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Abstract: This paper proposes a white-box approach for identifying the parameters of DC-DC buck
and boost switch mode power converters. It is based on discretizing the differential equations that
describe the dynamic behavior of the converters. From the discretized equations and experimental
data, the parameters of the converters are identified, thus obtaining both the values of the passive
components and the transfer function coefficients of the controller. To this end, steady state and
transient experimental signals are analyzed, including the input and output voltages and the inductor
and output currents. To determine the accuracy of the proposed method, once the parameters are
identified, a simulation with the identified parameters of the converter is run and compared with
experimental signals. Such results show the accuracy and feasibility of the approach proposed in this
work, which can be extended to other converters and electrical and electronic devices.
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1. Introduction

Switch mode power converters (SMPC) are broadly applied in different areas, including motor
drives, computers, portable electronics [1], domestic appliances [2], or in power conversion systems
for renewable generation [3], among others. They have appealing characteristics such as compactness
and high conversion efficiency [4].

Parameter identification comprises a set of techniques for estimating the most suitable values of the
parameters that govern a dynamical system based on data from the observed behavior of the system.
This approach has been applied in different areas, including transmission lines [5], synchronous
generators [6] or modelling of capacitors [7] among others. Parameter identification is a powerful
tool to develop fault diagnosis approaches for power converters based on continuously observing the
values of passive components, since changes in these values due to ageing or deterioration can lead to
power converter failure [8]. Power converter modelling has been traditionally based on identifying the
parameters of single power converters, instead of modelling multi power converter systems. Currently,
sectors such as avionics, aerospace or naval, are integrating complex power systems comprising
numerous generators, motors or different types of power converters. Such complex systems habitually
integrate different SMPCs from several manufacturers, which often disclose limited data of the inner
parameters. The information that the engineers can gather from datasheets is limited and not detailed
enough to generate exhaustive models; the application of parameter identification approaches can
solve this issue. Therefore, in many cases design engineers cannot know the values of all SMPC’s
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components beforehand [9]. Instead, the input and output currents and voltages of the SMPC can
be measured.

In addition, conventional methods for modeling power converter involve a thorough analysis of
the power converter configuration. Different inaccuracy sources such as poor load description, sudden
external disturbances, tolerances, ageing of key components or diverse ambient conditions may alter
the behavior of the power converter throughout its lifetime. By applying a system identification
approach, these changes can be detected and taken into account [10].

Parameter identification comprehends a set of techniques aimed at reproducing the dynamic
behavior of a system from experimental data [11]. However, due to the complexity of real systems,
the difficulty in producing realistic models, and the wide range of operating conditions, this is
still a challenging problem. Parameter identification focuses on identifying or estimating the
different parameters of the model from experimental measurements when the system operates under
steady-state or transient conditions. Parameter identification is often based on white-box models.
White-box models assume that the structure of the system is totally known, thus building theoretical
models from a set of differential equations describing the behavior of the system accurately [12,13].
The main advantage of this approach is that it allows retrieving from experimental data the values
of the parameters in which the physical model of the system is based. However, excessively detailed
models may be unacceptable in terms of required computational load [14].

Parameter identification has been applied to identify parameters of electrical machines and circuits
operating under dynamic conditions by analyzing electrical signals such as current and voltage [15].
Parameter identification can be performed online or offline, either in the time or frequency domains.
According to the technical literature, different strategies can be applied for parameter identification in
SMPCs. Gietler et al. [16] identified the values of the passive components of a buck converter from the
time-discrete transfer function of such electronic device using state space models. Ahmeid et al. [2]
proposed to identify the whole transfer function of a buck converter by means of a Kalman Filter.
Linares-Flores et al. [17] presented a design of a generalized proportional–integral adaptive controller
for boost converters based on the an algebraic parameter identification approach. This approach
required dealing with a simplified white-box model of the converter. Chen et al. performed an online
identification of inductor parameters in a boost converter by injecting a small signal in order to produce
a transient state, and applying an observer obtained from the capacitor current [18]. Xu et al. [19]
proposed to applying an optimization approach for reducing the computational burden to estimate
SMPC’s parameters by applying recursive algorithms. Ru and Gong [20] proposed a parameter
identification method for boost power converters SMPC based on recursive least squares arithmetic
and wavelet denoising. Buiatti et al. [21] estimated the parameters of different power converters from
continuous time models of such converters, where the time derivatives of the signals were performed
by means of polynomial interpolation. Although in the abovementioned works accurate results were
obtained, some values such as the parameters of the proportional-integral-derivative (PID) controller
were, in general, not identified.

