
Peer Interest-based Discovery for Decentralized
Peer-to-Peer Systems

Andreea Visan(1), Mihai Istin(1), Florin Pop(1), Fatos Xhafa(2), Valentin Cristea(1)

(1)Faculty of Automatics and Computer Science, University POLITEHNICA of Bucharest, Romania
(2)Department of Languages and Informatics Systems, Technical University of Catalonia, Barcelona, Spain
{andreea.visan, mihai.istin}@cti.pub.ro, florin.pop@cs.pub.ro, fatos@lsi.upc.edu, valentin.cristea@cs.pub.ro

Abstract—The success of content distribution oriented peer-
to- peer systems heavily depends on the resource discovery
mechanism. In case of large-scale distributed systems, this
mechanism must be scalable and robust. The paper proposes a
structured solution for resource discovery in decentralized peer-
to-peer systems, which is guided by peer interest in collaborating
with other peers. The problem of discovering peers of interest
has many applications in file sharing, in data-aware scheduling,
and in optimizing the files and documents downloads. Moreover,
if trust is added as another parameter to define peers of interest,
the interest-based discovery is useful in trusted P2P applications.
We focused on developing the overlay network to ensure a very
small number of messages required to retrieve, insert or delete a
file even in the case of a very large network containing millions
of nodes. In the experimental validation we used OverSim,
a simulation tool for P2P systems. The experimental results
highlight the good performance obtained regarding message
communication and system’s scalability.

Keywords

peer-to-peer, decentralized networks, resource discovery, Oversim

I. INTRODUCTION

Peer-to-peer systems were designed for the sharing of
resources such as content, storage, CPU cycles by direct
exchange between participants, without the intermediation
of a centralized system. The main goals of those systems
refer to the ability to function, scale and self-organize even
in the presence of a high degree of failures and transient
populations of nodes, ensuring to maintain at the same time
high connectivity and performance.

Such architectures have as inherent characteristics scala-
bility, resistance to censorship and centralized control and
increased access to resources. Administration, maintenance,
responsibility for the operation, and ownership of peer-to-peer
systems are distributed among the users. Finally, peer-to-peer
architectures have the potential to accelerate communication
processes and reduce collaboration costs through the ad-hoc
administration of working groups.

The success of a content distribution oriented peer-to-peer
system heavily depends on the peer interest-based discovery
mechanisms involved, on its scalability and robustness. Interest
may be defined in terms of similarity of resources provided,
trust values associated, hardware resources available, etc. The
design of a service and resource discovery is not a trivial task

because we have to deal with several issues such as boot-
strapping, security and privacy, search result ranking, departure
and failure handling and also efficient resource management,
data representation and load balancing. For instance, large-
scale decentralized systems suffer also from problems such
as topology mismatching, pollution, collaboration issues, free
riders and flash crowds.

Our work focuses on peer interest-based discovery in de-
centralized hierarchical peer-to-peer systems, having the main
purpose to provide reduced number of messages sent to
retrieve information about files or chunk files stored by nodes
within the structured network, even for large scale networks,
formed by millions of participants. In [15] some interesting
work on clustering of peers for content search has been done.

The rest of this paper is organized in the following way: Sec-
tion II presents the related work referring to peer interest-based
discovery mechanisms used in different peer-to-peer systems.
Section III briefly introduces the network’s architecture we
focus on in our research. Section IV describes the peer interest-
based discovery mechanism proposed for the decentralized
structured peer-to-peer system previously described. Section
V presents the results obtained using OverSim as simulation
environment. Section VI draws the conclusions.

II. RELATED WORK

This section briefly describes resource and service discovery
mechanisms currently used in different peer-to-peer systems.
The structure of a network refers to the way the overlay
network is created and nodes and content are added [1], [10],
[9]. Depending on their structure, networks can be cataloged
in structured and unstructured.

In an unstructured network [14], the placement of content
is unrelated to the overlay network and thus, it needs to be
located. The searching mechanism ranges from brute force
(for instance, network flooding with queries until the desired
content is located) to random walks and routing indices.
Obviously, this type of search has implications over avail-
ability, scalability and persistence. Unstructured systems are
suitable for accommodating highly-transient node populations.
Representative examples of unstructured systems are Napster
[7], Gnutella [13], Kazza, Publius, FreeHaven, etc.

