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Abstract 13 

The use of biopolymers such as cyclodextrin in textiles for the development of 14 

biofunctional fabrics is an alternative for the development of eco-friendly 15 

textiles. Cyclodextrins can create covalent interactions with the chemical groups 16 

available in wool, allowing the sorption of active molecules that will be released, 17 

such as the citronella oil. Therefore, this work investigates the formation of 18 

cyclodextrin complex oil applied in wool and its release mechanism. The 19 

complexes obtained and the grafted fabric were characterized by TGA, DLS, 20 

FTIR-ATR and SEM. The release of citronella oil was also analyzed and 21 

mathematical adjustments were performed using the equation of Korsmeyer-22 

Peppas to verify the release mechanism. The results have indicated the 23 

formation of the complex and its fixation by covalent bonding, according to the 24 

FTIR-ATR specter and the SEM, and these have shown an anomalous release 25 

profile. For this reason, the application of the complexes in wool fabrics has 26 

shown to be an option in the production of eco-friendly biofunctional materials 27 

for controlled release, allowing the oil properties to be used in textile matrices. 28 

 29 
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1. Introduction 1 

 2 

The application of biopolymers in textiles has attracted industrial and 3 

scientific interest due to the possibility of production of synthetic products [1]. 4 

One of the most promising biopolymers is cyclodextrin (CD). According to 5 

Matioli et al. [2], cyclodextrins are produced from the starch by the cycling 6 

reaction of linear chains of glucopyranosides, using the enzyme cyclodextrin-7 

glucanotransferase (CGTase).  8 

In the field of textile finishing, CDs can be applied into the surface of the 9 

textile substrate, allowing its properties to become intrinsic to the fiber. Their 10 

use fosters immediate opportunities for the development of products that are 11 

less harmful to the environment, besides having a great potential in many 12 

applications [3], being able to absorb unpleasant odors, release essential oils, 13 

vitamins, caffeine, menthol, and biocides [4-6]. CDs can form inclusion 14 

complexes with bioactive molecules, protecting them against oxidation, 15 

enhancing the chemical stability and reducing or eliminating eventual losses by 16 

evaporation [7,8].  17 

Regarding the interactions between cyclodextrins and the textile fibers, 18 

we can cite two distinct interactions: (i) physical bonding and (ii) covalent 19 

bonding. The second type of interaction shows better durability [9]. Many textile 20 

fibers were already used as a support for cyclodextrin, such as cotton [6,10], 21 

polyester [11,12] and wool [13,14]. One of the most popular fibers, which is 22 

nowadays employed in textile products of high quality, is wool [15], a protein 23 

fiber consisting mainly of keratin [16]. Due to the protein structure, wool has 24 

many different chemical groups, such as OH, NH2, COOH, etc. This diversity 25 
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allows the interaction with a diverse range of biopolymers, satisfying the 1 

concern of the textile industry in raising the number of eco-friendly finishing [17]. 2 

The presence of hydroxyl groups in the wool fiber allows the 3 

esterification reaction between the carboxyl group of the crosslinking agent 4 

and the hydroxyl groups of the fiber and of the cyclodextrin. Fig. 1 represents 5 

the mechanism of fixation of β-cyclodextrin (β-CD) in the wool fiber via 6 

esterification [18]. The β-CD is the most widely used cyclodextrin in 7 

complexation with several classes of compounds, and this is due to the 8 

diameter of the cavity of this β-CD, which allows a stable inclusion with a large 9 

part of the bioactive molecules.  10 

Haji et al. [13] highlight that this process is possible using the reactive 11 

derivative of cyclodextrins or reticulation agents, of which we can emphasize 12 

the compounds dimethylol urea and polycarboxylic acids such as acid 1,2,3,4-13 

butane-tetracarboxylic (BTCA) and citric acid (CA).  14 
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Fig. 1. Grafting β-CD into hydroxyl groups of wool via 1,2,3,4-butane 3 

tetracarboxylic acid (BTCA) as crosslinking agent and sodium hypophosphite 4 

(SHPI) as catalyst 5 

 6 

With the fixation of cyclodextrin on the surface of the textile product, 7 

grafting, the textile substrate starts to present sorption capacity and capacity for 8 