In this paper a parametric identification of DC-DC buck and boost SMPC is carried out from
experimental data, based on a white-box model. To this end the experimental input and output
voltages and inductor and output currents are acquired and used as input signals for parameter
identification, jointly with the white-box model of the analyzed SMPC. Whereas the parameters of
the capacitor (capacitance and equivalent series resistance or ESR), the inductor (inductance and
series resistance) as well as the equivalent resistance of the switches are identified from the steady
state response, the parameters of the controller are identified from the transient response when an
additional load is suddenly connected in parallel with the load. Moreover, the models presented in
this work integrate the experimental signals instead of calculating the time derivatives, due to the
numerical issues of the later ones. Experimental results presented in this work prove that the values of
the passive components of the analyzed SMPC can be correctly identified, including the parameters of
the controller and the equivalent resistance of the switches, this being one of the contributions of this
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work. Although the proposed approach is applied in DC-DC buck and boost SMPC, it can be extended
to other types of converters and power devices.

2. The Proposed Parameter Identification Method

This section develops the approach proposed in this work to identify the parameters of the buck
and boost converters dealt with in this paper. Whereas the values of the inductor (inductance L and
series resistance RL), the capacitor (capacitance C and series resistance RC) and the resistance of the
switch are identified from steady state signals (input and output voltages, inductor current and output
current), the coefficients of the transfer function of the control circuit are identified based on transient
signals (input and output voltages and inductor and output currents).

2.1. Buck Converter Parameter Identification

Figure 1 shows the model of the buck converter dealt with in this work, including the control
loop. The parameters to identify are the passive components L, RL, C, RC, RS (switch resistance) and
the coefficients of the control loop b1, a1 and a2. It is noted that D is the duty cycle.
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Figure 1. (a) Buck converter including the control loop. (b) Detail of the controller included in the
commercial TPS40200EVM-002 non-synchronous DC-DC buck converter from Texas Instruments [22].
(c) Equivalent circuit during TON. (d) Equivalent circuit during TOFF.
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It is worth noting that although Figure 1 only depicts one capacitor in parallel with the load,
commercial SMPC habitually include several parallel connected capacitors to ensure the converter
performs appropriately. These capacitors usually are grouped in two types, i.e., capacitors of large
and low capacitances. Depending on type and size of the capacitor (ceramic, electrolytic, polymer,
tantalum, etc.), the response in steady state and transient state may change. An important parameter
determining such behavior is the capacitor equivalent series resistance (ESR). When large electrolytic
capacitors are combined with small ceramic capacitors, the output capacitors can be modelled by
an equivalent large electrolytic capacitor connected in parallel to a smaller ceramic one. They are
meant to adjust the ripple and transient response separately. The ESR of the small capacitor affects the
output voltage ripple, whereas the ESR of the larger one affects the overall stability, that is, the time
constant under transient conditions. Although SMPC manufacturers sometimes provide the ESR of
electrolytic capacitors, they often do not provide the ESR of ceramic capacitors, so it must be obtained
from experimental data.

To identify the passive components values of the buck converter, that is, L, RL, C, RC and RS,
the steady state response is analyzed, since it is almost not affected by the controller. To this end the
model of the converter during TON is analyzed in detail, that is, when the switch is in its ON state.

