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A B S T R A C T

This paper proposes a novel fractional proportional-resonant controller, which applies fractional order calculus
to the well-known proportional-resonant controllers. The focus of the study is the current control loop of voltage
source converters. The main merit of the proposed fractional controller formulation lies into the use of fractional
exponents in the integro-derivative parts obtaining a controller with an extra degree of freedom. This degree of
freedom allows the phase delay to be improved for a wide frequency range in comparison with the conventional
proportional-resonant controllers. Furthermore, the obtained controller results in a lower order transfer function
that reduces the computational burden when multiple current frequencies have to be tracked. As fractional
integro-derivative exponents are not directly implementable, five mathematical approaches are explored, se-
lecting the Chareff’s approximation for the fractional controller operator’s implementation. A tuning procedure
for such a controller is also addressed. The new controller formulation is validated in a 20 kVA laboratory set-up
based on a silicon-carbide converter, and it is implemented in a DSP. Two AC output converter’s configurations
are considered to demonstrate the controllers’ tracking capability; short-circuited (balanced fault) output, and
grid-connected operation. This last case is evaluated operating as active filter and delivering fundamental
component to a non-ideal grid.

1. Introduction

Current regulation in voltage source converters (VSC) for AC ap-
plications, such as motor drives, parallel active filters, wind turbines,
static synchronous compensators and photovoltaic inverters, is a key
and an underlying challenge. Several control strategies and im-
plementation schemes can be found in the literature focused on dif-
ferent points of view; hysteresis control, internal model control (IMC),
digital deadbeat, and rotating frame control (based in Park transforms)
[1–8], among others. However, proportional-integral controllers (PI)
and proportional-resonant controllers (PR) are shown as the most ex-
tended candidates.

When a synchronous reference frame (SRF) is applied, i.e. Park
(dq0) transform, it is common to regulate the current using conven-
tional PIs. Some recent efforts demonstrate that are a good option to be
applied on voltage source converters connected to balanced and un-
balanced grids [9–11]. The main drawback of this solution is the high
computational burden when multiple frequencies and both positive and
negative sequences need to be controlled, due to the mathematical

transformations required to obtain null error at the desired frequencies
[12].

A common alternative to the PI-SRF is the use of stationary re-
ference frames, i.e. the natural reference (abc) or the Clarke transform
(αbγ), where the so-called PR [13–15] can be employed. Whereas PI
controllers present infinite gain at 0 Hz, PR controllers have infinite
gain at their resonant frequency ω0. A PI controller
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implemented in a positive-sequence synchronous frame is not
equivalent to a PR controller in stationary frame
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being kp and ki the controller’s gain constants. In fact, it is the combi-
nation of a PI controller in a positive-sequence synchronous frame and
another PI controller in a negative-sequence synchronous frame what
makes it equivalent to a PR controller in stationary frame, both in
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steady-state and transient conditions [16,17]. Consequently, taking into
account the feature of compensating for both positive and negative
sequence components simultaneously, PR controller are able to deal
with unbalanced three-phase systems [14,18]. PR controllers present
narrow bandwidths around the resonant frequency. Some authors as in
Refs. [19,20] compare the performance obtained between the choice of
selecting PI or PR controllers. Several alternatives are available re-
garding the discretization of the PR controller, which is specially sen-
sitive to this process. This is extensively detailed in Ref. [21]. Related
alternative control options can be found in the literature, such as se-
quence-decoupled resonant controllers [22] and complex-vector pro-
portional-integral (CVPI) controllers [23,24]. Moreover, for large va-
lues of ω0, the delay caused by the sampling time and the modulation
can affect the system performance and the stability. Adding a phase
lead in the standard PR transfer function can compensate for the
mentioned delay [25].

On the other side, the fractional order calculus (FOC) was first
proposed in 1695 by Leibniz and L’Hôpital, when a half-order deriva-
tive was mentioned. The FOC is a generalization of integration and
differentiation considering non-integer orders. Rational, irrational or
even complex orders might be considered. This generalization allows
for a more accurate description in the modelling of real systems. When
the modelled system is analysed from a control point of view, four
options can be combined: (i) integer-order plant and integer-order
controller, (ii) integer-order plant and fractional-order controller, (iii)
fractional-order plant and integer-order controller and (iv) fractional-
order for both plant and controller. In 1999 the fractional derivatives
and integrators were used for the first time in the control field [26].
Podlubny proposed the fractional order PIλDμ controller [27], being λ
and μ the non-integer order coefficients for the integrator and the de-
rivative terms in the s Laplace domain with respect to a conventional
PID controller. Since then, PIλDμ controllers have been used for control
purposes [28–31]. Also, examples of fractional calculus applied to re-
petitive controllers can be found [32]. These controllers provide extra
degrees of freedom that can improve the dynamic response.

