (ǫ|k| < 1) approximate the NS dynamics up to O(ǫ4). Hence, the
triadic interactions between large scales are only slightly altered. All the inter-
actions involving longer wavevectors (smaller scales of motion) are reduced. The
amount by which the interactions between the wavevector-triple (k,p,q) are less-
ened depends on the length of the legs of the triangle k = p + q. For example,
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all triadic interactions for which at least two legs are (much) longer than 1/ǫ are
(strongly) attenuated; whereas, interactions for which at least two legs are (much)
shorter than 1/ǫ are reduced to a small degree only. Interactions between the small
scales of motion cannot be analyzed without knowing the exact transfer function
of the filter since higher order terms may play an important role.

3.2 Stopping the vortex-stretching mechanism

Taking the curl of Eq.(24) leads to

∂tω + Cγ4 (u,ω) = Cγ4 (ω,u) +Dγ
4ω. (32)

This equation resembles the vorticity equation that results from the NS equations:
the only difference is that C and D are replaced by their regularizations Cγ4 and
Dγ

4 , respectively. If it happens that the vortex stretching term, Cγ4 (ω,u), in Eq.(32)
is so strong that the dissipative term, Dγ

4ω, cannot prevent the intensification of
vorticity, smaller vortical structures are produced. Left-multiplying the vorticity
transport Eq.(32) by ω, we can obtain the evolution of |ω|2. In this way, the
vortex-stretching and dissipation term contributions to ∂t|ω|2 result

ω · Cγ4 (ω,u) and ω · Dγ
4ω, (33)

respectively. In order to prevent local intensification of vorticity, dissipation must
dominate the vortex-stretching term contribution at the smallest grid scale, kc. In
spectral space, this requirement leads to the following inequality

1

2

(
ω̂kc

· Cγ4 (ω,u)
∗

kc
+ Cγ4 (ω,u)

kc
· ω̂∗

kc

)

ω̂kc
· ω̂∗

kc

≤ hγ4(Ĝkc
)νk2

c , (34)

where (·)∗ represents the complex conjugate and the vortex-stretching term, Cγ4 (ω,u)
kc
,

is given by

Cγ4 (ω,u)
kc

=
∑

p+q=kc

fγ4

(
Ĝkc

, Ĝp, Ĝq

)
ω̂piqûq. (35)

Note that fγ4 (Ĝkc
, Ĝp, Ĝq) depends on the filter length ǫ and, in general, on the

wavevectors p and q = kc − p. This makes very difficult to control the damping
effect because fγ4 cannot be taken out of the summation in (35). To avoid this,
filters should be constructed from the requirement that the damping effect of all
the triadic interactions at the smallest scale must be virtually independent of the
interacting pairs, i.e.

fγ4 (Ĝkc
, Ĝp, Ĝq) ≈ fγ4 (Ĝkc

). (36)

This is a crucial property to control the subtle balance between convection and
diffusion in order to stop the vortex-stretching mechanism. This point was ad-
dressed in detail in [36] where discrete linear filters were constructed to minimize
the bandwidth of fγ4 . Shortly, discrete linear filters, F , originally proposed in [36]
are based on polynomial functions of the discrete diffusive operator, D,

F = I +
M∑

m=1

dmDm, (37)
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where the boundary conditions that supplement the NS equations are applied in
Eq.(37) too. Here, we restrict ourselves to the case with M = 2 because it offers a
good compromise between accuracy and computational cost [33]. In this case, the
set of coefficients {d1, d2} that minimizes the bandwidth of f4 are given by

d1 = − Ĝkc
− 1

2(2Ĝkc
+ 1)

d2 =
2Ĝ2

kc
− 3Ĝkc

+ 1

16(2Ĝkc
+ 1)

if 0 ≤ Ĝkc
< 1/2, (38)

d1 =
1

4
− Ĝkc

4
d2 = 0 if 1/2 ≤ Ĝkc

≤ 1, (39)

and the corresponding transfer function of the filter, F , when using the classical
3-point approximation for the diffusive operator, D, is displayed in Figure 1 (top)
for different values of Ĝkc

. Figure 1 (bottom) shows the bandwidth of f5p
4 (Ĝkc

, q)

when using this 5-point filter. Notice that f5p
4 is bounded by q = 0 and q = kc/2.

The bandwidth is (very) small for the whole range 0 ≤ Ĝkc
≤ 1; therefore, f5p

4

satisfies the condition given in Eq.(36).