The L and RL1 = RL + Rs values can be calculated as follows,

Vin −Vout = IL · RL1 + L · dIin
dt

(1)

and next (1) is integrated.∫
dIL =

∫
(Vin/L)dt−

∫
(Vout/L)dt− (RL1/L)

∫
ILdt (2)

Equation (2) can be discretized by considering two discrete time instants T1 and T2 = T1 + ∆T,
∆T being the discrete time step considered. Once discretized, the trapezoidal rule allows calculating
the integral, thus obtaining (3).

IL,T2 − IL,T1 =
(T2 − T1)

2L
[Vin,T2 −Vout,T2 + Vin,T1 −Vout,T1)− (IL,T2 + IL,T1) · RL1] (3)

Finally, L and RL1 can be obtained by means of the following equations system, which considers
four time instants T1, T2 = T1 + ∆T, T3 = T2 + ∆T, T4 = T3 + ∆T.[

IL,T2 − IL,T1

IL,T4 − IL,T3

]
=

 (Vin,T2
−Vout,T2+Vin,T1

−Vout,T1 )·(T2−T1)

2
(−ILT2−IL,T1 )·(T2−T1)

2
(Vin,T4

−Vout,T4+Vin,T3
−Vout,T3 )·(T4−T3)

2
(−IL,T4−IL,T3 )·(T4−T3)

2

 · [ 1
L

RL1
L

]
(4)

Similarly to (1), the equations governing the dynamic behavior during the OFF state can be
expressed as in (5).

− ∆Vdiode −Vout = IL · RL + L · dIL
dt

(5)

Therefore, the solution is similar to (4), so it can be expressed as in (6).[
IL,T2 − IL,T1

IL,T4 − IL,T3

]
=

 (−∆Vdiode,T2
−Vout,T2−∆Vdiode,T1

−Vout,T1 )·(T2−T1)

2
(−IL,T2−IL,T1 )·(T2−T1)

2
(−∆Vdiode,T4

−Vout,T4−∆Vdiode,T3
−Vout,T3 )·(T4−T3)

2
(−IL,T4−IL,T3 )·(T4−T3)

2

 · [ 1
L

RL
L

]
(6)

It is noted that RL1 = RL + RS is calculated during the ON state, RS being the ON resistance of
the switch (see Figure 1a). Since RL is calculated during the OFF state, the switch resistance can be
obtained by applying RS = RL1 − RL.
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Once the parameters of the inductor and the switch are known, those of the capacitor must be
obtained. According to [21], the ESR of the output capacitor in a buck converter can be calculated as,

Rc =
∆Vout · Rload

∆IL · Rload − ∆Vout
(7)

∆Vout and ∆IL being, respectively, the output voltage and current ripples. During TON, the inductor
current can be written as,

IL = C · dVc

dt
+ Iout (8)

whereas the voltage in the capacitor is expressed as in (9).

Vc = Vout − (IL − Iout) · Rc (9)

By replacing (8) into (9) and integrating, it results in (10).

C ·
∫

dVc =
∫

(IL − Iout) · dt (10)

Equation (8) can be discretized by considering two discrete time instants T1 and T2, where T2

= T1 + ∆T, ∆T being the discrete time step considered. Once discretized, the trapezoidal rule allows
calculating the integral, thus obtaining,

C · (Vc,T2 −Vc,T1) =
T2 − T1

2
(IL,T2 − Iout,T2 + IL,T1 − Iout,T1) (11)

and next, (9) is substituted into (11), thus obtaining (12).

C · [Vout,T2 − (IL,T2 − Iout,T2) ·Rc−Vout,T1 +(IL,T1 − Iout,T1) ·Rc] =
T2 − T1

2
(IL,T2 − Iout,T2 + IL,T1 − Iout,T1)

(12)
By isolating the capacitance C in (12), its value is obtained as in (13).