To the best of the authors knowledge, the combination of the well-
known concepts of FOC and PR controllers has not been addressed in
the literature until the authors proposed some preliminary results in
Ref. [33]. The present paper analyses the potential benefits that lie
behind this specific controller formulation in an exhaustive way, not
only extending the analysis addressed in Ref. [33] but also proposing a
tuning methodology, comparing different type of controllers and pre-
senting more results (simulations and experiments). In this sense, the
fractional proportional-resonant (FPR) controller proposal is presented
in the continuous time domain and applied to the current control loop
of a VSC. Essentially, this new controller contributes with one extra
degree of freedom that allows an extension of the frequency bandwidth
range, thus increasing the tracking capability of the system in steady-
state and transiently in comparison with the conventional PR con-
troller. This means that a certain range of frequencies can be effectively

Fig. 1. Schemes concerning resonant controllers.

Fig. 2. Bode diagram of a fractal integrator
s
1 , being α swept from 0 to 1.
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controlled in steady-state with a single controller, not being necessary
to include a resonant controller for each frequency (i.e. fundamental
frequency and different harmonics) as in the PRHC case.

However, the new controller’s formulation is not directly im-
plementable due to the fact that the obtained transfer function is a non-
rational polynomial in s (Laplace variable). Thus, five different math-
ematical approaches are analysed and compared, suggesting Chareff’s
approximation as an adequate solution. Also, a tuning procedure is
addressed in order to select suitable parameters for the controller.
Finally, the controller is tested with simulations and a real laboratory
test bench by means of a four-wire inverter under different conditions.
Two different output configurations are used to prove the performance
of the FPR controller; one is connecting the AC outputs terminals in

short-circuit, and the other one is operating the inverter connected to
the grid. This last scenario is in turn divided into two functionalities;
one as an active filter, and the other one just delivering fundamental
current but with a distorted grid. In this sense, balanced and un-
balanced conditions are assumed for the performance evaluation. Some
previous results of the enhancement obtained with the proposed FPR
controlled where presented in Ref. [34] (European Union seventh fra-
mework programme FP7-ICT-2013-11-Smart Rural Grid-).

Bearing in mind the aforementioned aims, the paper is structured as
follows. First, Section 2 introduces the FPR controller formulation.
After, the tuning procedure and the implementation challenges are
disclosed in Section 3. Then, a stability and sensitivity analysis of the
new controller formulation is developed in Section 4. Experimental

Fig. 3. Bode diagram of the FR
+

s
s

0
2

0
2 , being α swept from 0 to 2. Fig. 4. Bode diagram of the FR

+
s

s
0

0
2 , being α swept from 1 to 4.

D. Heredero-Peris et al. Electric Power Systems Research 166 (2019) xxx–xxx

3



implementation in a test platform and the results obtained are detailed
in Section 5. Finally, the conclusions are summarized.

2. The fractional resonant controller contribution

This section presents the influence of non-integer order coefficients
applied to stationary frame controllers. The conventional PR transfer
function is illustrated and the result of adding the fractional exponents
on different parts of the transfer function is compared.

2.1. Conventional proportional-resonant controller formulation

The transfer function of the conventional PR controller, also known
as second order generalized integrator (SOGI), contains two poles lo-
cated at± jω0, being ω0 the resonant frequency, i.e. the controlled
frequency with zero steady-state error. Fig. 1 illustrates two different
implementations of the PR controller. An ω0 gain can be included in the
numerator (Fig. 1(b)), which is useful for quadrature signal generation
[35,36]. Hereinafter, the formulation used will be the one shown in
Fig. 1(b). When multiple frequencies regulation is required, harmonic
compensators (HC) are added to the main PR controller, obtaining the
PRHC controller transfer function
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being kp, ki and kih the proportional and the integral gains of each re-
sonant term, respectively, h the harmonic component of the funda-
mental frequency ω0 and n the highest harmonic component to be
controlled. The kih factor is obtained dividing ki by h in order to com-
pensate for the additional gain provided by ωh, thus scaling all integral
gains equivalently [37]. Different tuning methods for the controller
gains can be obtained by means of either time response [36] or fre-
quency specifications [38,17,39].

2.2. The fractional resonant controller formulation

The motivation behind using integro-differential operators is con-
cerned with frequency domain analysis. The fractional integrator (FI)
term s−α (α ∈ ) has infinite gain at 0 rad/s and less delay than a
conventional integrator s−1 at higher frequencies. If α ∈ [0,1] the phase
shift provided by s−α is α times lower than s−1. The gain decreases
proportionally as α is reduced from 1 to 0. Fig. 2 illustrates this beha-
viour for different ideal FIs in the frequency domain. The key angular
frequency in the gain diagram is ω = 1 rad/s or f = 0.15915 Hz.
Therefore, if α increases, the gain is higher for angular frequencies
below 1 rad/s, and lower for frequencies above 1 rad/s. The contrary
happens if α decreases.