In order to overcome the scalability issues that unstructured
systems were faced with, structured systems were developed

2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-4237-9/10 $26.00 © 2010 IEEE

DOI 10.1109/3PGCIC.2010.60

363

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. The SOPSys architecture. Tier 1 is represented by a multi-way well-balanced tree having a virtual root. On tier 2, each node maintains the list of
its neighbors, its parent and also one neighbor of its parent, for redundancy.

[6]. The overlay topology is tightly controlled and files or
pointers to them are placed at specific locations. These systems
provide a mapping between content and location in the form
of a distributed routing table. Based on it, queries can be
efficiently routed to the node that stores the desired content.
Structured systems represent a very scalable solution for exact-
match queries. A drawback of this type of peer-to-peer system
is that, in a very transient node population in which nodes
are joining and leaving frequently, it is hard to maintain the
structure required for efficient routing. Examples of structured
systems are Chord, CAN, Tapestry, [11] etc.

Between the class of structured and unstructured systems
we can distinguish another category represented by the loosely
structured systems, in which, although the content location is
not completely specified, it is affected by routing hints. Freenet
is the representative example of loosely structured system.

We are also interested in the way resource registration is
done, considering the following possibilities [8]: registration
at a local server, registration at a unique server (Jini, Napster
[7]), resources cached at node with closest identifier (Chord,
CAN, Pastry) [11] or cached at nodes with a closer identifier
(Freenet [5]).

The query routing method has a great importance and can by
represented by a flood query (Gnutella [13], Jini), backtracking
(DNS), a query forwarding (Freenet [5]), a query to a central
server (UPnP, Napster [7]) or route to node with closest
identifier (Chord, Tapestry, CAN) [11].

Resource naming and queries can be realized in several
ways [8], [12]: using a hash identifier (Chord [11], Tapestry,
CAN, Freenet [5]), string naming and queries (Gnutella [13],
Napster), using directories or attributes (Jini, UPnP). Resource
supported by the peer-to-peer system may be fixed (DNS),
replicated (almost all of the presented P2P systems), mobile
(Jini, UPnP) or dynamic resources (UPnP).

Resource discovery in a peer-to-peer system is influenced

by several factors [4]. First of all, we have to mention
the network topology that can have great influence on the
search mechanism performance or protocol. Also, the overlay
topology construction and topology mismatching have a great
importance. For instance, in theory most of the DHT-based
systems [3] can guarantee that any object in the network
will be located in O(log(n)) steps, where n represents the
number of available nodes in the network. Designing the
resource discovery also has to deal with several issues such
as bootstrapping, security and privacy, search result ranking,
departure and failure handling and also efficient resource
management, data representation and load balancing.

Our research focuses on peer interest-based discovery for
decentralized hierarchical peer-to-peer systems and its aim was
to provide a very scalable mechanism, able to ensure a very
small number of messages necessary to retrieve information
referring to files stored by participants. Our approach considers
the trust to influence the decisions regarding the peer’s position
within the network.

III. PEER DISCOVERY MECHANISMS ASSUMPTIONS

This paper proposes a structured solution for resource
discovery in decentralized hierarchical peer-to-peer systems.
The architecture we focused on in our research is the one
proposed in the SOPSYS project in the case of content
distribution networks. This section briefly introduces its main
characteristics and design considerations.

Figure 1 presents the multi-tier architecture for this type
of self-organizing peer-to-peer system, architecture organized
according to the trust value associated with participants. The
first tier is organized as a well-balanced multi-way tree and is
used for the message routing and resources discovery. In our
example, the overlay network branching factor is considered
equal to 4. The root of the network represents in fact a virtual
root (named 0000 in Figure 1). The naming mechanism is
based on the topology of this tier.

364

Fig. 2. Peer Discovery Mechanism in Structured P2P Networks, considering that the branching factor is equal to 4. a) For the first level in the overlay network,
the domains are delegated similar to Chord, uniformly distributed. b) When E joins the network, he will be delegated by his parent A to be responsible for a
chunk of his parent previous domain. c) B completes his level of children, thus, his previous domain is uniformly distributed between him and his children.
K also receives from his parent E a file sub-domain.

Fig. 3. Operation within a Structured Peer Discovery. When one peer want to search, insert or delete a file that doesn’t belong to his parents’ domains, the
request should be forwarded by its ancient from the first overlay level to the corresponding node on the same level (message 2), and then, to the node on a
higher overlay level delegated with the file hash (message 3).

The second tier contains two types of links for each node:
links to all nodes that are placed within the same cluster and
one link to a random sibling of its parent. In addition, each
node will also hold a list of active links to some other nodes
with which it has recently interacted.