C =
T2−T1

2 (IL,T2 − Iout,T2 + IL,T1 − Iout,T1)

Vout,T2 − (IL,T2 − Iout,T2) · Rc −Vout,T1 + (IL,T1 − Iout,T1) · Rc
(13)

It is worth noting that (7) and (13) provide, respectively, the ESR and the capacitance of the smaller
ceramic output capacitor, RC1 and C1, respectively, since the dynamics during steady state operation is
governed by such capacitor.

The values of parameters L, RL, C, RC and RS, are calculated at every time step Ti from (4), (6), (7)
and (13) under steady state conditions.

As shown in Figure 1b, commercial DC-DC converters usually include a control circuit in closed
loop based on a digital or analog controller to stabilize and regulate the output voltage Vout according
to Vref, the reference voltage. The relationship between the input and the output of the control circuit
can be expressed by means of a transfer function. In the case of analog circuits whose transfer function
has one zero and two poles (TPS40200EVM-002 non-synchronous buck converter shown in Figure 1),
it can be expressed as [23],

H(s) =
D(s)

Verror(s)
=

b0 + b1s
a0 + a1s + a2s2 (14)

where Verror is the error signal and D = TON/(TON + TOFF) the duty cycle.
The parameters ai and bi of the transfer function in (14) are estimated during transient conditions.

Transients can be generated by suddenly connecting a known resistor in parallel with the load.
These coefficients can be identified by using the tfest function of the system identification toolbox
from Matlab [2].
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As explained, some power converters include two types of output capacitors. In this case,
the values of RC and C obtained in (7) and (13), correspond to the smaller capacitor, that is, RC1 and
C1, respectively. To determine the ESR and the capacitance of the larger output electrolytic capacitor
(RC2 and C2), an iterative approach is applied during this sudden load change. To this end, this paper
proposes performing a parameter sweep of RC2 and C2 by means of PSIM (Rockville, MD, USA).
This parameter sweep varies the ESR RC2 from RC1 to 50·RC1 and the capacitance C2 from C1 to
100·C1, as shown in Figure 2, which is applied in two sequential steps. In the first step the RC2

values are changed and the error between experimental and simulated results is calculated at each
step, so that the value of RC2 minimizing the error between experimental and simulated results is
kept. Next, with this obtained value of RC2, C2 is swept until attaining a minimum error between
experimental and simulation results performed with those values of RC2 and C2.

Figure 2 shows that the transient response changes in every iteration, but the voltage ripple is
almost not affected. The most suitable values of RC2 and C2 are those minimizing the error between
simulated and experimental results, which is calculated as in (15).

error = Mean

(∣∣∣∣∣Vout,exp,Ti −Vout,sim,Ti

Vout,exp,Ti

∣∣∣∣∣
)

i = 1, 2, . . . , n samples (15)
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buck converter by means of the experimental signals Vin, IL, Vout and Iout.
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2.2. Boost Converter Parameter Identification

Figure 4 shows the model of the boost converter dealt with in this work, including the control
loop. The parameters to identify are the passive components L, RL, C, RC, RS1, RS2 and the coefficients
of the control loop a0, a1, b0 and b1.Electronics 2018, 7, x FOR PEER REVIEW  7 of 16 
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commercial TPS61089EVM-742 synchronous DC-DC boost converter from TI, which is based on an
operational transconductance amplifier (OTA), where gm = 190 µS [24]. (c) Equivalent circuit during
TON. (d) Equivalent circuit during TOFF.

As done with the buck converter, the steady state response must be analyzed to identify the
passive components of the boost converter (L, RL, C, RC, RS1 and RS2), since it is almost not affected by
the controller. To this end the model of the converter during TON is analyzed in detail, that is, when the
switch is in its ON state.

The L and RL1 = RL + RS1 values are calculated from (16) and (17).

Vin = L · dIL
dt

+ RL1·IL (16)
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∫
Vindt = L

∫
dIL + RL1

∫
ILdt (17)

By applying the trapezoidal rule of integration and considering four time instants T1, T2 = T1 +
∆T, T3 = T2 + ∆T, T4 = T3 + ∆T, (17) results in (18).