Now, if the sα term is combined with the ordinary PR formulation
(3), the obtained fractional resonant (FR) controller can be either

described by (4) or (5)
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On one hand, when (4) is considered, if the fractional exponent is
swept from α ∈ [0,2], it can be seen that the infinite gain is maintained
at ω0 (Fig. 3) because the denominator remains unchanged. However,
the fact of changing the numerator brings more gain near ω0 when α ∈
(1,2], as depicted in Fig. 3(a). Furthermore, the gain shift for higher
frequencies (Fig. 3(b)), shows a behaviour similar to the FI depicted in
Fig. 2(b). When α ∈ [0,1), poorer tracking capabilities are expected in
comparison with the α = 1 case. For α > 2, the phase shift at ω0

changes from lagging to leading. Due to this reason and in order to
avoid stability issues, α > 2 case is excluded from the scope of this
work. Moreover, it should be noted that the key factor for tracking a
signal properly is that the phase delay has to be as small as possible. In
this sense, (4) becomes an interesting alternative to PRHC formulation.

On the other hand, considering (5), with α ∈ [1,4] it can be observed
that the infinite gain is lost and displaced (Fig. 4). Thereupon, (5) is
rejected as a suitable controller for tracking sinusoidal waveforms.

3. Tuning method and implementation of fractional proportional-
resonant controllers

This section focuses on the current control loop of a VSC using the
controller based on (4). Accordingly, Fig. 5 shows a conceptual scheme
of a VSC with an L-type coupling filter connected to an external AC
voltage source or a load. From now on, this will be the system con-
sidered for the analysis, being iL the regulated current.

First of all, the new fractional proportional-resonant (FPR) con-
troller is presented. Then, the tuning procedure is introduced and dif-
ferent variations over the hardware and software parameters are ana-
lysed in the frequency domain through Bode diagrams. Note that the
present proposal based on (4) is not directly implementable in the La-
place s-domain, but it can be analysed mathematically computing the
gain and phase in the frequency domain.

3.1. The fractional proportional-resonant controller

According to the aforementioned disclosures in Section 2.2, the
combination of (4) with a proportional controller results in the FPR
controller

= +
+

FPR s k k s
s

( ) p i
0

2
0
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being kp and ki the proportional and integral gains.

Fig. 5. VSC inverter with an L-type coupling filter.

Table 1
Parameters used in the study.

Parameter Value Units

Lb 500 μH
Rb 50 mΩ
Settling angular frequency (ω0) 100π rad/s
Settling time (ts) 2.5 ms
Damping factor (ξ) 0.95
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Fig. 6. Closed loop Bode diagram when the FPR parameters are swept.
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3.2. Frequency response closed loop analysis

The closed loop (CL) transfer function of the system consisting of the
FPR controller and the plant, assuming a feed-forward structure to
compensate for vc, is
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k k
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2

0
2

0
2

0
2 (7)

Fig. 7. Closed loop Bode diagram when the VSC inverter parameters are swept.

Fig. 8. Sensitivity control scheme.
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Fig. 9. Bode diagram comparison when different continuous time approximations of sα are applied.
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The output inductance L also contains an equivalent series re-
sistance R. The superscript * indicates set-point. Regarding the FPR
controller tuning procedure, three parameters can be considered: (i) kp
gain, (ii) ki gain and (iii) non-integer exponent α. This last parameter
provides an additional degree of freedom that allows for one extra
condition to be imposed to the system dynamics response.

First of all, the effect of the hardware and software parameters on
the CL frequency response is studied. The values used are summarized
in Table 1. Thereupon, according to the time response tuning procedure
presented in Ref. [36] for conventional discrete-time PR controllers,
kp = 1.44 and ki = 4.28 are obtained, with a sampling frequency of
30 kHz. As the objective of this section is to use some kp and ki gains as
pattern values, the base values will be kpb = 1 and kib = 5.

Fig. 6 depicts the CL Bode diagrams of (7) when the controller
parameters are modified:

• α variation. It can be seen in Fig. 6(a) and (b) that the frequency
behaviour is improved over conventional PR controllers (αb = 1).
The higher the α value, the wider the controllable bandwidth and
the lower the delay obtained. Moreover, the resonance peak at low
frequencies (≃10 rad/s or 1.5915 Hz) and the bandwidth are in-
creased for high values of α. Also, a lead phase peak appears at low
frequencies.
• kp variation. Fig. 6(c) and (d) show an almost unaltered frequency
behaviour. However, if the kp increases a displacement to lower
frequencies and a gain magnification of the peak in the phase plot
can be observed.
• ki variation. Fig. 6(e) and (f) show that higher ki gains lead to a
displacement of the gain excitation peak to the right side, whereas
the lead phase region is displaced to the left. However, note that the
differences are minor.

On the other hand, Fig. 7 depicts the CL Bode diagrams of (7) when
the plant parameters are modified. This analysis permits to examine the
effect on the frequency steady-state response when an error on the
system parametrization is made or a variation of the parameters occurs
during operation. Thus, if the system parameters are modified:

• L variation. Fig. 7(a) and (b) illustrates that when L is increased,
with the rest of parameters kept constant, the frequency behaviour
worsens. The higher the error above Lb, the lower the steady-state
features. It should be remarked that the low frequency region
(below 100π rad/s or 50 Hz) is almost unaffected.

