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Abstract: A sample of healthy wind turbines from the same wind farm with identical sizes and designs
was investigated to determine the average vibrational signatures of the drive train components
during normal operation. The units were variable-speed machines with three blades. The rotor
was supported by two bearings, and the drive train connected to an intermediate three-stage
planetary/helical gearbox. The nominal 2 MW output power was regulated using blade pitch
adjustment. Vibrations were measured in exactly the same positions using the same type of sensors
over a six-month period covering the entire range of operating conditions. The data set was
preliminary validated to remove outliers based on the theoretical power curves. The most relevant
frequency peaks in the rotor, gearbox, and generator vibrations were detected and identified based on
averaged power spectra. The amplitudes of the peaks induced by a common source of excitation were
compared in different measurement positions. A wind speed dependency of broadband vibration
amplitudes was also observed. Finally, a fault detection case is presented showing the change of
vibration signature induced by a damage in the gearbox.
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1. Introduction

The rapid development and growth of the wind energy industry has resulted in the installation of
a significant fleet of onshore and offshore wind turbines across the world. The current promotion of
wind electricity seems to indicate that more wind farms will be required in the near future, comprising
units with larger power outputs that are mainly located offshore. Therefore, wind farm profitability
must be increased by ensuring that wind turbines (WT) operate at a high capacity. Thus, proper
operation and maintenance (O&M) is critical for maximizing the returns on the wind investments and
for optimizing the total cost of ownership (TCO). This strategy seeks to minimize the production costs
per unit of energy generated and to improve the turbine performance [1].

In this sense, condition monitoring (CM) systems have been developed to detect anomalies with
the goal of minimizing machine downtime and maximizing availability. The early detection of faults
is crucial for performing predictive (condition-based) maintenance on units in a wind farm [2–6].
Nevertheless, the complexity of the WTs, which are subjected to variable loads and speeds and are
made with flexible components, such as the blades [7], challenges the effectiveness of such systems.
Among various methods [8], assessing a machine’s condition based on its measured vibrations is one
of the most reliable techniques, as the vibration levels of the wind turbines significantly influence the
stress and fatigue of the components. This method has been extensively utilized in rotating machines,
producing effective results in various types of industrial machines. However, the traditional processes
and procedures that were developed in other industries, such as the oil and gas, hydropower, or
nuclear power industries, are not valid for the wind industry, as the machine design, operation, and
environment differ significantly.
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Initially, relevant operation parameters were continuously monitored using the integrated
supervisory control and data acquisition (SCADA) system [9,10]. Then, acquiring and measuring
vibrations at high frequency rates using dedicated systems was found to be more reliable for evaluating
the states of the various components of the drive train and the nacelle/tower system [11–13]. In part,
this method was utilized due to the multiple drive train rotating speeds and the rapid evolution of
their incipient failures. Recently, new signal processing methods have been developed and tested to
overcome the difficulty of applying traditional vibration analyses [14–16], largely because WTs are
submitted to complex sources of vibration. These excitations are due to wind loads on the rotor blades
and the tower, the inertial forces of the rotating parts, the natural frequencies of various components,
the mechanical forces in the power transmission system (including gear meshing processes) and the
electromagnetic forces acting on the generator. Moreover, the rotor shaft turns at low speeds, the wind
loads are stochastic, and the regulation system also induces transient conditions and unsteadiness.

To establish a CM system that is based on vibrations, the only reference that is currently available is
the Association of German Engineers (VDI) standard VDI 3834 [17]. This standard provides criteria and
recommendations regarding the measurement and evaluation of the mechanical vibrations of onshore
wind energy turbines with gears and components. However, the suggested values for evaluating
the vibration levels are not suitable for the early detection of faults. Thus, if threshold values are
exceeded, specific causes cannot be identified in detail. The vibratory behavior of a turbine depends
on the manufacturer, design, and installation type. In all cases, it is imperative to account for the entire
wind turbine, including the drive train components, rotor blades, nacelle, and tower. The resulting
vibration behavior depends on the individual response of each part, the interactions throughout the
entire wind energy installation, the resonance conditions, the types and ranges of excitation or loads,
and the operating scenario.