Each node will have associated a trust value, computed
based on feedbacks given by its partners, according to its
availability, response time, bandwidth etc. The node chosen as
root will be the most trustworthy. It will also be responsible
for making the list of most trusted nodes publically available
through a web site, but it will not be part of the routing process
as it could cause a bottleneck.

The node naming maps to the multi-way tree architecture.
For each node the corresponding identifier will be a fixed size
sequence of slots, one for each tree level. For a node N , placed
on the kth level in the topology, its identifier will have the
same prefix as his parent for the first k − 1 slots, a number
representing the connection order of the child to its parent
placed on slot k, and the rest of slots will be 0.

Each peer maintains a local cache containing information
about its parent (from tier 1), its neighbors (from tier 2),
a randomly chosen neighbor of its parent (to ensure fault
tolerance) and also information about different peers to whom
it had recently interacted.

Files in our content distribution peer-to-peer network will
be retrieve according to their 160-bits hashes, computed using
the SHA-160 algorithm. One or more nodes are responsible
to store information about the existence in the network of a
certain file.

IV. SEARCH MECHANISM FOR DECENTRALIZED
STRUCTURED PEER-TO-PEER SYSTEMS

We consider that each peer connected to the network is
responsible to respond to requests regarding files having
certain hashes.

Each peer newly connected to the network receives from its
parent a subset of keys to be responsible for. The responsibil-
ities will be delegated in the following manner:

365

• For all nodes connected on the first level in the overlay
network (nodes A,B,C,D in Figure 2a), keys are uni-
formly distributed to nodes, similar to the Chord network.
Generally, these are pre-trusted nodes, belonging to the
developers and dedicated to the network.

• For all nodes connected on a higher level, their domain
represents a sub-domain of its parent domain, similar to
Figure 2b,c. A parent uniformly splits its domain into
k + 1 sub-domains, where k represents the branching
factor of the overlay network. Each child will receive
from its parent one of these domains, order according
to their entrance into the network. For each sub-domain
currently unassigned to another peer, the parent continues
to be responsible for.

After its entrance within the network, a node will know
its own domain, its neighbors’, children’ and direct parent
domains. Nodes connected on the first level on the overlay
network are able to forward messages between nodes respon-
sible to different hashes domains.

Figure 2 represents an example of domain assignment,
considering for the sake of simplicity the branching factor k
equal to 4. Nodes A,B,C and D are those connected on the
first level on the overlay network. The domain of the files
hashes denoted by D is uniformly distributed between them.
Generally, those nodes are pre-trusted nodes, dedicated nodes,
which can belong to the network developers, etc.

D = DA

⋃
DB

⋃
DC

⋃
DD, |DA| = |DB | = |DC | = |DD|

For all nodes connected to a higher level on the overlay
network, the parent assigns to him a sub-domain. For instance,
node E receives from its parent A, F,G from B are so
on. Considering that the branching factor is equal to 4,
k · |DE | = |DA| after E joins the network and considering
that E is the only one child of A. When a parent completes
a level of children, for instance, the situation of node B in
Figure 2c), the following relation is valid:

|DB | = |DF | = |DG| = |DH | = |DI |

This schema of domains assignments assures the following
property: The smaller the level in the overlay network, the
greater the number of files a node is responsible for.

Thus, one node placed on a lower level in the overlay
network, thus having a smaller trust value, will have associated
a smaller number of files to be responsible for. A more
trustworthy node will have associated a greater number of files
than a less trustworthy node.

Each peer maintains a local information about the subset
of files assigned to him, containing information structured in
the following way: < FileName,ListOfSources >, where
FileName denotes the hash of the file and ListOfSources
the list of nodes that provide the resource. There is also the
possibility to maintain not files locations but files themselves;
this solution is discussed further in this paper.

Each operation that can be executed on a file (search, insert
or delete) requires a number of O(logk(N)) messages to be

sent from the requestor to the node responsible for the file’s
hash domain, where:

• N denotes the total number of nodes currently connected
to the peer-to-peer network.

• k represents the branching factor.
This states because the joining algorithm (out of the scope

of this paper) ensured that the overlay network is permanently
kept as a well-balanced multi-way tree.