• R variation. Fig. 7(c) and (d) shows the frequency response when the
equivalent series resistance is modified. Note that this case presents
opposite results with respect to the ones presented in the L variation
analysis. In this case, the high frequency region (above 100π rad/s
or 50 Hz) is almost unaffected.

3.3. Stability effect of α

A stability analysis of current and voltage resonant controllers for
VSC is derived in Ref. [37]. In the particular case of current control
loop, it is demonstrated that in continuous time the system is always
stable, independently of the plant parameters (inductance or parasitic
resistance) or of the PR parameters (proportional or integral gain).
However, this results are addressed only for integer s variables. In this
section, the same analysis from Ref. [37] is done, extending it for the
FPR formulation shown in (6). The open loop transfer function is

=
+ +

+ +
O s

k s k s
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2
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2
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2i (8)

The significant frequency values of the Nyquist plot are:

• ω = 0 (Start point). =OL j( ( ))i
k
R
PiR and =OL j( ( )) 0iJ .

• ω = ω0 (Resonance). = ±OL jlim { ( ( ))}i0 R and
= ±OL jlim { ( ( ))}i0 J , following an asymptote with

+

( ) ( )
( ) ( )

R L

R L

sin cos

cos sin
2 2

2 2

slope. An infinite clockwise encirclement takes

place at this frequency because of the π phase lag inherent to the
resonant term.
• ω →+∞ (End point). =+ OL jlim { ( ( ))} 0iR and

=+ OL jlim { ( ( ))} 0iJ .

3.4. The tuning procedure

According to the results shown in Section 3.2, it can be deduced that
the proper selection of an α value can be used to improve the control
tracking response of an alternating signal. Hence, the following tuning
procedure is suggested:

1. Tune a conventional PR controller (without HC) either with time
domain or frequency specifications, such as the ones presented in
Refs. [36,38]. Then, the base kp and ki gains are obtained.

2. Depict the different Bode plots considering α from 1 to 2 using the kp
and ki gains obtained in step 1.

3. Select one α value according to a desired delay at a higher frequency
above ω0.

4. Examine a proper approximation to the sα−1 term that makes im-
plementable the non-integer part of (6).

5. Check whether the selected α presents robust behaviour if the
system parameters (L and R) are improperly modelled. Different
alternatives can be considered. In this case, the use of zero pole
maps and root locus will be considered. It is also recommended to
consider a sensitivity analysis. The sensitivity transfer functions that
can be obtained (see Fig. 8), are described by

=
+

S s
C s G s

( ) 1
1 ( ) ( ) (9a)

=
+

T s C s G s
C s G s

( ) ( ) ( )
1 ( ) ( ) (9b)

Table 2
Summary of the used continuous time fractal approximation parameters.

Approximation method Parameter Value Units

CFE Order 5 –
T 0.05 –

Carlson i 2 –

Matsuda k 8 –
ωk 1–1000 rad/s

Oustaloup ωb 0.001 rad/s
ωh 1000 rad/s
N 2 –

Chareff pT 1 –
y 2 dB
n 4 –
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Fig. 10. Bode diagram comparing the PRHC controller (3th, 5th and 7th compensators) and the proposed FPR controller with α = 1.5.
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being S(s) the conventional sensitivity, T(s) the complementary

sensitivity (CL transfer function), Si(s) the input sensitivity and Su(s)
the control sensitivity.

6. Check the correct tracking response on simulations.

Note that a fundamental aspect while tracking an electrical signal is
to eliminate the phase delay when several harmonic components have
to be regulated. It is also possible to select a new α in step 3 to set the
gain at a particular high frequency but, as it has been mentioned, it is
more effective to modify the frequency response in terms of delay.

3.5. Implementation

As mentioned before (step 4 of Section 3.4) the implementation of
the FPR controller is not directly feasible due to the non-rational be-
haviour of the transfer function. For this reason, it is necessary to apply
an implementable form of the controller by means of an approximation
with integer exponents. Several references [40–42] propose different
approximations of the term sα. The following list summarizes the most
relevant ones:

• Continued fraction expansion (CFE). For ωT > > 1, the expan-
sion of (10) is considered, whereas for ω < < 1, the equation that has
to be expanded is (11), being ω the angular frequency and T a scale
factor.

=
+

G s
sT

( ) 1
(1 )h (10)

= +G s
s

( ) 1 1
l (11)

• Carlson’s approximation. Carlson proposed a method derived from
Newton’s approximation to obtain an iterative formula for the α-root.
The method begins with the following condition:

=H s G s( ) ( ) 01/ (12)

Defining α = 1/q, m = q/2, and considering H0(s) = 1, the approx-
imation for the i-th iteration is defined by
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+ +
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• Matsuda’s approximation. It is a CFE with function values known
at some frequencies ωk (k = 0, 1, 2, …, n):
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The frequencies are obtained by means of a logarithmic spaced set.
• Oustaloup’s approximation. This approach is calculated as a ra-

tional function considering H(s) = sδ (δ ∈ +):

+
+=

H s C s
s

( ) 1 /
1 /k N

N
k

k (15)

being 2N + 1 the number of total poles or zeros. It is possible to
compute the recursive formulation using the following set of inter-
mediate relations:

= =C u

h

l

u (16a)

Fig. 11. Closed loop Bode diagram zoom when the α are swept in (7).
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Fig. 12. Approximation comparison for the term sα− 1 in the CL.
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with =u h l being the unit gain frequency and the frequency band
midpoint of a band of frequencies geometrically distributed around it.