The main objective of this study is to determine whether the vibration content of the drive train
components measured during steady conditions is repetitive and if it follows a defined pattern that is
based on the entire range of operating conditions. This objective is achieved by comparing WTs with
the same design and characteristics. These WTs have been monitored in exactly the same positions
using the same type of CM system over a sufficiently long period of time. The analysis steps are
as follows:

1. detect and identify the most relevant frequency peaks using the median power spectrum at each
measurement position based on the particular drive train kinematics;

2. determine whether differences exist between the measurement points and assess the sensitivity
to different sources of excitation calculating the mean peak amplitudes and their deviations; and,

3. establish the dependency of the vibration amplitudes on the wind speed.

The identification of the WT vibration signature is necessary to guarantee a successful CM system.
A well-designed WT in good condition will exhibit a certain level of vibration depending upon the
machine design and operating conditions. This information must be used as a reference to easily detect
the occurrence of new frequency peaks or variations in existing frequencies. Frequency variations
indicate changes in the machine condition due to incipient failures or increased component wear.
Trend analyses of the narrow band frequencies around these peaks can be used to manage maintenance
strategies and minimize or eliminate problems.

2. Machines and Measurement System Description

2.1. Wind Farm Configuration

The studied WTs are located at the same onshore wind farm. Of the 20 total WTs, we selected
seven machines with the same speed ratio and manufacturer (numbers 1, 2, 4, 7, 11, 13, and 18). Their
relative locations in the farm are illustrated in Figure 1, which shows the units from a topographic
view. The minimum distance between any pair of units is more than 200 m.
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2.2. Wind Turbine Specifications

Each WT consists of a generator coupled to a rotor via a gearbox. The conical tubular style tower
is constructed from steel, while the foundation is made of concrete. The rotor shaft is supported by
two bearings separated from the gearbox. All of the wind turbines use the same 50 Hz, four-pole
generator driven by a three-stage planetary-helical gearbox (gearbox with one planetary stage and
two additional parallel-shaft stages). Four different gearbox models are installed among the units.
In addition, the turbines have horizontal-axis rotors with three blades, totaling 90 m in diameter. The
WTs are variable-speed machines that use rotor blade adjustment pitch to regulate the output power.
The power per unit is 2000 kW for a rated rotor speed of 14.5 rpm and a rated wind speed of 12 m/s.
The cut-in and cut-out wind speeds are 4 and 25 m/s, respectively. Therefore, the rotor rotational
speed can range from 9 to 14.9 rpm.

2.3. Drive Train Kinematics

The drive train kinematics must first be determined to identify the basic mechanical vibrations in
a rotor-dynamic system, which include shaft imbalance and gear meshing. Outlines of the gearbox
configuration for the planetary, intermediate, and high speed stages are provided in Figure 2. The
rotor shaft is the planetary gearing input, while the output is the low speed shaft. The rotor carries the
three planet gears that revolve around the sun gear. The planet gears also mesh with an outer ring
gear. For the two parallel axis stages, the low speed shaft connects with the intermediate shaft, which
in turn connects with the high speed shaft.

The angular rotation frequency of a shaft, f (Hz), is obtained based on the rotational speed,
N (rpm), while using Equation (1).

f =
N
60

. (1)

The nomenclature used for the rotation frequencies of the shafts and planets relative to the rotor
is given in Table 1. The particular kinematics of the studied gearbox can be described based on the
number of gear teeth indicated in Table 2 and outlined in Figure 2.
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Table 1. Nomenclature adopted to identify the angular rotation frequencies of the drive train shafts.

Rotor Planet Low Speed Intermediate High Speed

f 0 fP f 1 f 2 f 3

Table 2. Nomenclature and numbers of teeth for each gear.