(Vin,T2 + Vin,T1) ·
T2 − T1

2
= L · (IL,T2 − IL,T1) +

(IL,T2 + IL,T1) · (T2 − T1) · RL1

2
(18)

Finally, the L and RL1 values are obtained by solving the following system of equations.[
(Vin,T2 + Vin,T1) ·

T2−T1
2

(Vin,T4 + Vin,T3) ·
T4−T3

2

]
=

 IL,T2 − IL,T1

(IL,T2+IL,T1 )·(T2−T1)

2

IL,T4 − IL,T3

(IL,T4+IL,T3 )·(T4−T3)

2

 · [ L
RL1

]
(19)

Similarly to (16), the equations governing the dynamic behavior during the OFF state can be
expressed as in (20).

Vin −Vout = L · dIL
dt

+ RL2·IL (20)

The solution is similar to (19), so it can be expressed as in (21).[
(Vin,T2 + Vin,T1 −Vout,T2 −Vout,T1) ·

T2−T1
2

(Vin,T4 + Vin,T3 −Vout,T4 −Vout,T3) ·
T4−T3

2

]
=

 IL,T2 − IL,T1

(IL,T2+IL,T1 )·(T2−T1)

2

IL,T4 − IL,T3

(IL,T4+IL,T3 )·(T4−T3)

2

 · [ L
RL2

]
(21)

It is noted that RL1 = RL + RS1 is calculated during the ON state, RS1 being the ON resistance of
switch 1 (see Figure 4a). Similarly, RL2 = RL + RS2 is calculated during the OFF cycle, RS2 being the ON
resistance of switch 2. Since there are three unknowns RL, RS1 and RS2 a third equation is required,
which can be obtained by means of a suitable assumption, such as RS1 = 2RS2/3 [24].

Once the parameters of the inductor and switches are identified, the parameters of the capacitor
must be obtained. According to, the ESR of the output capacitor can be calculated as [21],

Rc =
−[Vout,t=0.5·D·Tswitch −Vout,average] · RL

Vout,average
(22)

D being the duty cycle or time period in which the inductor is charged, Tswitch is the inverse of the
switching frequency, and Vout,average is the average value of the output voltage in a period Tswitch.

The currents in the equivalent circuit during TOFF accomplish (23).

IC = C · dVc

dt
= IL − Iout → C ·

∫
dVc =

∫
(IL − Iout) · dt (23)

Next, the voltage in the capacitor is calculated as,

Vc = Vout −VRC = Vout − (IL − Iout) · Rc (24)

and considering two points time instants T1 and T2 = T1 + ∆T, and applying the trapezoidal rule for
approximating the integral in (23), it results in (25).

C · (VC,T2 −VC,T1) =
T2 − T1

2
(IL,T2 − Iout,T2 + IL,T1 − Iout,T1) (25)

Substituting VC from (24) in (25) it results in (26).

C · [Vout,T2 − (IL,T2 − Iout,T2) · Rc − (Vout,T1 − (IL,T1 − Iout,T1) · Rc] =
T2−T1

2 (IL,T2 − Iout,T2 + IL,T1 − Iout,T1) (26)



Electronics 2018, 7, 393 9 of 16

Finally, the capacitance can be calculated from (27) by isolating C in (26).

C =
T2−T1

2 (IL,T2 − Iout,T2 + IL,T1 − Iout,T1)

Vout,T2 − (IL,T2 − Iout,T2) · Rc −Vout,T1 + (IL,T1 − Iout,T1) · Rc
(27)

It is worth noting that (22) and (26) provide, respectively, the ESR and the capacitance of the
smaller output capacitor, since the dynamics during steady state operation is governed by such
a capacitor.