Then, the overall damping effect at the smallest grid scale, H4(Ĝkc
), follows

straightforwardly

H4(Ĝkc
) =

fγ4 (Ĝkc
)

hγ4(Ĝkc
)
=

2νk2
c ω̂kc

· ω̂∗
kc

ω̂kc
· C(ω,u)∗kc

+ C(ω,u)kc
· ω̂∗

kc

, (40)

with the condition that 0 < H4(Ĝkc
) ≤ 1. Notice that using Eqs.(28) and (31) and

the definitions of f4 and f6 respectively given in Eqs.(29) and (30), and assuming
that Eq.(36) is satisfied, we obtain hγ4(Ĝkc

) = 2−fγ4 (Ĝkc
). Therefore, the damping

function fγ4 (Ĝkc
) reads

fγ4 (Ĝkc
) =

2H4(Ĝkc
)

1 +H4(Ĝkc
)
. (41)

In summary, the overall algorithm reads

Algorithm 1

1: Determine the overall damping from Eq.(40): H4(Ĝkc
) =

2νk2

c
ω̂kc

·ω̂
∗

kc

ω̂kc
·C(ω,u)∗

kc
+C(ω,u)

kc
·ω̂∗

kc

2: Compute the damping function from Eq.(41): fγ
4 (Ĝkc

) = 2H4(Ĝkc
)/(1 +H4(Ĝkc

))

3: Construct the discrete filter, Ĝk, with the requirement given in Eq.(36). The reader is
referred to [36] for details.

4: Solve the governing Eq. (27) using the formulae of fγ
4 (Ĝk) and hγ

4 (Ĝk) given in Eqs.(28)
and (31), respectively.

A similar reasoning can be applied in the physical space. Let us now consider
an arbitrary part of the flow domain Ω with periodic boundary conditions. Then,
taking the L2 innerproduct of (1) with −∆u leads to the enstrophy equation

1

2

d

dt
‖ω‖2 = (ω, C(ω, u))− ν‖∇ω‖2, (42)

where ‖ω‖2 = (ω,ω) and the convective term contribution (C(u,ω),ω) = 0 van-
ishes because of the skew-symmetry (6) of the convective operator. Using the
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Ĝkc
 = 3/4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f 4
5p

 (
 Ĝ
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Fig. 1 Top: transfer function of the 5-point filter given in Eq.(38) for different values of Ĝkc
.

Bottom: bandwidth for fγ
4 when using this 5-point filter.

results obtained by Chae [4] and following the same arguments as in [39], it can
be shown that the vortex-stretching term can be expressed in terms of the third
invariant of the rate-of-strain tensor, S(u), i.e. R = 1/3tr(S3) = det(S)

(ω, C(ω,u)) =

∫

Ω

ω · Sω = −4

3

∫

Ω

tr(S3)dΩ = −4

∫

Ω

RdΩ, (43)

and the L2(Ω)-norm of ω in terms of the second invariant Q = −1/2tr(S2)

‖ω‖2 = −4

∫

Ω

QdΩ. (44)

Then, recalling the Poincaré inequality the diffusive term can be bounded by

(∇ω,∇ω) = − (ω, ∆ω) ≤ −λ∆ (ω,ω) , (45)

where λ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue of the
Laplacian operator ∆ on Ω. If we now consider that the domain Ω is a periodic box
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of volume h, then λ∆ = −(π/h)2. In a numerical simulation h would be related with
the local grid size. Then, to prevent a local intensification of vorticity, i.e. ‖ω‖t ≤ 0,
the following inequality must be satisfied

H4(Ĝkc
)
(ω, Sω)

(ω,ω)
≤ −νλ∆, (46)

where, in this case (a 3D Cartesian grid), |kc| =
√
3π/h. This inequality is the

analog to Eq.(40) in physical space. On the other hand, Rayleigh’s principle states
that

max
ω 6=0

(ω, Sω)

(ω,ω)
= λ3, (47)

therefore, it provides a lower bound for the damping function,H4(Ĝkc
) ≤ ν(−λ∆/λ3).