the liberation of active molecules [13] such as drugs [19,20], fragrances [4,7] 9 

and flavoring agents [21,22]. Peila et al. [23] point out that there is a need for 10 

encapsulation of the active principle to increase the period of action, allowing a 11 

more durable protection effect.  12 
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With the capacity to host the molecules through the applied biopolymer, 1 

the textile article might become a biofunctional fabric employed in the fight 2 

against vectors, depending on the encapsulated molecule. The most commonly 3 

employed agent for articles with repellent properties is DEET (M-Diethyl-3-4 

methlybenzamide); however, some studies point out that the employment of 5 

DEET may present human toxicity with lesions that vary from mild to severe 6 

[24].  7 

For this reason, it is necessary to utilize products both efficient and 8 

harmless to human health. Considering this, the use of bioactive compounds 9 

such as essential oil of citronella (OC) has shown to be interesting due to its 10 

antioxidant, antifungal, antibacterial and insect repellent properties that are 11 

attributed to the molecules of geraniol and citronellal [25]. Solomon and 12 

collaborators [26] point out that the use of essential oils as repellents has little 13 

or no harmful effects. The author further explains that the microencapsulation of 14 

citronella oils has, as its main advantage, the reduction of the oil volatility in 15 

comparison with topical preparations, constantly supplying the oil to the skin. 16 

In this context, the fixation of β-CD in textile articles was extensively 17 

studied [6, 10-13,27,28] using the widest range of host molecules. However, 18 

few studies were performed to investigate the release mechanisms of the active 19 

principle encapsulated in a textile matrix. For this reason, this work has as 20 

objective to present the controlled liberation kinetics of the essential oil of 21 

citronella complexed by β-CD, bonded to wool fibers. 22 

 23 

 24 

 25 
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 1 

 2 

2. Methodology 3 

 4 

2.1. Materials 5 

 6 

For the preparation of the complexes, β-cyclodextrin was utilized as 7 

biopolymer (Sigma Chemical, Germany) and essential oil of citronella (WNTf, 8 

Brazil) as bioactive host molecule. The complexes were applied into standard 9 

fabric 100% wool (100% WO) (Style 537, 3.68 oz/yd2, ISO 105-F01) via 10 

esterification, using as reactants butane 1,2,3,4 tetracarboxylic acid (BTCA) 11 

(Sigma Chemical, Germany) and sodium hypophosphite (SHPI) (Synth, Brazil). 12 

 13 

2.2. Methods  14 

 15 

2.2.1. Preparation of the Complex 16 

 17 

The methodology employed to prepare the complexes of β-cyclodextrin 18 

and citronella essential oil was adapted [8,22,29,30].  19 

 A solution was prepared with 50 mL of ethanol and water (volumetric 20 

ratio, v:v, equal to 1:3) and 3 g of β-CD. The product was emulsified using 21 

Ultraturrax (T-25) under stirring at 18,000 rpm during 5 minutes and at 60 ºC, in 22 

accordance with the methodologies proposed by Wang and Cheng [8] and 23 

Oliveira et al. [30].  24 

After this step, citronella oil was added with a rate of 9 mLh-1, for a 25 

period of 20 minutes, maintaining a volumetric per mass ratio (v:m) equal to 1:1 26 

of oil and β-CD, as shown by the work of Partanen et al. [22]. The temperature 27 

was kept at 40 ºC, under stirring at 10,000 RPM for 2 hours as the methodology 28 
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adopted by Medronho et al. [29]. As a product, the complexes were obtained in 1 