• Chareff’s approximation. If the desired transfer function has the
form of

=
+( )H s( ) 1

1 s
pT (17)

the proposed approach is based on the factorization
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being pT a gain factor. The coefficients are chosen to set a maximum
deviation in magnitude of y decibels with respect to the ideal response.
The intermediate required values are

=a 10
y

10(1 ) (19a)

=b 10
y

10 (19b)

=c 10
y

10 (1 ) (19c)

being the poles and the zeros of the approximation

=p p bT0 (20a)

=p p ab( )i
i

0 (20b)

=z ap ab( )i
i

0 (20c)

The number of zeros and poles is related to the bandwidth

= +
( )

N
ab

log

log( )
1

p
max

0

(21)

All the mentioned continuous time approximations have been
compared in Fig. 9 in order to select those more suitable for control
purposes. The comparison is based on the CL transfer function from (7),
with the parameters detailed in Table 1, setting α to 1.5. Table 2 shows
the parameters used for each approximation.

It can be seen that in terms of overshoot, the best ones are CFE and
Chareff’s approximations. In terms of gain bandwidth, the best ones are
CFE, Chareff’s and Matsuda’s approximations. Finally, in terms of phase
all options offer good response up to 1000π rad/s (500 Hz), but it could
be assumed that Carlson’s approach is the less convenient option. Then,
hereinafter, the Chareff’s approximation is considered as the best al-
ternative.

4. Performance of the fractional proportional-resonant controller

This section analyses the steady-state frequency response differ-
ences between the conventional PRHC and the proposed FPR controller.
The tuning procedure proposed in Section 3.4 is applied and the results
obtained are discussed. Also, a general comparison between the most
common controllers is addressed at the end of this section.

4.1. Steady-state frequency comparison

Fig. 10 shows a frequency comparison (steady-state analysis by
means of their Bode plot) between an FPR and a PRHC controller
compensating for the odd harmonic components up to the 7th. The
different PRHC kIh gains can be obtained from Table 1 considering that

Fig. 13. Zero-pole map analysis. Base values are multiplied by a scale factor
from 0.2 to 2 in steps of 0.2.
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Fig. 14. Root locus. The K factor that multiplies the open loop transfer function is swept from 0 to 5.
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Fig. 15. Sensitivity analysis.
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kIh = kI/h. As can be seen, the use of an standard PRHC controller re-
sults in inter-harmonic excitation and in a high order transfer function.
It should be highlighted that the inter-harmonic frequency excitation
issue is reduced with the FPR controller. This is a direct consequence of
the tuning procedure detailed in Section 3. As there is only one infinite
gain from the inherent PR behaviour, the inter-excitation phenomena is
suppressed. On the other hand, frequencies different than ω0 do not
present pure zero steady-state error. However, depending on the α
value, the error is low.

4.2. Applying the tuning procedure

This section aims to illustrate an example according to the tuning
procedure exposed in Section 3.4, assuming ω0 = 100π rad/s (50 Hz):

1. Tune PR. Following [36] and considering the base values presented
in Section 3 (see also Table 1), the obtained PR gains are kp = 1.44
and ki = 4.28.

2. Plot CL transfer function with FPR. Fig. 6(a) and (b) have illustrated
how the gain and gain shift changes according to the angular fre-
quency. However, only the frequency bandwidth up to 1000 Hz will
be considered in the example. For the sake of clarity, Fig. 11 shows a
zoom on this frequency range.

3. Select α. A maximum theoretical delay of 6° for the 15th harmonic is
desired. Thus, in Fig. 11 it is possible to see a marker (black circle)
that indicates that α = 1.5 is a proper candidate.

4. Find an implementation for the FPR transfer function. Several re-
ferences propose different approximations of fractional order op-
erators [40–42]. Fig. 12 shows a Bode diagram comparison of (7)

Fig. 16. Time-response comparison when different harmonic components are regulated, being ω0 = 100π rad/s.
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between the theoretical and the Chareff’s approximation, being
pT = 1, y = 2 dB and n = 4, yielding the s−0.5 approximation

× + × + × + +
× + × + ×

+ × + +

s s s s s
s s s

s s

6.3 10 0.74 10 0.12 10 0.29 1
1.0 10 0.30 10 0.12 10

0.77 10 0.75 1

0.5
8 4 4 3 1 2

9 5 5 4 2 3

1 2

(22)

Consequently, the FPR(s) is approximated as

× + × + + + + + ×
+ × + × + × + +

FPR s s s s s s s
s s s s s

( ) 0.14 10 0.40 10 1.6 110 2700 42000 1.3 10
( 96000)(6.3 10 0.75 10 0.12 10 0.30 1)

5 6 2 5 4 3 2 5

2 8 4 4 3 1 2

(23)