This was the approach considered in our previous work [37]. However, the maxi-
mum value is attained only if ω is aligned with the eigenvector corresponding to
λ3. This is not consistent with the preferential vorticity alignment with the inter-
mediate eigenvector (see the works by Galanti et al. [11] and Dabbagh et al. [7]);
therefore, the convective terms tends to be over-damped. This becomes especially
relevant near walls. In order to overcome this drawback here we propose to rewrite
the inequality (46) in terms of the invariants Q and R. From Eqs. (43)-(46) we
deduce that H4(Ĝkc

) ≤ λ∆νQ/|R|, where the overall damping factor 0 < H4 ≤ 1.
Thus, a more proper definition of the overall damping factor at the smallest grid
scale is given by

H4(Ĝkc
) = min {λ∆νQ/|R|, 1} . (48)

3.3 On the determination of γ

A criterion to determine the damping function, fγ4 (Ĝkc
), at the smallest grid scale

has been presented in the previous section. Then, the only parameter that still
needs to be determined in Eq.(25) is the constant γ. As stated before, by simply
setting γ = −1, the Cγ4 becomes the sixth-order accurate C6 regularization and
the Galilean invariance is restored without introducing any additional modifica-
tion in the dissipation term. However, the C6 approximation itself suffers from a
fundamental drawback. Namely, the overall method relies on the fact that Eq.(36)
is approximately satisfied; therefore, the damping factor fγ4 can be taken out of

the summation in Eq. (35). This is not the case of f6: notice that since Ĝ0 = 1,
f6(Ĝkc

, Ĝkc
, Ĝ0) = 1 irrespectively of the value of Ĝkc

.

At this point, the ’optimal’ value of γ could be determined by means of a trial-
and-error numerical procedure. Alternatively, the constant γ can be obtained by
assuming that the smallest grid scale kc = |kc| =

√
3π/h lies within the inertial

range for a classical Kolmogorov energy spectrum E(k) = CKε2/3k−5/3. In such
a case, and recalling that Ĝk = 1− α2|k|2 +O(α4), the total dissipation for kT ≤
k ≤ kc can be approximated by the contribution of the following two terms

Dν ≡ ν

∫ kc

kT

k2E(k)dk D′′
ν ≡ ν

∫ kc

kT

k6α4E(k)dk, (49)
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where Dν is the physical viscous dissipation and D′′
ν is the additional dissipation

introduced by the hyperviscosity term, (Du′)′. Hence, integrating for a Kolmogorov
energy spectrum, the total dissipation within the range kT ≤ k ≤ kc is given by

Dν + γ̃D′′
ν =

3ν

16
CKε2/3

{(
4 + γ̃α4k4c

)
k
4/3
c −

(
4 + γ̃α4k4T

)
k
4/3
T

}
, (50)

where γ̃ = 1/2(1 + γ) has been introduced here for the sake of simplicity. At the
tail of the spectrum the following relation

H̃4 ≈ Dν + γ̃D′′
ν

ε
, (51)

represents the ratio between the total dissipation and the energy transferred from
scales larger than kT to the tail of the spectrum. Let us assume that H̃4 =
O(H4(Ĝkc

)) where the overall damping at the smallest grid scale, H4(Ĝkc
), is

given by Eq.(48). However, at this point it is more suitable to express it in terms
of the invariant Q. Recalling that the velocity field, u, is solenoidal (∇ · u = 0);
tr(S) = 0, the characteristic equation of S reads

det(λI − S) = λ3 +Qλ−R = 0. (52)

Moreover, since S is a symmetric tensor all the eigenvalues are real-valued, i.e. λi ∈
R, i = 1, 2, 3. They are solutions of the characteristic equation (52); therefore, the
discriminant of the cubic equation must be non-negative, i.e. −4Q3 − 27R2 ≥ 0.
Hence, the ratio |R|/−Q can be bounded in terms of the invariant Q, i.e. 0 ≤
|R|/−Q ≤

√
−4Q/27. Then, plugging this into Eq.(48) leads to

1 ≥ H4(Ĝπ) ≥ −
√

27

4

λ∆ν√−Q
. (53)

On the other hand, for a classical Kolmogorov energy spectrum, the ensemble
averaged invariant Q is approximately given by

< Q >= −1

4

∫ kc

0

k2E(k)dk ≈ − 3

16
CKε2/3k

4/3
c . (54)

Finally, combining Eqs.(53) and (54), the energy balance given by Eq.(51) results

−12λ∆νε√
CKε2/3k

4/3
c

. Dν + γ̃D
′′

ν . (55)

Then, plugging Eq.(50) and recalling that λ∆ = −3(π/h)2, kc =
√
3π/h and α ≈

k−1
c , the previous expression simplifies

1 .
C

3/2
K

32

{
(4 + γ̃)−

(
4 + γ̃

(
kT
kc

)4
)(

kT
kc

)4/3
}

. (56)