Sun Planet Ring Gear 1 Gear 2 Gear 3 Gear 4

ZS ZP ZR Z12 Z21 Z23 Z32
18 34 87 70 16 84 19

As a result of the gear process, typical vibrations at the gear mesh frequencies are generated in the
gearbox. The gear mesh frequencies of the planetary, intermediate, and high speed stages have been
named gmfP, gmf 12, and gmf 23, respectively. The main rotation frequencies and gear mesh frequencies
are indicated in Table 3 as a function of the rotor frequency, f 0. These frequencies can be calculated
using Equations (2)–(8).

f1 = f0
Zs + ZR

Zs
. (2)

fP =
Zs

ZP
( f1 − f0). (3)

f2 =
Z12

Z21
f1. (4)

f3 =
Z23

Z32
f2. (5)

gm fP = ZP fP. (6)

gm f12 = Z12 f1. (7)

gm f23 = Z23 f2. (8)

Table 3. Rotation and gear mesh frequencies as functions of the rotor frequency, f 0.

Rotation Frequency [Hz] Gear Mesh Frequency [Hz]

f 0 fP f 1 f 2 f 3 gmfP gmf 12 gmf 23
1 f 0 2.56 f 0 5.83 f 0 25.52 f 0 112.83 f 0 86.97 f 0 408.3 f0 2143.6 f 0
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2.4. Specifications of the Vibration Monitoring System

The wind turbines are built using an integrated system that monitors the main operating
parameters, including wind speed, power output, rotating velocity, blade pitch angle, and other
factors. The wind speed is measured with ultra-sonic anemometers located on the roof of the nacelle.
The data for all the turbines in the wind farm are stored in a SCADA system. Measurements are
registered every 10 min. The SCADA data sets are available for analysis.

A CM system based on vibrations is installed in each wind turbine. This system conditions and
registers the signals from various accelerometers that are mounted on the drive train components. Two
analogue inputs monitor the output power and the generator rotating speed. The system is remotely
controlled via TCP-IP (Transmission Control Protocol-Internet Protocol), and the measured data are
downloaded at fixed intervals.

This study focused on seven industrial accelerometers mounted along the drive train components
in the positions indicated in Figure 3. Sensors S1–3 are specifically designed for low speed applications.
The remaining sensors are typical for rotating machinery applications. Two sensors are mounted in
radial directions on each rotor bearing, three sensors are mounted in radial and axial directions on the
gearbox casing, and two sensors are mounted in radial directions on the generator. The positions of
the sensors were specifically selected to monitor all shafts, bearings, and gears, as indicated in Table 4.
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Table 4. Description of the sensor positions and detection objectives.

Sensor Location Orientation Detection Objective

S1 Rotor Radial Front bearing
S2 Rotor Radial Rear bearing
S3 Gearbox Vertical Planetary stage
S4 Gearbox Vertical Low speed–intermediate stage
S5 Gearbox Axial Intermediate–high speed stage
S6 Generator Radial Front side
S7 Generator Radial Rear side

2.5. Description of the Measurements

The raw time signals from each sensor are digitized and processed using a digital signal processor
(DSP) within the online CM system. The DSP calculates the frequency spectrum. Subsequently,
the last measured time signal and the corresponding average frequency spectrum are saved in the
data memory.

In addition, the CM system can calculate the frequency content of a vibration signal with
user-defined broad band and narrow band characteristic values. The root mean square (RMS) value,
ARMS, is calculated from the frequency spectrum by adding the squares of the amplitudes of N values
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over a defined frequency range between f 1 and f 2 and then taking the square root of this value, as
indicated in Equation (9).

ARMS =

√
1
N ∑ f1− f2

A2. (9)

The CM system processes different measurements depending on the input signals. In our case,
the baseband of the calculated frequency spectrum has been selected based on the major monitored
frequencies, which are dependent on the corresponding shaft rotation speeds, as indicated in Table 1.
Consequently, the adequate sampling frequency, fs, the cut-off frequency, fcutoff, the resulting frequency
resolution, ∆f, and the reference shaft frequency have been set for each measurement, as indicated in
Table 5.

Table 5. Measurements, sensors, sampling frequencies, cut-off frequencies, frequency resolutions, and
reference frequencies.

Measurement Sensor fs [Hz] fcutoff [Hz] ∆f [Hz] Reference Frequency

Rotor Bearing 1 S1 300 100 0.073 f0

Rotor Bearing 2 S2 300 100 0.073 f0

Gearbox 1 S3 600 200 0.147 f0

Gearbox 2 S4 3000 1000 0.732 f1

Gearbox 3 S5 6000 2000 1.465 f2

Generator 1 S6 6000 2000 1.465 f3

Generator 2 S7 6000 2000 1.465 f3

Gearbox 4 S5 30 10 0.007 f0

Measurements in the seven WTs were conducted for a continuous period of six months. Therefore,
more than 12,000 characteristic values and 150 spectra are available for each unit.