As shown in Figure 4b, as in the case of buck converters, DC-DC boost converters also include
a controller to stabilize and regulate the output voltage Vout according to Vref. Therefore, a transfer
function is used to describe the transient behavior of the control circuit. In the case of analog circuits
whose transfer function has one zero and one pole (TPS61089EVM-742 DC-DC boost converter shown
in Figure 4), it can be expressed as [23],

H(s) =
D(s)

Verror(s)
=

b0 + b1s
a0 + a1s

(28)

where Verror is the error signal and D = Ton/(Ton + Toff) the duty cycle.
The closed loop coefficients ai and bi in (28) are obtained by analyzing the transient data obtained

by means of a fast load change caused by a sudden connection of a resistor in parallel with the load.
Coefficients a0, a1, b0 and b1 will be identified by means of the tfest function of Matlab, as done in [2].

Figure 5 shows a flowchart summarizing the strategy applied to identify the parameters of the
boost converter by means of the experimental signals Vin, IL, Vout and Iout.
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Figure 5. Boost converter. Flowchart of the identification approach proposed in this work based on the
acquisition of experimental signals during steady state and transient operating conditions.

The TPS61089EVM-742 boost converter includes four output ceramic capacitors. Therefore,
the four capacitors can be modelled as equivalent ESR, RC,eq, in series with the equivalent capacitance
Ceq. In this case there is no need to run a parameter sweep to determine RC2 and C2 as there is no
combination of electrolytic and ceramic capacitors, so the identification of the capacitor parameters
is simplified.
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3. Experimental Results

This section summarizes the experimental results attained with the DC-DC buck and boost
converters. For this purpose, the input and output voltages and inductor and output currents were
acquired under steady state and transient conditions.

The non-synchronous TPS40200EVM-002 buck converter (Texas Instruments, Dallas, TX, USA)
and the synchronous TPS61089EVM-742 boost converter (Texas Instruments, Dallas, TX, USA) from
Texas Instruments are analyzed in this section. Experimental data were obtained from these converters.
Whereas the input voltage of the TPS40200EVM-002 buck converter lies within 18–36 V, the input
voltage of the TPS61089EVM-742 boost converter lies in the range of 3–5 V.

A BK Precision 9205 DC power (BK Precision Corporation, Yorba Linda, CA, USA) supply was
used to supply the power converters. Currents and voltages were acquired by means of a four channel
Tektronix MDO3024 (Tektronix, Beaverton, OR, USA; 200 MHz, 2.5 GS/s) digital oscilloscope with two
TCP0030A current probes (Tektronix, Beaverton, OR, USA; 1 mA to 20 A, 120 MHz) and two Tektronix
TPP0250 voltage probes (Tektronix, Beaverton, OR, USA; 250 MHz), as shown in Figure 6.
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Figure 6. Experimental setup including the TPS40200EVM-002 non-synchronous buck converter and
the TPS61089EVM-742 synchronous boost converter, the load, the oscilloscope, power supply and the
voltage and current probes.

3.1. Experimental Results: Buck Converter Parameter Identification

First, the L, RL, RS, C and RC parameters are identified from the IL, Vin, Iout, and Vout signals
acquired under steady state operation with the oscilloscope and current and voltage probes detailed in
Section 3.

Results summarized in Table 1 compare the actual parameter values of the TPS40200EVM-002
non-synchronous buck converter and the identified ones, which were obtained by applying the
approach detailed in Section 2.1 based on the analysis of the steady state and transient signals of
the converter.

The identified value of RLoad was calculated at every time step during steady state as the mean
value of the vector obtained by dividing the instantaneous output voltage by the instantaneous output
current. Results summarized in Table 1 prove that the parameters of the converter were correctly
identified from experimental data, since estimated and actual values are very similar.