solution.  2 

 3 

2.2.2. Thermogravimetric Analysis (TGA) 4 

 5 

The analysis of the thermal stability of the complexes was performed 6 

using the thermogravimetric equipment TGA.SDTA851 – Mettler Toledo and the 7 

Software STARe (Version SW 9.01). The thermal behavior of the following 8 

products was verified: citronella essential oil, β-CD and complexes (CD: 9 

citronella). The method employed used a heating rate of 10 ºCmin-1, and a 10 

temperature range from 30 ºC to 800 ºC in an atmosphere of nitrogen. 11 

 12 

2.2.3. Diameter Estimation using Dynamic Light Scattering (DLS) 13 

 14 

The Dynamic Light Scattering method was applied to determine the size 15 

of the complexes using the equipment Nanoplus (EDS) and the software 16 

Nanoplus Common. It were performed 70 accumulations for each sample. The 17 

experiments were executed at a single angle of 90o, static measurement. 18 

 19 

2.2.4. β-CD grafting on wool 20 

 21 

The application of the complexes on the surface of the fabric was 22 

executed using the pad-dry technique with a foulard, as presented by Dehabadi 23 

et al. [31]. The process was followed by drying at room temperature [32]. The 24 

wool fabric (15x5 cm) was impregnated for 1 minute in 100 mL of water solution 25 

containing 60 gL-1 of complexes, 6 gL-1 of butane 1,2,3,4 tetracarboxylic acid 26 

(BTCA) and 6 gL-1 of sodium hypophosphite, at a temperature of 25 ºC and pH 27 
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6. After this, the samples went through a foulard. The working pressure used 1 

was 2 bar to obtain a pick-up of 120%. Finally, the drying and curing were 2 

carried out at a temperature of 170 ºC for 3 minutes. 3 

The yield of the application of the β-CD was calculated using the mass 4 

gain of the wool fabric after the polymerization. This result was called grafting 5 

percentage yield (G%), according to the Equation (1) [13]: 6 

𝐺(%) =
𝑀2 − 𝑀1

𝑀1
× 100 

(1) 

Where M1 and M2 are the masses before and after the grafting, 7 

respectively.  8 

 9 

2.2.5. Finishing evaluation 10 

 11 

The application of the complexes was also evaluated using Scanning 12 

Electron Microscopy (SEM, JEOL-JSM 5610), Fourier Transform Infrared 13 

Spectroscopy (FTIR) and Attenuated Total Reflection (ATR), Frontier – Perkin 14 

Elmer, with a resolution of 1 cm-1 and 64 accumulations, with a range in the 15 

infrared spectrum between 650 and 4,000 cm-1. Both techniques (SEM and 16 

FTIR-ATR) were carried out on the wool fabrics with and without the finishing.  17 

The wash durability of the functionalized wool was verified by SEM after 18 

subsequent wash cycles-up to 2 cycles (5 washes each cycle). Washing was 19 

carried out in accordance with the AATCC Test method 61-2007-2A.  20 

 21 

2.2.6. Cytotoxicity assay 22 

The cytotoxicity of the fabrics treated with the complexes was evaluated 23 

by Trypan Blue in fibroblast. This test evaluates the damage to the cell 24 

membrane. The fibroblast cell suspension at the concentration of 1.5 x 105 cells 25 
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/mL was distributed on 24 wells plates, 500 µl/well,  cultured medium containing 1 

10% FBS and antibiotics.. The cell were incuated for 24 h at 37ºC and 5% CO2.  2 

After the incubation period, a 100 μL aliquot of the cell suspension was 3 

withdrawn and diluted in trypan blue (0.4%, Sigma®). The color intensity was 4 

measured at optical microscope. The experiments were performed intriplicates. 5 

The percentage cell viability was then calculated as follows, Equation (2): 6 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  (
𝑣𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠
) × 100 

 

(2) 

2.2.7. Quantification and mathematical adjustment of the controlled release of 7 

citronella oil 8 

 9 

The liberation profiles of the complexes supported by wool were 10 

determined using a technique presented in a previous work [33]. The wool 11 

fabric, before the application of the treatment, was taken to a temperature 12 

controlled bath at 37 ℃ ± 0.5 ℃, under stirring on a shaker WNB14 Memmert. 13 

Aliquots of 2 mL were drawn at predetermined times and filtered (1.5 μm). The 14 

absorbance was determined using UV spectroscopy UV-240LPC – Shimadzu, 15 

333 nm (OC). The obtained data were adjusted using the equations proposed 16 

by Higuchi [34] and Korsmeyer-Peppas [35]. 17 

 18 

3. Results and discussion 19 

 20 

3.1. Thermal Analysis 21 

 22 

Fig. 2 shows the thermogravimetric curve (TG) and the first derivative of 23 

this curve (DTG) of pure compounds (OC and β-CD), as well as of the complex 24 

formed by them. 25 
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Fig. 2. Thermogravimetric curves (a) TG for Citronella, β-cyclodextrin and 1 