3. Data Validation

To guarantee that the investigated wind turbines were not affected by malfunctions during
the study period, the steady-state power output curves from the SCADA data set were compared
with those that were provided by the manufacturer following the procedure detailed in Escaler and
Mebarki [18]. The results of this comparison verified that the seven WTs were presumably operating
correctly and under optimal conditions.

Because the CM system only registers the power output and the speed of rotation at the moment
of the vibration measurement, the 10 min average wind speed SCADA data have been used to estimate
the corresponding wind speed at the instant of the measurement. The timestamps that are contained
in both databases have been used to interpolate the SCADA values.

The validity of the interpolated values of wind speed, as representatives of the instantaneous
values at the moment of the vibration measurement, was verified prior to their use. This verification
is necessary given the unsteady nature of the wind. Wind gusts and wind turbulence are among the
major causes of fluctuations in operating conditions and vibrations.

To identify and remove the vibration values that were not associated with steady wind conditions,
the power output was plotted as a function of the estimated instantaneous wind speeds and compared
with the upper and lower percentiles (5 to 95%) of the mean power curves, which were previously
calculated from the SCADA data set. Then, only the vibration measurements associated with the
output power levels plotted between the estimated percentiles were used for wind speeds from 4 to
12 m/s, meanwhile at wind speeds greater than 12 m/s, only those measurements with output power
values ranging from 1900 to 2100 kW were used, as described in Escaler and Toufik [18].
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4. Results

To identify the main frequency components of a vibration spectrum for a given sensor
measurement (Table 5), the spectrum frequency axis, f, has been divided by the corresponding
instantaneous rotation frequency, fi, of the reference shaft (i = 0, 1, 2, or 3) at the time of the measurement.
From the spectra of all WTs with normalized frequency axes, the central amplitude value, or the 50th
percentile, has been plotted in black combined with a grey area denoting the values that lie between
the 25th and 75th percentiles. The median was used to compute average amplitude values, because
it is not appreciably influenced by outlier values and it is generally more robust than mean-based
estimates. Thus, the 50th percentile spectra and the percentiles obtained for each measurement are
plotted in Figures 4–8 and are discussed in the following sections.
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4.1. Rotor Vibration Signature Analysis

The vibratory signatures of the vibrations measured on both rotor bearings are plotted
in Figures 4 and 5, reaching up to 600 times f 0. In both bearings, a frequency peak at 3f 0, which
is called the blade passing frequency, fB, is clearly observed. This vibration is due to tower dam
excitation, which occurs once per revolution due to the short-term collapse of the aerodynamic forces
at the blade when the blade approaches the tower.

In the front rotor bearing closer to the hub (Figure 4), the low frequency content is dominated by f 0,
fB, and several harmonics of fB. In the high frequency range, f 3 and 2f 3 are also present, corresponding
to the generator shaft. Finally, the gear mesh frequency of the planets, fP, and its harmonics appear
with sidebands at fB, as does the gear mesh of the low speed-intermediate stage gmf 12.

In the rear rotor bearing closer to the gearbox (Figure 5), the vibration peaks and amplitudes
are similar to those that were observed in the front bearing. Nevertheless, the harmonic content of fB
decreases, as only 2fB is present.

4.2. Gearbox Vibration Signature Analysis

The vibratory signatures of the vibrations that were measured in the gearbox casing are plotted in
Figure 6. In the vertical position close to the planetary gear (top graph), the main peaks are associated
with gmfP (up to its 6th harmonic), f 3, 2f 3, and gmf 12. In general, the frequency is analogous to those
measured in the rotor bearings.

With a baseband up to 600 times f 1, the highest peak in the vertical position close to the
intermediate shaft bearing (middle graph) corresponds to the gear mesh frequency gmf 23 of the
intermediate-high speed stage. At lower levels, peaks that are associated with gmf 12 (up to its 6th
harmonic), gmfP, and f 3 can also be found.