5. Robustness analysis. Fig. 13 depicts a zero-pole map when the
system parameters base values are multiplied by a scale C factor
from 0.2 to 2 in steps of 0.2. The bigger black cross/circle indicates
C = 1, dark grey C < 1, and light grey C > 1. It is observable that
for sensible tolerance errors, although the poles are displaced, no
unstable situations are achieved. C < 1 values displacement reduce
the imaginary and the real parts. It can be also seen that the var-
iation of R practically does not affect the zero-pole map.
The root locus graph is shown in Fig. 14. It can be seen that the
direct control chain gain can be increased or decreased without
compromising the stability of the case study.
Finally, Fig. 15 shows a complete sensitivity analysis. For the an-
gular frequencies up to 1000π rad/s (500 Hz), it can be seen that
only S(s) presents an excitation region corresponding to the sensi-
tivity to disturbances in the iL current. This kind of uncertainty is
unlikely to be high unless coupled inductances or other electro-
magnetic emitter generators are close to the inverter.

According to the analysis developed, the FPR is considered robust
enough.

6. Simulations. When a PRHC is used, the controllable harmonic
components depend on the existence of the corresponding HC con-
troller in parallel with the fundamental one (see (3)), considering
the 3rd, 5th and 7th harmonics, the following FPR controller is
obtained:

= +
+

+
+

+
+

+
+

G s s
s s s

s

( ) 1.44 4.28 1 1/3
9

1/5
25

1/7
49

PRHC 0 2
0
2 2

0
2 2

0
2

2
0
2 (24)

This means that if a different harmonic component appears, the
PRHC is not able to track it with zero steady-state error, especially in
terms of phase lag. In Fig. 16, the CL time response of a PRHC up to
the 7th harmonic and for a FPR using Chareff’s approximation is
compared. Moreover, the current error is also shown in the time-
domain plots for different harmonic references. Note that the re-
ference current is 1 A in all cases. On one hand, even though the
PRHC response presents some tracking capability, refer to Fig. 16(a)
and (c), the FPR offers a more accurate tracking behaviour, not only
remarkable for harmonic components over the 7th, as can be ob-
served in Fig. 16(d) but also for inter-harmonics, as depicted in
Fig. 16(b).On the other hand, in Fig. 16(a) it can be seen that for the
conventional PR formulation, the error is within a threshold
of± 2% in the settling time proposed in Table 1, that corresponds to
ms. In the case of the FPR the settling time has been reduced, mainly
due to a good tracking capability for more frequencies. Note that
under sinusoidal references, the error is changing from positive to

(a) PI controller (b) PR controller

(c) FPR controller (d) PRHC controller
Fig. 17. Controller type comparison. Implementation and control criteria.
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negative due to the reference waveform itself. This changing beha-
viour propitiates that in practice, more than just the desired com-
ponent have to be considered.It should be remarked that (24) has a
characteristic equation of 8th order, whereas (6) is a 6th order
equation. Then, it can be stated that FPR offers extended tracking

capabilities even with a lower order transfer function compared to
PRHC. This fact implies a lower computational burden, as will be
shown in Section 4.3 – Fig. 17.

(a) Short-circuited configuration

(b) Grid-connected configuration

(c) Proposed non-linear load for active fil-
tering operation
Fig. 18. Set-up scheme.
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4.3. General comparison

After the different steps followed in previous sections and the ob-
tained results, this section aims to present a summary comparison
contrasting the advantages and drawbacks of different controller type
options; PI, PR, PRHC and FPR. Thus, Fig. 17 accounts for a the com-
parison based on control and implementation criteria. For more details
refer to Table 3 in Appendix.

From Fig. 17 it can be observed that each one of the four compared
controllers has a different distribution area that explains its different
properties, and its strong and weak points. While the PI controller has
the lowest order of all them, being the easiest to implement and the
most robust the necessity to apply mathematical transformations to
operate in a synchronous reference frame, penalizes the memory re-
quired and the execution time. Furthermore, apart from the funda-
mental frequency, its behaviour compensating harmonics is deficient.
In contrast, the PR controller with a similar control behaviour is sui-
table for low computational burden system applications, being the
controller with the lowest execution time and program memory usage.
However, adding harmonic controllers, the resulting PRHC controller
improves greatly the control of the harmonics but losses its main ad-
vantage in the implementation field.

On the contrary, the new FPR formulation is a good trade-off for
such applications that requires to manages to control several harmonic
components without employing high order controllers, as could be the
case of active filters or high accuracy AC current feeders. Usually, in
this kind of applications it is necessary to adapt the code in order to
obtain the desired multi-harmonic tracking control. This implies that
memory and time execution can be crucial depending on the type of
controller used, mainly for the case of low cost processors.