Since kc > kT we can consider that 4 ≫ γ̃(kT /kc)
4 to obtain a proper bound for γ̃,

γ̃ & 4

{
8C

−3/2
K −

(
1−

(
kT
kc

)4/3
)}

≈ 4
(
8C

−3/2
K − 1

)
. (57)

Hence, for a Kolmogorov constant of CK ≈ 1.58 [9] it leads to a lower limit of
γ̃ ≈ 12.1 ( γ ≈ 23.2). To confirm whether this is a proper estimation of γ̃ numerical
experiments are required. This is addressed in Section 4.
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3.4 Blending regularization modeling and LES

The proposed {CD}γ4 -regularization can be straightforwardly applied for (pseudo)
spectral methods. However, it may be quite cumbersome for other numerical meth-
ods such as finite volume, finite difference or finite element. In this context, it is
worth mentioning the possibility to blend regularization modeling with an eddy-
viscosity model for Large-Eddy Simulation (LES). Although they follow different
arguments, the idea of blending both approaches has been already explored by
Picano and Hanjalić [26] and Verstappen [40]. Shortly, LES equations result from
applying a spatial commutative filter, with filter length ∆, to the NS equations (1)

∂tu+ C(u,u) = Du−∇p−∇ · τ(u), ∇ · u = 0, (58)

where u is the filtered velocity and the subgrid stress tensor, τ(u), aims to approx-
imate the effect of the under-resolved scales, i.e. τ(u) ≈ u⊗ u− u⊗ u. Because of
its inherent simplicity and robustness, the eddy-viscosity assumption is by far the
most used closure model

τ(u) ≈ −2νeS(u), (59)

where νe denotes the eddy-viscosity. This introduces a damping to the smallest
grid scales that can be written as follows

HLES(Ĝkc
) = min {ν/(ν + νe), 1} . (60)

There is an obvious analogy between this and the formula given in Eq.(48). Ac-
tually just rearranging terms leads to a variant of the QR-model proposed by
Verstappen [39]

νe = λ−1
∆

|R|
Q

− ν. (61)

Furthermore, it is possible to use any other existing eddy-viscosity model to deter-
mine the overall damping, H4(Ĝkc

), by simply equating it to the overall damping

HLES(Ĝkc
) given in Eq.(60), i.e. H4(Ĝkc

) = HLES(Ĝkc
). Finally, it is possible to

introduce the additional dissipation introduced by the hyperviscosity term via a
modified eddy-viscosity, ν̃e, i.e.

1/hγ4(Ĝkc
) = min {ν/(ν + ν̃e), 1} , (62)

where hγ4(Ĝkc
) follows from Eqs.(41) and (40). It must be noted that despite

the amount of dissipation is the same, the hyperviscosity effect is actually lost
when using an eddy-viscosity model. Finally, combining all these relations leads
to ν̃e/νe = 1/2. In summary, the overall algorithm reads

Algorithm 2

1: Determine νe from an existing eddy-viscosity model, (e.g. Smagorinsky [30], WALE [22],
QR [39], Sigma [23], S3PQR [31])...

2: Determine the overall damping from Eq.(60): H4(Ĝkc
) = min {ν/(ν + νe), 1}

3: Compute the damping function from Eq.(41): fγ
4 (Ĝkc

) = 2H4(Ĝkc
)/(1 +H4(Ĝkc

))
4: Compute the modified eddy-viscosity: ν̃e = νe/2
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Hence, this leads to a blending between regularization of the convective term and
LES. Namely, instead of solving Eqs.(24), the new set of PDEs reads

∂tuǫ + Cγ4 (uǫ,uǫ) = Duǫ −∇pǫ +∇ · (2ν̃eS(uǫ)); ∇ · uǫ = 0, (63)

where the modified eddy-viscosity, ν̃e, is obtained from the Algorithm 2.

4 Numerical experiments

The {CD}γ4 -regularization has been proposed in the previous sections. In short,
the original NS equations (1) are replaced by the smoother approximation given
in Eqs.(24) where Cγ4 (uǫ,uǫ) and Dγ

4uǫ are given by Eqs.(20) and (25), respectively.
Then, the criterion to determine the damping factor of the discrete linear filter
at the smallest grid scale is given by Eq.(40). Finally, the value of γ̃ has been
approximately bounded by Eq.(57). In this section several numerical experiments
are carried out to assess the performance of the proposed method outlined in
Algorithm 1 and to check the adequacy of this bound.