With a baseband up to 440 times f 2, the highest peaks in the axial position close to the generator
shaft (bottom graph) are again gmf 23, 2gmf 23, and 3gmf23. The gmf 12 and its harmonics up to 6gmf 12

are also measured.

4.3. Generator Vibration Signature Analysis

The vibratory signatures of the vibrations measured on the generator supports are plotted in
Figure 7. In both the front and rear positions relative to the gearbox, the most remarkable peaks are the
high speed shaft frequency f 3 and a harmonic component at 84 times f 3 with sidebands at f 3. The latter
is not a gear mesh frequency; therefore, it may be provoked by electromagnetic excitation. Peaks can
be observed around 84f 3; however, these peaks cannot be attributed to a known kinematic condition
that is associated with the gearbox or shaft.

4.4. Tower/Nacelle Vibration Signature Analysis

The vibratory signature of the low frequency vibrations measured on the gearbox casing close to
the generator in the axial direction are plotted in Figure 8, reaching up to 15 times f 0. This measurement
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quantifies the tower/nacelle vibrations, as suggested by Escaler and Mebarki [18]. The predominant
peak is fB; however, individual values exhibit significant separation throughout the spectrum. The
other peaks correspond to f 0, 2fB, and 3fB.

5. Discussion

5.1. Comparison of Mean Vibration Amplitudes and Deviations

The widths of amplitude values between the 25th and the 75th percentiles were significant for
most of the frequency peaks that were identified in the vibration signatures of all the measurements.
This result indicates significant spread or variability exists in the spectral values collected in this study.
Therefore, dispersion was quantified for the most relevant peaks, while the mean spectrum and its
standard deviation were calculated from all the WT measurements. The corresponding results are
plotted in Figures 9 and 10, with bars showing the average values and vertical lines showing the
positive deviations.
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the low speed side of the drive train.

Similar vibration peaks and levels are measured in both rotor bearings, although more harmonics
that are associated with the blade passing frequency are present in the front bearing close to the hub,
as shown in Figure 9. The generator frequency and the planetary gear frequency were also measured
and their amplitudes exhibit significant standard deviations. The gearbox 1 measurement, which was
located on the low speed side of the drive train, detected f 3 and gmfP, but at lower amplitudes than on
the rotor bearings. This gearbox measurement detects up to the 6th harmonic of gmfP, as it has a larger
frequency band than the other two rotor bearing measurements. In general, the maximum vibration
levels are dominated by f 0, fB, and the harmonics of fB in the rotor bearing vibrations.
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The two measurements gearboxes 2 and 3, corresponding to sensors S4 and S5 located on the high
speed side of the gearbox, detect the gear mesh frequencies of the intermediate and high speed stages,
as shown in Figure 10. The baseband selected for the gearbox 2 measurement (vertical orientation)
encompasses gmf 23 but not the associated harmonics. This measurement also detects gmfP and f 3.
The larger frequency band of the gearbox 3 measurement (axial orientation) detects the harmonic
contents of gmf 23 and gmf 12. Note that the mean amplitudes of the peaks are similar in both gearbox
measurements. Among all of the peaks, the highest amplitudes are observed for gmf 23. For this
meshing frequency, the standard deviation of the amplitudes is also significant.

Significant standard deviation values have also been found for fB in the gearbox 4 measurement,
which monitors the tower vibrations, and for 84f 3 in both generator measurements, which monitor the
electromagnetic vibrations.

5.2. Wind Speed Amplitude Dependency

To investigate the spread of individual amplitude levels observed in the majority of the frequency
peaks, the calculated characteristic values (based on Equation (9)) of the measurement basebands
(Table 5) have been analyzed as a function of wind speed. These values represent the broadband RMS
amplitudes obtained by adding all the individual frequencies present in the spectrum. In this case,
data from three of the seven WTs is used, because they utilize exactly the same gearbox model. The
preliminary data validation that is discussed in Section 3 was also applied.

The vibration amplitudes for one measurement in the rotor bearing, one in the gearbox and one
in the generator are plotted in Figure 11. The amplitudes are clearly dependent on the operational
conditions, as highlighted in all graphs. Moreover, it is confirmed that the data trend is dependent on
the component being measured.