Signals IL, Vin, Iout, and Vout were measured during steady state operation and during a load
change by means of a 4-channel oscilloscope. Whereas the experimental signals IL and Vout are shown in
Figure 7a,b, Vin and Iout are not shown because Vin is almost a constant flat line and Iout is proportional
to Vout as a resistive load was used during the experiments. The transient state represented by a sudden
load change was applied by a fast connection of a 2 Ω resistor in parallel with the RLoad = 5 Ω load.
The switching frequency was set to 200 kHz.
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Table 1. Comparison of actual and identified buck converter parameters.

Parameter Variable Actual (Datasheet) Identified

Inductance L 33 µH 35.2 µH
Inductor resistance RL 60 mΩ 55.8 mΩ

Switch S1 RS <105 mΩ 39.1 mΩ
Capacitance (smaller capacitor) C1 20 µF 16.8 µF

ESR of output capacitor (smaller) Rc1 65 mΩ 60.9 mΩ
Capacitance (larger capacitor) C2 440 µF 490 µF

ESR of output capacitor (larger) Rc2 300 mΩ 280 mΩ
Equivalent ESR (large and small capacitors) Rc,eq 56.4 mΩ 54.5 mΩ

Equivalent capacitance (large and small capacitors) Ceq 29.92 µF 25.4 µF
a0 0 −0.010
a1 4.73 × 10−4 1.38 × 10−3

a2 1.55 × 10−9 4.18 × 10−9

Transfer function coefficients of the controller bo 1.0 1
b1 4.70 × 10-4 7.10 × 10−4

b2 0 1.42 × 10−12

Load resistance RLoad 5 Ω 4.997 Ω

Next, parameters in Table 1 are introduced in the PSIM model in order to compare simulation
results attained with the values of the identified parameters against experimental signals. These
results are presented in Figures 7 and 8, which show an outstanding match between experimental
and simulation results. As observed, experimental signals are noisy, so it is important to filter the
experimental signals before the parameter identification stage.
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against simulation results obtained from PSIM simulations performed with the values of the identified
parameters L, RL, RS, C, RC, and the coefficients ai and bi. (a) Inductor current. (b) Output voltage.
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To further validate the approach proposed in this paper, Figure 9a,b show the inductor current
and the output voltage of the buck converter during start up. They compare experimental data against
the results provided by the simulation model considering the identified values L, RL, RS, C, RC, and the
coefficients ai and bi.
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Results from Figure 9a,b show a good match between experimental data and simulated results,
thus validating the approach proposed in this paper.

3.2. Experimental Results: Boost Converter Parameter Identification

First, the L, RL, RS1, RS2, C and RC parameters are identified from the IL, Vin, Iout, and Vout

signals acquired under steady state operation with the oscilloscope and current and voltage probes
detailed in Section 3. Results summarized in Table 2 compare the actual parameter values of the
TPS40200EVM-002 synchronous boost converter and the identified ones, which were obtained by
applying the approach detailed in Section 2.2 based on the analysis of the steady state and transient
responses of converter.

Table 2. Comparison of actual and identified boost converter parameters.

Parameter Variable Actual (Datasheet) Identified

Inductance L 1.8 µH 1.9 µH
Inductor resistance RL 12.6 mΩ 7.5 mΩ

Equivalent ESR (large and small capacitors) Rc,eq 0.65 mΩ 1.06 mΩ
Equivalent capacitance (large and small

capacitors) Ceq 67.0 µF 47.9 µF

Switch S1 RS1 <31 mΩ 10.92 mΩ
Switch S2 RS2 <44 mΩ 16.38 mΩ

a0 0.0 0.1
a1 4.7 × 10−9 5.0 × 10−4

Transfer function coefficients of the controller bo 1.0 1.0
b1 8.18 × 10−5 6.36 × 10−5

Load resistance RLoad 5 Ω 4.969 Ω

Results summarized in Table 2 prove that the parameters of the boost converter were correctly
identified from experimental data, since estimated and actual values are very similar.