5. Experimental results

This section presents the implementation of the FPR controller de-
veloped in Section 4.2. The FPR controller has been implemented in a

Texas Instruments DSP, specifically Concerto F28M35, and it has been
tested with a 20 kVA full Silicon-Carbide MOSFET (CCS050M12CM2)
based power converter. Such a test platform consists of a three-phase
four-wire inverter with split DC-link and a three-leg DC/DC stage, as
shown in Fig. 18. The DC/DC converter steps up the battery emulator
voltage from 400 VDC to 800 VDC and balances the two semi-buses of
the DC-link. A Sinusoidal Pulse Width Modulation (SPWM) strategy for
the four-wire three-leg inverter is applied. The sampling and switching
frequency are set to 30 kHz. All experimental plots (Figs. 20–26) have
been obtained acquiring real data at 1.25 MHz from a DL9040 Yoko-
gawa oscilloscope. All plots have been depicted using Matlab.

A first short-circuited inverter-based configuration (Fig. 18(a)) is
considered in order to show the multi-harmonic tracking capability of
the FPR controller. In this sense, the inverter coupling filter (L-type) is
short-circuited so the plant is not altered by a vc voltage disturbance
(Fig. 5). As this simple configuration is only intended to verify the
theoretical tracking capability response, a second case with the con-
verter operating as an active filter is presented afterwards. In such a
case (Fig. 18(b)), the AC coupling filter is connected to a low-voltage
400 V–50 Hz grid in which a strong non-linear load, as the one shown
in Fig. 18(c) is used.

A picture of the converter set-up can be seen in Fig. 19. The ex-
perimental parameters of the plant are L = 490 μH and R = 45 mΩ.
The controller presented in (23) has been implemented, per phase, in
the discrete time domain applying Tustin discretization.

For the short-circuited inverter-based configuration case
(Fig. 18(a)), a complex multi-harmonic reference is generated. Phase r
is used to generate the positive part of about 50 ms period “Batman”
signal composed by inter-harmonics. In addition, the experiment is
repeated using the PRHC presented in (24) in order to compare the
behaviour of the two controllers as in the Section 4.2.

In Fig. 20(a), the Fast Fourier Transforms (FFT) of the reference A(t)
and both controllers are represented, thus detailing the multi-harmonic
content. It can be seen that the harmonic content in the region between
0 and 800 Hz is tracked almost perfectly by the FPR controller. In
contrast, the FPR has a relative tracking capability but presents error in
all the frequencies, due to the fact that it has an acceptable tracking
capability for this range of frequencies. However, it presents a small
error in all of them. In the region between 1200 and 2800 Hz, the FPR
shows a small excitation. Fig. 20(b) shows a capture in which it is de-
monstrated that the FPR controller is able to track complex inter-har-
monics set-points with better results than the PRHC controller.

To demonstrate the FPR tracking capability with another example, a
multi-harmonic reference with odd fundamental harmonics up to the
11th is generated. The set-up used has a rated current of 20 A. The
harmonic content of the reference and the controllers response are
shown (in per unit) in Fig. 21(a). It can be seen that the tracking cap-
ability of both controllers is similar up to the 7th harmonic. For higher
harmonics, the PRCH controller is not able any more to follow properly
the reference, making necessary the addition of more compensators. In
contrast, the FPR shows a certain capability to follow partially these
frequencies. In Fig. 21(b), it its shown that the FPR controller tracks
properly the mentioned reference with a significantly smaller error than
the PRHC compensator.

Finally, using the short-circuit set-up, a last test is done to compare
the transient behaviour between the two controllers. This test aims to
validate the simulations results obtained in Fig. 16. For this purpose,
different harmonics are considered in the reference signal in order to
check both the transient and the steady state response. Figs. 22 and 23
show, respectively, the different references and the real currents in pu
(base current 40 A), and the resulting error. On one hand, it can be seen
that the steady state error up to the 7th harmonic is similar for both

Fig. 19. Experimental power converter. Two three-phase full-bridge
CCS050M12CM2 converters are in parallel for the DC/DC stage and two more
for the four-wire inverter.
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(a) FFT of the reference and the FPR and PRHC controller response

(b) Tracking response of the FPR and PRHC controller

Fig. 20. Multi-harmonic (“Batman”) signal.
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(a) FFT of the reference and the FPR and PRHC controller response

(b) Tracking response of the FPR and PRHC controller

Fig. 21. Multi-harmonic signal.
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Fig. 22. Time-response tracking comparison when different harmonic components are regulated, being ω0 = 100π rad/s.
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controllers. For frequencies above the 7th harmonic, the PRCH is not
able to properly follow the references, whereas the FPR presents a
certain tracking capability. This is also represented in Fig. 24, where the
amplitude spectrum of the reference and the two different responses are
shown. On the other hand, the transient differences between both
controllers are clearly noticeable in Fig. 23. In the case of the FPR

controller, after one signal period the error is already in the steady state
region. Alternatively, in the PRHC case, the transient lasts around three
cycles.

On the other hand, the grid-connected case is sub-divided into two
operations modes; one as an active filter and the other one delivering a
50 Hz current to a non-ideal grid.