For example, in the front rotor bearing, the data points exhibit a linear trend with a positive
constant slope. In the high-speed side of the gearbox casing and in an axial direction, the data trend is
not linear. A rapid amplitude increase is observed at low wind speeds up to the rated wind speed,
peaking at approximately 7 m/s. Generally, the shape of the data resembles the output power curve
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of the turbine. From the rated speed to the cut-out speed, the data amplitude is relatively constant.
Finally, in the rear side of the generator, the data trend is also similar to the turbine power curve;
however, the generator data have a different slope than the gearbox data.
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Figure 11. Broad band RMS vibration amplitudes as a function of wind speed.

In Figure 12, it is observed that the median and the percentiles of vibrations that were measured
on the rear rotor bearing of two WTs are very similar. In fact, it is confirmed that the same happens for
the rest of WTs and measurements. Consequently, it can be assumed that the large variability found is
mainly due to the operating conditions. At low wind speeds, the spectra have low amplitudes and
they are below the 25th percentile values. At high wind speeds, the spectra have high amplitudes
above the 75th percentile values. Therefore, high reference values do not indicate faults, they just show
the vibration response to stronger loads on the drive train components.
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The information provided by these plots highlights the difficulty of protecting variable-speed and
variable-pitch machines while using the CM system, because the amplitudes of the vibrations strongly
depend on the operation conditions. Nevertheless, this study confirms the feasibility of obtaining
statistical information that represents the normal range of vibration levels for a set of similar WTs.
With these vibration limits, a more precise and reliable assessment of the machine vibration response
can be achieved.
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Figure 12. Median spectrum (black line) and amplitude levels between 25th and 75th percentiles (grey
region) of the vibrations measured on the rear rotor bearing of two wind turbines (WTs). A spectrum
above the 75th percentile corresponds to high wind speeds, and a spectrum below the 25th percentile
corresponds to low wind speeds.

6. Fault Detection Case

A fault on the drive train and its symptoms that is based on the vibration signature of these
turbines is presented here. The tooth of gear 2 in the intermediate shaft of a wind turbine (see Figure 2b)
was broken. This can be seen in the photograph shown on Figure 13 taken during inspection. This fault
could be predicted and repaired prior to a machine unexpected down time based on the amplitude
evolution of the corresponding gear mesh frequency, gmf 12, and its first three harmonics.

In Figure 14, the reference mean vibration acceleration RMS values of the gear mesh frequency
peaks (Figure 10) and the corresponding mean values measured in the wind turbine with progressive
levels of gearbox damage are compared. The mean values presented in Figure 14 correspond to
different periods of time along the damage evolution. Each value has been calculated from a set of
around 300 measurements taken during an interval of four days. It must be noted that, during those
days, the wind turbine was operating normally without any restriction.

It can be seen that all the amplitudes of the gear mesh frequency peaks increased simultaneously
up to twice the reference levels when the gear damage started to develop. The peaks continued to
increase, as the damage developed, reaching their maximum amplitudes for advanced damage. Finally,
after repairing the fault, the amplitudes returned to their original levels.

To observe the change of vibratory signature induced by the fault, one spectrum measured at full
load during a healthy period of time has been compared with one spectrum that was measured during
the initial stages of damage, as shown in Figure 15. It can be clearly seen that all of the frequency peaks
related to the gear meshing suffer a significant amplitude increase. Moreover, additional frequency
peaks appear which are sideband modulations.
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Therefore, it is demonstrated that knowing a reference vibration signature with a mean value
and the possible range of variation due to operating conditions is a valuable tool to monitor changes
of the dynamic behavior of the drive train components induced by faults. To confirm the abnormal
behavior, the evolution with time of the anomalous levels must be tracked. As the damage develops,
these values will rise and a machine inspection should be carried out urgently before the failure occurs.
Nevertheless, an additional study of the symptoms that are associated to other types of damages and
affecting other components is required to confirm the current findings and to evaluate more precisely
their sensitivity.
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Figure 13. Photograph of gear 2 at intermediate shaft with a broken teeth found out during inspection.