Regarding the implementation of Cγ4 (uǫ,uǫ), it may be cumbersome because it
implies (i) the calculation of C6 given in Eq.(19) and (ii) the re-construction of dis-
crete linear filters that fulfill the property given in Eq.(36). The latter is especially
difficult since those filters should also be γ-dependent. Alternatively, we propose to
re-use the discrete linear filters proposed in [36] for the C4-regularization. Hence,
Eq.(28) needs simplification to be expressed in terms of f4 and not f6. Recalling
that f6 ≈ 1−α6|k|2|p|2|q|2 and f4 ≈ 1−α4(|k|2|p|2+ |k|2|q|2+ |p|2|q|2), for a wide
range of wavevectors we could simply assume that f6 ≈ 1. However, the foregoing
analysis is localized at the smallest grid scale, kc, where this assumption is not
correct. Therefore, hereafter we will simply consider that f6 ≈ f4. In this case,
the Eq. (41) that relates the damping function at the smallest grid scale, fγ4 (Ĝkc

),

with the overall damping, H4(Ĝkc
), must be replaced by

f4(Ĝkc
) =

(1 + γ̃)H4(Ĝkc
)

1 + γ̃H4(Ĝkc
)
, (64)

whereas hγ4(Ĝk) is still given by Eq.(31).

4.1 Burgers’ equation

The numerical simulation of the 1D Burgers’ equation

∂tu+ C(u, u) = 1

Re
∂2
xxu+ f, (65)

on an interval x ∈ (0, 2π) with periodic boundary conditions has been chosen as
a first test-case to assess the performance of the proposed {CD}γ4 -regularization
method. Despite its simplicity, important aspects of the 3D NS equations remain
(see [1], for instance). Note that now the convective term is given by C(u, u) = u∂xu.
In the Fourier space, it reads

∂tûk +
∑

p+q=k

ûpiqûq = − k2

Re
ûk + f̂k, (66)
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where ûk(t) denotes the k-th Fourier mode of u(x, t) ∈ R. The initial conditions are
set to ûk = k−1 whereas the forcing term vanishes f̂k = 0 for k > 1 and f̂1 forces
∂tû1 = 0. For details about the spectral numerical algorithm and the discrete
linear filters the reader is referred to our previous work [36]. Results obtained at
Re = 100 with and without regularization for kc = 30 are displayed in Figure 2
and compared with the DNS reference solution (solid line) obtained with kc = 300.
Clearly, the direct simulation without model with kc = 30 is not able to capture
the physics. At high wavenumbers, the energy is not dissipated enough; therefore,
it is reflected back towards the larger scales. The zoom in Figure 2 (top) shows that
the direct simulation with kc = 30 is substantially different from the DNS even
for low wavenumbers. Regarding the effect of γ̃, different values have been tested.
As expected, the C4 solution, that corresponds to γ̃ = 0, displays a hump at the
tail of the spectrum. This effect was already observed in [36]. Figure 2 (bottom)
shows how this undesirable effect tends to attenuate for increasing values of γ̃.
Even more importantly, it seems to reach an asymptotic solution for γ̃ & 100. This
is in a fairly good agreement with the estimation given by Eq.(57). Notice that
for the Burgers’ equation CK ≈ 0.452; therefore, it leads to γ̃ & 101.3. Similar
results are obtained for Re = 200 (see Figure 3). In this case, the DNS reference
solution has been computed with kc = 600. Again the full spectrum of the DNS
solution is not depicted for the sake of clarity. As expected, in this case the hump
at the tail of the spectrum of the C4 solution is even more evident. Then, the
numerical solution is asymptotically improved for successively higher values of γ̃
until γ̃ = 100 (see Figure 3, bottom). Regarding the dependence with the numerical
resolution, Figure 4 displays the numerical solutions for both Re-numbers and
different values of kc. It must be noted that a small pile-up of energy at the
smallest scale, kc, is observed. This spurious effect is due to the fact that the
overall damping effect in Eq.(40) has been derived for the semi-discrete equations,
i.e. without considering the time-integration scheme. In this way, the energy at the
highest mode is still able to grow. This issue was already noticed in [19] where C4-
regularization was tested for a Burgers’ equation using an explicit first-order Euler
scheme. An appropriate modification of Eq.(40) would be necessary to remove
this spurious effect accordingly to the time-integration scheme. Practically, this
modification has a negligible effect to the rest of scales and makes the algorithm
unnecessarily complicated. For these reasons, in this work we decided not to include
this modification.