Signals IL, Vin, Iout, and Vout were measured during steady state operation and during a load
change by means of a 4-channel oscilloscope. Signals IL, Vin, Iout, and Vout were measured during
steady state operation and during a load change by means of a 4-channel oscilloscope. Whereas the
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experimental signals IL and Vout are shown in Figure 10a,b, respectively, Vin and Iout are not shown
because Vin is almost a constant flat line and Iout is proportional to Vout, as a resistive load was used
during the experiments. A load resistance of 5 Ω was used in open loop conditions, i.e., when dealing
with steady state data. Instead, a load resistance of 10 Ω was applied during transient conditions,
whereas the resistance connected in parallel with this one, to force the load change was also of 10 Ω.
The switching frequency of this converter was 480 kHz.
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Figure 10. Boost converter. Steady state experimental data. (a) Inductor current. (b) Output voltage. 

As observed in the results presented in Figures 10–12, experimental signals are noisy, so it is 
important to filter the experimental signals before the parameter identification stage.  

Time (s)

0 2x10-4 4x10-4 6x10-4 8x10-4 10-3

In
d

u
c

to
r 

c
u

rr
e

n
t 

(A
)

1

2

3

4

5

6

7

Experimental
Identified

 Time (s)

0 2x10-4 4x10-4 6x10-4 8x10-4 10-3

O
u

tp
u

t 
v

o
lt

a
g

e
 (

V
)

8.4

8.5

8.6

8.7

8.8

8.9

9.0

9.1

Experimental
Identified

 
(a) (b) 

Figure 11. Boost converter. Experimental results attained when applying a sudden load change 
against simulation results obtained from PSIM simulations performed with the values of the 
identified parameters L, RL, RS1, RS2, C, RC, and the coefficients ai and bi. (a) Inductor current. (b) Output 
voltage. 

To further validate the approach proposed in this paper, Figure 12a,b show the inductor current 
and the output voltage of the boost converter during start up. They compare experimental data 
against the results provided by the simulation model considering the identified values L, RL, RS1, RS2, 
C, RC, and the coefficients ai and bi.  

Results from Figure 12a,b show a good match between experimental and simulated results, thus 
validating the approach proposed in this paper. 

Figure 10. Boost converter. Steady state experimental data. (a) Inductor current. (b) Output voltage.

Next, parameters in Table 2 are introduced in the PSIM model in order to compare simulation
results attained with the values of the identified parameters against experimental signals. These results
are summarized in Figures 10 and 11, which show an outstanding match between experimental and
simulation results.
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As observed in the results presented in Figures 10–12, experimental signals are noisy, so it is
important to filter the experimental signals before the parameter identification stage.

To further validate the approach proposed in this paper, Figure 12a,b show the inductor current
and the output voltage of the boost converter during start up. They compare experimental data against
the results provided by the simulation model considering the identified values L, RL, RS1, RS2, C, RC,
and the coefficients ai and bi.
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Results from Figure 12a,b show a good match between experimental and simulated results, thus
validating the approach proposed in this paper.Electronics 2018, 7, x FOR PEER REVIEW  14 of 16 
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4. Conclusions 

Electronic power converters play a key role in many applications involving leading industry 
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conditions. Experimental and simulation results based on the white-box models with the identified 
values of the parameters show the feasibility and accuracy of the proposed approach. It is worth 
noting that this approach can be also applied to other electronic converters and devices such as 
passive and active filters. 
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4. Conclusions

Electronic power converters play a key role in many applications involving leading industry
sectors such as naval, aerospace or automotive, among others. Parameter identification is a discipline
focused on determining the parameters of the model of a system to replicate its dynamic behavior from
experimental data. However, it is a challenging task due to the complexity of real systems, and the
wide range of working conditions. This paper has presented a parameter identification approach
for electronic buck and boost DC-DC converters based on white-box models. The parameters have
been identified based on experimental data collected under both steady-state and transient operating
conditions. Experimental and simulation results based on the white-box models with the identified
values of the parameters show the feasibility and accuracy of the proposed approach. It is worth
noting that this approach can be also applied to other electronic converters and devices such as passive
and active filters.
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