The variability of the reference vibration signature does not prevent detection of the initial stages
of the damage because, as already explained, it mainly takes into account the effect of the wind loads
on the measured vibration levels. The median spectra of each healthy WT are within the 25th and
75th percentiles (grey area) of the corresponding reference signature, as shown at the top of Figure 16.
Meanwhile, the median spectrum of the damaged WT is clearly above the 75th percentile level, as
shown at the bottom of Figure 16, which demonstrates the sensitivity of the presented reference values
to this particular gear damage.
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Machines 2018, 6, 63 15 of 16

Machines 2018, 6, x FOR PEER REVIEW  15 of 16 

 

 
Figure 15. Comparison between one spectrum in healthy condition and another one with initial 
gearbox damage corresponding to gearbox 3 measurement. 

 
Figure 16. Comparison of the reference median spectrum (black line) and amplitude levels between 
25th and 75th percentiles (grey region) of the gearbox vibrations obtained from all the WTs with the 
particular median spectra of each healthy WT (top graph) and with the median spectrum of the 
damaged WT (bottom graph). 

7. Conclusions 

The mean vibration signature (baseline frequency spectrum) of a group of healthy WTs was 
obtained using accelerometers that were mounted on the rotor bearings, gearbox casing, and 
generator supports. From these measurements, the frequency peaks that are associated with the 
various excitations that originated at the WT components were identified. These frequencies are due 
to mechanical, aerodynamic and electromagnetic forces. These results can be used as reference 
spectra for assessing normal machine conditions and to set alarm levels. If faults occur or wear is 
enhanced, new defect frequencies will appear and/or unexpected changes of the normal frequencies 
present on the reference spectra of the affected component will be observed. The recognition of these 

Figure 15. Comparison between one spectrum in healthy condition and another one with initial
gearbox damage corresponding to gearbox 3 measurement.

Machines 2018, 6, x FOR PEER REVIEW  15 of 16 

 

 
Figure 15. Comparison between one spectrum in healthy condition and another one with initial 
gearbox damage corresponding to gearbox 3 measurement. 

 
Figure 16. Comparison of the reference median spectrum (black line) and amplitude levels between 
25th and 75th percentiles (grey region) of the gearbox vibrations obtained from all the WTs with the 
particular median spectra of each healthy WT (top graph) and with the median spectrum of the 
damaged WT (bottom graph). 

7. Conclusions 

The mean vibration signature (baseline frequency spectrum) of a group of healthy WTs was 
obtained using accelerometers that were mounted on the rotor bearings, gearbox casing, and 
generator supports. From these measurements, the frequency peaks that are associated with the 
various excitations that originated at the WT components were identified. These frequencies are due 
to mechanical, aerodynamic and electromagnetic forces. These results can be used as reference 
spectra for assessing normal machine conditions and to set alarm levels. If faults occur or wear is 
enhanced, new defect frequencies will appear and/or unexpected changes of the normal frequencies 
present on the reference spectra of the affected component will be observed. The recognition of these 

Figure 16. Comparison of the reference median spectrum (black line) and amplitude levels between
25th and 75th percentiles (grey region) of the gearbox vibrations obtained from all the WTs with
the particular median spectra of each healthy WT (top graph) and with the median spectrum of the
damaged WT (bottom graph).

7. Conclusions

The mean vibration signature (baseline frequency spectrum) of a group of healthy WTs was
obtained using accelerometers that were mounted on the rotor bearings, gearbox casing, and generator
supports. From these measurements, the frequency peaks that are associated with the various
excitations that originated at the WT components were identified. These frequencies are due to
mechanical, aerodynamic and electromagnetic forces. These results can be used as reference spectra
for assessing normal machine conditions and to set alarm levels. If faults occur or wear is enhanced,
new defect frequencies will appear and/or unexpected changes of the normal frequencies present on
the reference spectra of the affected component will be observed. The recognition of these changes is
essential for the early detection of faults or threats. Moreover, a significant impact of the wind speed
on the vibration amplitudes has been observed; this impact also depends on the component being
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measured. Therefore, this behavior must also be taken into account when defining individual reference
values and predicting the severity of damage.
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