4.2 Forced homogeneous isotropic turbulence

The numerical simulation of forced homogeneous isotropic turbulence has been
chosen as the second test-case. In this case, the governing equations are solved
with a pseudo-spectral code using the classical 3/2 dealiasing rule and an ex-
plicit second-order Adams-Bashforth scheme is used for time-integration. Filters
proposed in our previous work [36] are applied in the spectral space. The total
amount of energy in the first two modes is kept constant following the approach
proposed in [5].

Firstly, the Taylor micro-scale Reynolds number is set to Reλ ≈ 72. Figure 5
(top) displays the results for a box size of 163 for different values of γ̃ from 0 up to
30. Results without model are shown for box size of 323 (the simulation is unstable
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Fig. 2 Top: energy spectra of the steady-state solution of the Burgers’ equation at Re = 100
with and without modeling, for kc = 30. Direct comparison with the DNS reference solution
(solid line) with kc = 300. Bottom: zoom of the tail of the spectra for different values of γ̃
from 0 to 100.

for 163 due to the fact that the pseudo-spectral convective operator is not skew-
symmetric and hence strict conservation of kinetic energy is not guaranteed [2]). As
expected, the original hump displayed for γ̃ = 0 attenuates for increasing values of
γ̃. Moreover, the lower bound for γ̃ given by Eq.(57) is in a fairly good agreement
with these numerical tests. Even more importantly, for γ̃ bigger than a certain
value, the results are virtually independent on the value of γ̃.

Figure 5 (bottom) displays LES results obtained for a box size of 643 at
Reλ ≈ 202 together with results without model using a box size of 2563. In this
case, the energy-containing and dissipative scales are clearly separated by an iner-
tial range. Again, the hump at the tail of the spectrum attenuates for increasing
values of γ̃. More importantly, the inertial range is well predicted only for those
cases with γ̃ & 14, in relatively good agreement with the lower bound given by
Eq.(57). Finally, to assess the validity of Algorithm 2, where the blending be-
tween regularization modeling and LES is proposed, the same test-case has been
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Fig. 3 Top: energy spectra of the steady-state solution of the Burgers’ equation at Re = 200
with and without modeling, for kc = 30. Direct comparison with the DNS reference solution
(solid line) with kc = 600. Bottom: zoom of the tail of the spectra for different values of γ̃
from 0 to 100. The legend is the same as in Figure 2.

solved using this approach. Results are shown in Figure 6 together with the re-
sults obtained using a pure LES (denoted as LES). The difference between both
approaches is that in the pure LES the convective term is not regularized and the
value for the eddy-viscosity is νe instead of ν̃e (see Algorithm 2). It is observed
that the proposed approach (denoted as Cγ

4 +LES in Figure 6) has a positive im-
pact in the results: the excess of energy in the inertial range decreases despite the
lower dissipation introduced by the eddy-viscosity model. This effect is attributed
to the fact that the regularization of the non-linear convective term reduces the
dynamical complexity of the original NS equations.
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Fig. 4 Energy spectra of the steady-state solution of the Burgers’ equation at Re = 100 (top)

and Re = 200 (bottom) with C4 and {CD}γ=100
4 for kc = 30 ,40, 50 and 60. Direct comparisons

with the DNS reference solution (solid lines).

4.3 Turbulent channel flow

To test the performance of the proposed model with the presence of walls, a turbu-
lent channel flow has been considered. In this case, the code is based on a fourth-
order symmetry-preserving finite volume discretization [41] of the incompressible
NS equations on structured staggered grids. A second-order self-adapting explicit
scheme [34] is used for the time integration and the pressure-velocity coupling is
solved by means of a classical fractional step projection method. For details about
the numerical algorithms and the verification of this code the reader is referred to
Gorobets et al. [14].