Algorithm 1 FILEOPERATION(FILE, OP, SOURCE)
1: {myDomain denotes the file hashes domain associated

with the current node}
2: {file represents the hash of the file we want to search,

insert or delete}
3: {source represents the overlay identifier of the request’s

source}
4: if file.isPartOf(myDomain) and !childResponsibleFor(file)

then
5: if op = INSERT then
6: save locally the association between the file and its

address (provider)
7: end if
8: if op = DELETE then
9: delete the association between the file and the place

earlier associated, if permitted
10: end if
11: if op = SEARCH then
12: return to the requestor the list of nodes providing the

resource
13: end if
14: else if file.isPartOf(myChildrenDomains) then
15: send the request to the corresponding child
16: else if file.isPartOf(myNeighborDomains) then
17: send the request to the corresponding neighbor
18: else
19: send the request to my parent
20: end if

A request trace example is presented in Figure 3 where node
J wants to search for, insert or delete a file having the hash
within the domain of B’s subtree, namely in the F’s domain.
As node J has information only about its own domain and all
domains for its children and neighbors (inexistent here) and its
parent’s domain and the file is not part of one of these domains,
the request should be forwarded to the parent (message 1 in
Figure 3). Node C, placed on the first level in the overlay
network forwards the request received from its children J to
node B because the requested file is placed within B’s domain
and C is aware about it. The request is further forwarded until
it reaches the node responsible for the file’s hash, node F in
our example. The algorithm is detailed in Algorithm 1.

The search mechanism within a structured network guaran-
tees that if a file exists in the network, it will be found by any
requestor, considering that the node that stores the file address
and also the node that stores the file itself are online.

366

TABLE I
MAXIMUM NUMBER OF MESSAGES REQUIRED TO RETRIEVE, INSERT OR DELETE A FILE IN THE STRUCTURED NETWORK

Branching factor Number of completed Total numbers of nodes Number of messages
(k) levels (N)

16 4 69,904 7
16 5 1,118,480 9
32 4 1,082,400 7
32 5 34,636,832 9

TABLE II
SIMULATION SETTINGS

Network Branching factor (k) of the overlay network 16
Number of overlay levels 5
Total number of nodes within the network uniform random distribution over [40000, 69904]

Content distribution Number of distinct files provided by one peer uniform random distribution over [0,1000]
Files hashes uniform random distribution over the 160-bits domain

Simulation Number of simulation steps 50

A. Data Replication

Our schema of files assignment ensures that a peer placed
on a higher level within the overlay network, (thus having
associated a higher trust value), will store information about
a larger chunk of files than a peer placed on an inferior level,
with a smaller trust value.

We consider one node to be responsible for storing locations
of files with hashes within its hashes interval, interval for
which it has been delegated by its direct parent from the tier 1
network. There is also the possibility to store files themselves
but this approach supposes a great amount of data to be sent
over the overlay network and does not eliminate the problem
raised by unforeseeable disconnections of participants.

A very important aspect that we have to take into account in
our peer interest based discovery is to replicate the information
about files that can be provided by peers. We considered the
following approach: information stored by a peer is replicated
at its direct parent, if applicable. An unannounced disconnec-
tion of one peer placed on level l for instance, will cause
any loose of information because the same information is
replicated on the higher level, l − 1.

In the situation of wanted disconnection of a peer placed on
the last level of the network, the node in discussion sends a
notification to its parent to announce its intention and to trigger
the process of information replication on the first higher level,
namely to the parent of its parent within the overlay network.
If the node who wants to disconnect is place on a higher level,
its place will be taken by its most trustworthy child.

V. EXPERIMENTAL TESTING

Experimental testing was made using Oversim [2], an open-
source overlay and peer-to-peer network simulation framework
written in C++. It is a very flexible and modular simulation
framework (its architecture is represented in Figure 4) and can
simulate any number of hosts.

The overlay message handler provides an RPC interface to
facilitate dealing with timeouts and packet retransmission due

to packet losses. All of the underlying network models have
a consistent UDP/IP interface to the overlay protocols. The
graphical interface of OMNeT++ is used to display overlay
and underlay topology and all network packets in detail.

Fig. 4. Modular Architecture of Oversim (source: [2])

Table I presents the maximum number of messages required
to retrieve information about one file within a structured
network having the architecture presented in Section III. As
previously mentioned, this number of messages depends on
the branching factor of the network and on the total number
of nodes currently connected in the network. This maximum
number of messages (denoted by #messages) is computed
using the following formula:

#messages = 2 · dlogk(N)e − 1

where k and N have the same meanings as previously men-
tioned. The maximum number of messages is encountered in
the following situation (that is presented in Figure 3):

• The file requestor is placed on the last level of the overlay
network.