complex (b) DTG for citronella, β-CD, and complex. 2 

 3 

Table 1 points out the main stages of mass loss with the residual 4 

percentage for each compound. 5 

 6 

Table 1 – Thermogravimetric data for the samples of citronella, β-CD, and the 7 

complex. 8 

  CITRONELLA β-CD COMPLEX 

Stage 1 ΔTdec 30 – 192.5 ºC 31.57 – 89.63 ºC 61.3 – 108.3 ºC 

Tmax 134.48 ºC 63.07 ºC 100.5 ºC 

%pm 97.8 % 13.2 % 2.13 % 

Stage 2 ΔTdec - 260.57 – 340.10 ºC 258.78 – 354.97 ºC 

Tmax - 300.23 ºC 308.56 ºC 

%pm - 71.6 % 68.8 % 

Residual 0% 7.7 % 4.7 % 

ΔTdec Decomposition temperature variation 9 
Tmax   Maximum Temperature 10 
%pm    Mass Loss Percentage 11 
  12 

As it is observed in the thermogram profiles in Fig. 2, the essential oil of 13 

citronella is decomposed at approximately 200 ºC [33,36], presenting a single 14 

thermal event of decomposition and without residual percentage. However, with 15 

regard to β-CD, two distinct regions of mass loss were observed. The first one 16 
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extends up to 89.63 ºC, corresponding to the dehydration of water molecules 1 

bonded to cyclodextrin, indicating that the moisture percentage of β-CD is equal 2 

to 13.2% (mass per mass ratio, m:m). This percentage of water is commonly 3 

found in works that use cyclodextrin as complexing agent [37,38].  4 

The second region of mass loss, stage 2, for the β-CD is a direct result 5 

of the decomposition of the structure (Table 1), which shows its beginning at 6 

260.57 ºC and is completed at 340.10 ºC. Subsequent to the decomposition 7 

event, it is initiated an elementary carbon formation, carbonization [39-41].  8 

Regarding the formed complex, it is noted the distinct behavior in the 9 

thermogravimetric curves, Fig. 2 (a) and (b). The complex presents higher 10 

thermal stability and lower presence of water, shifting from 13.2% of the pure 11 

cyclodextrin mass loss to 2.13% in the complex. This fact has happened due to 12 

the encapsulation of citronella, which came to occupy the place previously 13 

taken by the molecules of water, as described by Venturini et al. [42]. With the 14 

increase in temperature, the oil is released with the decomposition of the 15 

biopolymer that protects it.  16 

On the other hand, the thermal stability of the oil was improved. The 17 

volatilization in regular conditions increased from 192.5 ºC to approx. 340 ºC 18 

(Table 1). This change has also been verified by Özdemir and Gökmen [43]. 19 

The authors used β-CD to complex vanilla, and observed a displacement from 20 

83 ºC to 130 °C. From the evidence, it is possible to affirm that the β-CD could 21 

have formed the inclusion complex with the OC. 22 

 23 

3.2. Size Distribution for the Complex 24 

 25 
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The complexes formed were evaluated using DLS to quantify the size 1 

distribution as exhibited in Fig. 3. It has been shown that the size distribution 2 

occurs in a range between 0 and 10 μm.  3 
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Fig. 3. Histogram of size distribution for the sizes of the complexes of citronella 5 

essential oil and distribution build-up. 6 

 7 

The average size of the complexes was 3.014±2.558 μm. 57.083% of 8 

the complexes were produced within a range between 1.5 – 4.5 μm. Özdemir 9 

and Gökmen [43] point out that the size is determined by the ratio between core 10 

material and wall material, in this case, 1:1. Complexes with this dimension can 11 

more easily coat the surface of the fiber, as it will be shown in the SEM results. 12 