Both previous test-cases were solved using a (pseudo) spectral method where
the {CD}γ4 -regularization can be easily applied. However, as mentioned in Sec-
tion 3.4, it may be quite cumbersome for a finite volume method. Therefore, in
this case, we use the blending between regularization modeling and LES (see Al-
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Fig. 5 Three-dimensional energy spectra at Reλ ≈ 72 (top) and Reλ ≈ 202 (bottom) for
different values of γ̃ from 0 up to 30.

gorithm 2 in Section 3.4). In this regard, the eddy-viscosity, νe, is computed using
the S3QR-model recently proposed by Trias et al. [31]. Namely,

νS3QR
e = (Cs3qr∆)2Q−1

GGT R
5/6
GGT

, (67)

where Cs3pq = 0.762, QGGT and RGGT are the second and third invariants of the
symmetric second-order tensor GG

T and G is the gradient of the resolved veloc-
ity field, i.e. G ≡ ∇u. Likewise the Vreman’s model [42], it is also based on the
invariants of the second-order tensor GG

T . However, it has the proper cubic near-
wall behavior. Apart from this, it fulfills a set of desirable properties (positive-
ness, locality, Galilean invariance, and automatically switches off for laminar, 2D,
and axisymmetric flows), it is well-conditioned, has a low computational cost and
no intrinsic limitations for statistically inhomogeneous flows. Moreover, regarding
the spatial discretization of the eddy-viscosity model, the approach proposed by
Trias et al. [32] has been used.

Figures 7 and 8 show the performance of the proposed approach for a turbulent
channel flow at Reτ ≈ 395 (a Reynolds number of Reb = 13760 based on the
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Fig. 6 Three-dimensional energy spectra at Reλ ≈ 202 for both the blending between regu-
laritzation and LES (denoted as Cγ

4 +LES) proposed in Section 3.4 and a pure LES (denoted
as LES). Results denoted as {CD}γ4 correspond to the simulation shown in Figure 5 (bottom)
with γ̃ = 30.

channel width and the bulk velocity is imposed for all the simulations). The results
are compared with the DNS data of Moser et al. [21]. The dimensions of the channel
are taken equal to those of the DNS, i.e. 2π × 2 × π. The computational grid is
reduced in a significant manner; namely, the DNS was performed on a 256×193×
192 grid whereas the modeled results have been obtained with a 323 mesh, i.e. the
DNS used about 290 times more grid points than the present simulations. They
are uniformly distributed in the stream-wise and the span-wise directions whereas
the wall-normal points are distributed using a piece-wise hyperbolic sine functions.
For lower-half of the channel the distribution of points is given by

yj = sinh(γj/Ny)/ sinh(γ/2) j = 0, 1, ..., Ny/2, (68)

where Ny denotes the number of grid points in the wall-normal direction. The
stretching parameter, γ, is taken equal to 7. Then, the grid points in the upper-
half are computed by means of symmetry. With this distribution and Ny = 32,
the first off-wall grid point is located at y+ ≈ 2.6, i.e. inside the viscous sublayer
(y+ < 5). In this case, the subgrid characteristic length is computed as the cube
root of the cell volume, i.e. ∆ ≡ (∆x∆y∆z)1/3. Averages over the four statistically
invariant transformations (time, stream-wise and span-wise directions and central
plane symmetry) are carried out for all the fields. The standard notation 〈·〉 is
used to denote this averaging procedure. The averaging over time starts after a
start-up period. This period as well as the time-span over which the results are
averaged, 60 time-units (based on the skin friction velocity, uτ , and the channel
width), are identical for all the simulations presented here.

The results displayed in Figure 7 are in good agreement with the DNS data.
To illustrate the contribution of the model in improving the quality of the solu-
tion, the results obtained with a 963 mesh without model, i.e. νe = 0, are also
shown. Moreover, to study the effect of the regularization of the convective term,
results are also compared with a pure LES using the same mesh. That is, results



20 F.X.Trias et al.

0

2

4

6

8

10

12

14

16

18

20

22

1 10 100

y+

DNS
No Model 963

LES
C4

γ +  LES

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400

y+

Fig. 7 Results for a turbulent channel flow at Reτ ≈ 395 obtained with a 323 mesh for both
the blending between regularitzation and LES (denoted as Cγ

4 +LES) proposed in Section 3.4
and a pure LES (denoted as LES). Solid line corresponds to the DNS by Moser et al. [21]
and crosses correspond to a 963 mesh without model, i.e. νe = 0. Top: average stream-wise
velocity, 〈u〉. Bottom: root-mean-square of the fluctuating velocity components (from top to
bottom, urms, wrms and vrms, respectively.)