• The node responsible to store information about the
requested file is also placed on the last level of the overlay
network.

• The ancients of these two nodes placed on the first level
of the overlay network are different nodes.

Experimental testing has been done in the simulation set-
tings presented in Table II, for a medium size network contain-
ing about 50,000 nodes. Each node provides a random number

367

(between 0 and 1000) of files. In each of the 50 simulation
cycles, a randomly chosen node generates a request for a
randomly generated file key. Figure 5 presents the number
of messages sent in order to retrieve information about the
file existence and in case of existence, its providers’ overlay
addresses. As expected, the number of sent messages in each
simulation step is limited by 2 · dlogk(N)e − 1, namely 9,
considering the simulation settings described in Table II.

Fig. 5. Experimental results for networks set according to Table II

Fig. 6. Average number of messages for fixed networks

Fig. 7. Average number of messages for increasing networks

Figure 6 presents the average number of messages required
to retrieve information about the searched files. The average
number for all experiments is equal to 4.48 messages, a
reduced number of messages, taking into account the network
size. One simulation cycle measures the average over 50

simulation steps. Figure 7 presents the average number of
messages for different sizes of the network, exponentially
increasing, considering k = 32.

VI. CONCLUSIONS

This paper proposed a peer interest-based discovery mecha-
nism for decentralized structured peer-to-peer systems, focus-
ing on network having the overlay organized as a multi-way
well-balanced tree with virtual root. We ensure a very good
performance and scalability, our schema requiring a reduced
number of messages sent in order to retrieve information about
stored files, even in large scale networks, taking maximum
advantage on the hierarchical structured, organized according
to the trust values associated with participants.

ACKNOWLEDGMENTS

The research presented in this paper is supported by na-
tional project ”DEPSYS - Models and Techniques for en-
suring reliability, safety, availability and security of Large
Scale Distributes Systems”, Project ”CNCSIS-IDEI” ID: 1710
(618/15.01.2009).

REFERENCES

[1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey
of peer-to-peer content distribution technologies. ACM Comput. Surv.,
36(4):335–371, 2004.

[2] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A
Flexible Overlay Network Simulation Framework. In Proceedings of
10th IEEE Global Internet Symposium (GI ’07) in conjunction with
IEEE INFOCOM 2007, Anchorage, AK, USA, pages 79–84, May 2007.

[3] Andrew Brampton, Andrew MacQuire, Idris A. Rai, Nicholas J. P. Race,
and Laurent Mathy. Stealth distributed hash table: a robust and flexible
super-peered dht. In CoNEXT ’06: Proceedings of the 2006 ACM
CoNEXT conference, pages 1–12, New York, NY, USA, 2006. ACM.

[4] Adeep S. Cheema, Moosa Muhammad, and Indranil Gupta. Peer-to-peer
discovery of computational resources for grid applications. In GRID,
pages 179–185, 2005.

[5] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46, 2001.

[6] Sameh El-Ansary and Seif Haridi. An overview of structured overlay
networks. In Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless and Peer-to-Peer Networks. CRC Press, 2005.

[7] Nic Garnett. Digital rights management, copyright, and napster. SIGe-
com Exch., 2(2):1–5, 2001.

[8] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri Mähönen.
A survey on resource discovery mechanisms, peer-to-peer and service
discovery frameworks. Comput. Netw., 52(11):2097–2128, 2008.

[9] Rozlina Mohamed and Siti Zanariah Satari. Resource discovery mech-
anisms for peer-to-peer systems. Computer and Electrical Engineering,
International Conference on, 2:100–104, 2009.

[10] John Risson, Tim Moors, John Risson, and Tim Moors. Survey of re-
search towards robust peer-to-peer networks: Search methods. Technical
report, Computer Networks, 2004.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the ACM SIGCOMM ’01 Conference,
San Diego, California, August 2001.

[12] Girish Suryanarayana, Richard Taylor, and Girish Suryanarayana. A
survey of trust management and resource discovery technologies in peer-
to-peer applications, 2004.

[13] The Gnutella Protocol Specification v0.4. 2003.
[14] S Chandra W Acosta. Unstructured peer-to-peer networks - next

generation of performance and reliability. 2005.
[15] Fatos Xhafa, Leonard Barolli, Enric Jan Villoldo, and Santi Caball.

Evaluation of p2p multimedia clustering techniques in jxta-overlay.
Multimedia Syst., 15(5):283–293, 2009.

368