  13 

3.3.  Evaluation of the grafting in wool  14 

 15 
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Table 3 shows the percentage of grafting yield for a solution of 100 mL 1 

of water containing 60 gL-1 of complexes, 6 gL-1 of BTCA and 6 gL-1 of SHPI. 2 

After drying and curing for 3 minutes at a temperature of 170 oC, the grafting 3 

was calculated using Equation (1). 4 

Table 3 – Determination of grafting yield, β-CD wool.  5 

PARAMETER WOOL 

Mass (g) 0.189 ± 0.005 

Dry Mass (g) 0.205 ± 0.003 

%Graft yield 8.7 ± 0.091 

 6 

As shown by Shown and Murthy [28], the mass gain for the substrate is 7 

attributed to the coating of the fibers by the reaction between the biopolymer, 8 

BTCA and the wool fabric. Since the fabric has hydroxyl groups, as well as the 9 

cyclodextrin, the reaction of esterification becomes possible [13,14,18,44], as 10 

illustrated by the mechanism in Fig. 1. 11 

  

(a) (b) 

Fig. 4. SEM images of the (a) untreated wool and (b) treated wool, complex (β-12 

CD:OC) deposited on the fabric. 13 
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 1 

Fig. 4 shows the changes in the surface of the wool fiber, highlighting 2 

the grafting process on the fabric. In Fig. 4 (a) it is possible to observe the wool 3 

fibers without any type of treatment. The fibers in this condition have a smooth 4 

structure with few structural impurities. It is noted in Fig. 4 (b) the clear coating 5 

of the fiber. There is a cluster of particles, evidencing the mass increase of the 6 

fabric of approx. 8%. This occurs due to the presence of β-CD on the surface of 7 

the fabric; and therefore, the realization of grafting. Figure 5 shows the surface 8 

of the woolen fabric after washing. It is noticed that there is a decrease in the 9 

amount of complexes, however, these still cover the fiber, showing that the 10 

interaction between the fiber and the complex, esterification via BTCA, has 11 

been established. Khanna et al [45], shows that as the cyclodextrin is bonded to 12 

wool fiber hydroxyl groups through ester linkages offering good wash 13 

resistance. 14 

  

(a) (b) 

Fig. 5. SEM images of the treated wool, complex (β-CD:OC) deposited on the 15 

fabric, after washing (AATCC Test method 61-2007-2A): (a) 5 and (b) 10 16 

washes. 17 
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 1 

The FTIR-ATR spectrum, Fig. 6, for the wool fiber presents as main 2 

bands: 1,079 cm-1 vibration of the functional group S=O; 1,172 cm-1 Strong C–O 3 

stretching of primary alcohols and phenols; 1,395 cm-1 axial deformation of the 4 

carbonyl group C=O from carboxylic acid; 1,630 cm-1 vibration of the carbonyl 5 

functional group C=O primary amide; 3,072 cm-1 stretching, NH2 associated 6 

with primary aliphatic amines; 3,276 cm-1 vibration of the axial deformation of 7 

the O–H bonding [46]. The variety of functional groups in wool comes from the 8 

protein structure [16], allowing an interaction with many finishing products [17]. 9 
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Fig. 6. Fourier Transform Infrared Spectroscopy (FTIR-ATR) for the textile 10 

substrate 100% wool, treated and untreated.  11 

 12 

New peaks are originated in the treated wool fabric in a region between 13 

700 – 950 cm-1. These peaks are attributed to the vibrations of the C–H and the 14 

vibrations of the C–C in the glucopyranose ring present in cyclodextrins, as 15 

observed by Aguiar et al. [37] and shown in Fig. 6. This evidences the retention 16 

of the complexes (β-CD: OC) above the textile substrate, as shown in Table 3. 17 

Other peaks that can be noted present in Fig. 6 are in the region 1,150 18 

– 1,020 cm-1 and are attributed to the stretching vibrations of C–O–C, the 19 
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bonding of the group's eter and hydroxyl (glycosidic bonding). The position of 1 

these bands, after the grafting in wool, can be attributed to the presence of 2 

cyclodextrin in the fiber, indicating the coating [13,14]. The appearance of a 3 

band in the region of 1,300 cm-1 is related to the ester carbonyl [47] present in 4 

the reaction between the group OH of the cyclodextrin, COOH of the BTCA and 5 

the group OH of the wool fiber. 6 

Table 4 shows the results of cell viability of untreated and treated fabrics. 7 

Table 4 – Cytotoxicity assay  8 

 9 

 Viability (%) Standard deviation 

(±) 