denoted as Cγ
4 + LES in Figure 7 have been obtained by solving Eq.(63) using

the Algorithm 2 whereas pure LES results (denoted as LES) have been obtained
by solving the LES equations (58). Therefore, differences of the latter approach
respect to the former are twofold: the convective term is not altered (smoothed)
and the value for the eddy-viscosity is νe instead of ν̃e (see Algorithm 2). The
proposed approach has a positive impact for both the mean flow solution and the
turbulent statistics. Regarding the mean flow (see Figure 7, top), the solution is
significantly improved in those regions where the model is really switch on, i.e. the
buffer layer ( 5 < y+ < 30 ) and the log-law region ( y+ > 30 ), whereas the
quality of the solutions in the viscous sublayer (y+ < 5) is very similar for all
simulations due to the rescaling in wall-units. Results for the root-mean-square of
the fluctuating velocity components (see Figure 7, bottom) are also improved for
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all three components. In this regard, the most relevant improvement corresponds
to the stream-wise velocity fluctuations: they are slightly damped compared with
the pure LES solution getting closer to the DNS reference data. Only minor differ-
ences are observed for the span-wise and wall-normal velocity fluctuations: both
are slightly increased in the buffer layer and in the first part of the log-law re-
gion. Finally, results of the skin friction coefficient, Cf , versus the position of the
first off-wall grid point are displayed in Figure 8. It is remarkable that the results
obtained without modeling are quite far off the DNS solution despite having the
first grid point at y+1 . 1. Using a mesh that it is three times coarser, models are
able to improve the prediction of Cf , being the proposed approach (Cγ

4 + LES)
significantlly more accurate than a simple LES. It is important to note that for
a given mesh the proposed approach has a lower computational cost. Despite the
computation of Cγ

4 in Eq.(63) implies an additional cost (around 10%), this is
compensated by the significant reduction of the number of time-steps to complete
the simulation. This reduction of the total number of time-steps is mainly due
to the fact that larger time-steps can be used because the actual values of the
turbulent viscosity are smaller for the blended approach.

5 Concluding remarks and future research

Since DNS simulations are not feasible for real-world applications, the {CD}γ4 -
regularization of the NS equations has been proposed as a simulation shortcut:
the convective and diffusive operators in the NS equations (1) are replaced by the
O(ǫ4)-accurate smooth approximation given by Eq.(20) and Eq.(25), respectively.
The symmetries and conservation properties of the original convective term are
exactly preserved. Doing so, the production of smaller and smaller scales of motion
is restrained in an unconditionally stable manner. In this way, the new set of
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equations is dynamically less complex than the original NS equations, and therefore
more amenable to be numerically solved. The only additional ingredient is a self-
adjoint linear filter whose local filter length is determined from the requirement
that vortex-stretching must be stopped at the scale set by the grid. This can be
easily satisfied in spectral space via Eq.(40) provided that discrete filter satisfies
Eq.(36), i.e. the triadic interactions at the smallest scale are virtually independent
of the interacting pairs. This was addressed in detail in a previous work [36].
However, in physical space it becomes more cumbersome. To circumvent this, a
blending approach between the regularization of the non-linear convective term
and eddy-viscosity model for LES has been proposed.

In the present paper, the parameter γ of Eq.(24) has been approximately
bounded by assuming a Kolmogorov energy spectrum. This has been addressed in
Section 3.3 where the following bound has been determined:

γ̃ & 4
(
8C

−3/2
K − 1

)
, (69)

where γ̃ = 1/2(1 + γ) and CK is the Kolmogorov constant. Simulations for a 1D
Burgers’ equation and for homogeneous isotropic turbulence at different Reynolds
numbers seem to confirm the adequacy of the bound given by Eq.(69). In this way,
the proposed method constitutes a parameter-free turbulence model. Apart from
this, the above-mentioned blending approach between regularization and LES have
been successfully tested for a turbulent channel flow. To do so, the recently pro-
posed S3QR-model [31] has been used to compute the eddy-viscosity. Hence, the
list of desirable properties (positiveness, locality, Galilean invariance, proper near-
wall behavior, and automatically switches off for laminar, 2D, and axisymmetric
flows) of the S3QR model are inherited by the blending approach proposed here.
Therefore, the overall approach seems to be well suited for engineering applica-
tions. In this regard, several issues may significantly affect their performance. The
proper calculation of the subgrid characteristic length on unstructured grids or
the (global dynamic?) determination of model constant are examples thereof. All
these issues are part of our future research plans to test these models for complex
flows.
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