Fig. 23. Time-response error comparison when different harmonic components are regulated, being ω0 = 100π rad/s.
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For the active filtering operation case the results concerning the
active phase r can be seen in Fig. 25. The active filter role consists of
delivering all the possible harmonic content (Note that the fundamental
components will be delivered by the grid.). Thus, it can be observed
that the controller is able to compensate for a high number of harmonic
components. A strong single phase non-linear load, as the one depicted
in Fig. 18(c), is connected between phase r and the neutral wire, and it
has the following values: R1 = 1 Ω, R2 = 22 Ω and C = 2.2 mF. The
total harmonic distortion (THD) of such a load (Iload) is 62.8%. The
controller is able to inject the major harmonic current components
(Iconv), reducing the THD of the utility (Igrid) up to a 3.2%. Note that the
THD of Iconv (harmonic content delivered by the active filter) is ap-
proximately 7.2%, which is significantly lower than 62.8%. The reason
for this to happen is that the fundamental component of this current is
150 Hz (it does not have a 50 Hz component because the first most
significant harmonic component of the non linear load refers to the 3rd
harmonic).

Lastly, to evaluate the high performance of the FPR controller under
non-ideal grids, the FPR controller is compared with the PRHC con-
troller presented in Eq. (24). This case study consists of delivering an
ideal 50 Hz current to a non-ideal three-phase grid distorted by dif-
ferent harmonics components, as can be seen in upper sub-plots of
Fig. 26. The performance of the current between both controllers is
compared, delivering 5.75 kW per phase (25 Arms, 50 Hz current set-
point). In the bottom sub-plots it can be seen that the FPR offers similar
performance at the fundamental component (50 Hz). As the PRHC has
specific harmonic compensators at the 3rd, 5th, 7th harmonics presents
lightly better results than the FPR. But, as the requirements at high
frequency increases, the FPR contributes to enhance the current quality

delivered to the grid. Note that the harmonics bars are multiplied by a
factor of 50 for better visibility.

6. Conclusion

A novel controller based on the application of fractional order cal-
culus into proportional-resonant controllers has been presented. Such a
controller enhances the frequency tracking behaviour of AC references
with a low order transfer function in comparison with the conventional
multi-harmonic proportional-resonant controllers. In this sense, the
fractional proportional-resonant (FPR) controller emerges as a good
alternative to be implemented in systems in which computational time
is critical and memory dependence is important. In this paper, the ap-
plication analysed is the current control loop of a voltage source con-
verter, and it has been validated through simulations and experimental
part.

It has been shown that the application of fractional order calculus
poses some challenges when it comes to its implementation. This is due
to the intrinsic character of the fractional (non-linear) exponent.
Therefore, five mathematical existing approaches of the non-rational
form of the fractional operator have been explored. These mathematical
approximations have been compared, selecting the Chareff’s approach
as the one that better suits the frequency behaviour of the original
transfer function with the fractional term. Moreover, a thorough tuning
methodology has been proposed, analysing the robustness and also
highlighting the capabilities and weaknesses of this new formulation.
The fractional-resonant controller reduces the inter-harmonic excita-
tion that conventional multi-harmonic proportional-resonant controller
presents, and it extends its tracking capability to a wider frequency

Fig. 24. Amplitude spectrum of the different references and the FPR and PRHC controller response.
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(a) Current waveforms

(b) Harmonic content distribution and THD

Fig. 25. Experimental results obtained operating as an active filter for the grid current (Igrid), the consumed load current (Iload) and the inverter injected current
(Iconv) (see Fig. 18(b)).
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range. The results suggest the idea that an empirical fractional coeffi-
cient value around 1.5 could yield, in general, a better response for
active filtering VSC applications compared to the conventional pro-
portional-resonant controller.

The proposed controller has been implemented in a laboratory set-
up and its multi-harmonic tracking capability is demonstrated under
three different conditions during the operation of a four-wire inverter:
operating in an ideal scenario where the inverter’s output is short-

(a) Voltage and current waveforms

(b) Voltage and current decomposition in harmonic components

Fig. 26. Experimental comparison between FPR and PRHC controllers obtained operating as current controlled voltage source converter under a non-ideal grid.
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circuited (balanced case), and when grid-connected. The grid-con-
nected outline is evaluated operating as an active filter (delivering
harmonic and inter-harmonic components) in which a strong non-linear
load is connected on the AC side, and just delivering fundamental

components in lightly distorted grids. In any case, the FPR has shown
superior tracking behaviours for high harmonics, or practically
equivalent ones for those cases in which harmonic compensators are
employed, than other conventional controllers such as PRHCs.

Appendix

The computational burden in terms of memory program and execution time for the four controllers presented in Section 4.3 is shown in Table 3.
The micro-controller used is a Texas Instruments DSP, model Concerto F28M35. The base frequency clock used is 150 MHz. The software

environment used to compile and execute the code is the Code Composer Studio version 6.1.1 from Texas Instruments and the compiler version is the
TI v17.9.0.STS.

The execution and program memory refer to a single phase. However, the PI controller is exceptional due to the mathematical transformations
required to operate in a synchronous reference frame. In fact, the PI case takes into account the execution time and the program memory needed for
the calculation of a phase-locked loop (PLL), and the Park transformation.
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