Controle 98.296 0.788 

Untreated fabric 97.886 0.824 

Treated fabric 96.394 1.921 

 10 

The indicated values show that tissue with treatment has high cell 11 

viability, 96.394±1.921, as indicated by the authors Solomon et al [25], citronella 12 

and cyclodextrin pose no problem to human health when used in fabrics in 13 

contact with the skin. 14 

 15 

3.4. Controlled Release Profile 16 

 17 

One of the best advantages of the encapsulation of OC using β-CD is 18 

its controlled release. This property allows the enhancement of oil activity in the 19 

textile matrix, improving the efficiency of the compound.  20 

Fig. 7 shows the release profile in a quantitative evaluation using UV-21 

VIS spectrophotometer for the wool fabric coated with complexes β-CD: OC, at 22 
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a temperature of 37 ℃ ± 0.5 ℃, under stirring. The profile shows the relation 1 

between the concentration at a given point t and the maximum concentration 2 

released (
Mt

M∞
). In this case, there is the release of the active compound followed 3 

by a plateau, indicating that the total liberation was reached [48], in the 4 

experiment, the equilibrium was reached in 600 min, as noted in Fig. 7. 5 
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Fig. 7.1 Profile modeling for the release of the citronella essential oil complex 7 

grafted to the wool textile substrate using the Higuchi, Korsmeyer-Peppas 8 

Model.  9 

 10 

The model proposed by Higuchi [34], Korsmeyer-Peppas [35] applied to 11 

drug release can also be used to understand the controlled release of the 12 

complexes formed with cyclodextrin applied to textile matrices [49]. The 13 

mathematical equation of Higuchi that governs the system is flat (wool) and the 14 

mechanism is based on Fick’s law, being possible to write it as: 15 

Mt

M∞
= KHt

1
2⁄  

(3) 
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where 
Mt

M∞
 is the ratio between the amount of release of the active principle at 1 

each time point t relative and KH is the Higuchi constant. 2 

 The model proposed by Korsmeyer-Peppas is generally applied to 3 

analyze the discharge of polymeric dosage forms, whenever the release 4 

mechanism is unknown, or when more than one mechanism is involved [35].  5 

The krosmeyer-Peppas equation can be written as follows: 6 

Mt

M∞
= KKPtn 

(4) 

Being KKP the constant of the kinetic rate of Korsmeyer-Peppas that 7 

incorporates the structural and geometric characteristics; n the exponent of 8 

liberation, the indicator of the mechanism is related to the release geometry 9 

[50]. If n= 0.5, the release occurs via Fickian diffusion mechanism, in the 10 

diffusion process, the matter is transported to the core of the system, resulting 11 

in random molecular movements that occur over short distances [51]; if 0.5 <n 12 

<1.0, the mechanism of diffusion is anomalous, anomalous behavior can be 13 

considered as intermediate between the Fickian and non-Fickian types of 14 

diffusion. According to Costa and Lobo [52], there are two important time 15 

dependent processes that involve this system: the first, when occurs the 16 

diffusion from the middle to the interior of the polymer, making the dry core 17 

hydrated (dilation), and the second, when the external layer becomes jellified 18 

and suffers erosion; and if n = 1.0, occurs non-Fickian diffusion, in this case, the 19 

kinetics of zero order release is controlled, and the release is controlled only by 20 

the phenomenon of polymer swelling (matrix relaxation or release by erosion). 21 

Considering the release profile presented in Fig. 7, and the equations of 22 

Higuchi (Eq. 3) and Korsmeyer-Peppas (Eq. 4), it were obtained the data 23 

presented in Table 5. 24 
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 1 

Table 5 – Modeling parameters for the controlled release of citronella oil 2 

complexed by β-CD grafted onto a wool textile matrix. 3 

MODEL VARIABLES PARAMETER 

Higuchi R2 0.9751 

KH 0.0422±0.0007 

Df(10-3) 0.3500±0.0116 

 

Korsmeyer-Peppas R2 0.9877 

KKP 0.0213±0.0035 

n 0.6166±0.0275 

D is the coefficient of mass transport in relation to the thickness of the fabric (𝐷
𝛿2⁄ ), express in 4 

s
-1

. 5 

 6 

Amongst the adjustments performed, the one that shows a better 7 

correlation coefficient is the one proposed by Korsmeyer-Peppas, R2=0.9877 8 

and  n= 0.6166±0.0275, when compared to the Higuchi model (R2=0.9751), this 9 

better fit occurs because the model assumes that the release is governed by 10 

diffusion and polymer relaxation. The exponent value n evidences that the 11 

complexed oil applied to the wool fabric presents anomalous diffusion 12 

mechanism (0.5<n<1.00) [50]. This means that the mobility of the wool chains is 13 

higher than the mobility of the oil molecules themselves. Then, the diffusion of 14 

oil molecules, governed by the concentration gradient, is being interfered by the 15 

mobility of polymer molecules. 16 

 Thus, there is both diffusion and relaxation of the polymer, these two 17 

steps occur simultaneously. The water molecules begin to diffuse into the wool 18 
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structure and, after, into cyclodextrins, they begin to interact with the hydrophilic 1 

sites of the biopolymer, leading to volume expansion [53], and this reduces the 2 

hydrophobic interactions of the cavity where the oil is found. Radu et al. [54], in 3 

their paper on the complexation of hydrocortisone acetate applied onto cotton, 4 

showed that after the swelling of the polymer, there is a decrease in the 5 

hydrophobic interactions between the CD cavity and the guest molecule, 6 

causing the complexed agent to be released. 7 

Scacchetti et al. [49] treated cotton fabrics with complexes of β-CD and 8 

thyme oil, and also obtained the anomalous release of oil (n =  0.620 ± 0.0220), 9 

and showed that the affinity of the exterior of the cyclodextrin (hydrophilic) with 10 

water promoted the relaxation of the biopolymer chain, modifying its structure 11 

and releasing the oil.  12 

The controlled release following the anomalous model allows the 13 

delivery of the active principle under the desired conditions, that is, it prolongs 14 

the effect of the properties of the oil. The transference textile-dermis occurs 15 

without the need for conscious interference of the user. 16 

The liberation of active substances depends on many factors, such as 17 

the diffusion of the substance through the matrix, the degradation of the 18 

complexes, the morphology, concentration and distribution of the oil and, finally, 19 

the hydrophilicity of the textile material [48,55,56]; therefore, the liberation 20 

profile is a sum of all these effects. 21 

 22 

4 Conclusion 23 

 24 

In summary, β-cyclodextrin complexes and essential oil of citronella 25 

were prepared to biofunctionalize wool fabrics. These complexes were analyzed 26 
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using TG and DLS. The characterizations have shown that the incorporation 1 

was possible. Consequently, the complexes were applied into the fabric via a 2 

reaction of esterification of the groups OH of the wool fiber, COOH of the BTCA 3 

and OH of the cyclodextrin.  4 

The grafting yield was obtained through the mass gain measurement 5 

(8,47 ± 0,091) and its effectiveness was evaluated using FTIR-ATR. The 6 

technique revealed the formation of a carboxylic ester on the surface of the 7 

wool fiber (bands 1300-1630cm-1). Besides, the micrographs made with SEM 8 

prove the morphological modification of the wool surface, as well as the 9 

durability of the finish after washing. 10 

The controlled release in vitro allowed to evidence that the release rate 11 

of citronella oil in the biofunctionalized fabric can be described using the model 12 

proposed by Korsmeyer-Peppas. The diffusion in this model is anomalous, 13 

meaning that the release rate depends on the molecular flow of the biopolymer 14 

and the textile matrix. This fact allows the development of new finishing using 15 

cyclodextrins and oils. The fabric with cyclodextrin and its surface can be used 16 

as a system of adsorption and release of bioactive molecules, making possible 17 

a wide range of effects such as repellency, aromatherapy, skincare, etc.  18 

 19 
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