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Inspection strategies with guided wave-based approaches give to structural health monitoring (SHM) applications several
advantages, among them, the possibility of the use of real data from the structure which enables continuousmonitoring and online
damage identification. These kinds of inspection strategies are based on the fact that these waves can propagate over relatively
long distances and are able to interact sensitively with and uniquely with different types of defects. The principal goal for SHM is
oriented to the development of efficient methodologies to process these data and provide results associatedwith the different levels
of the damage identification process. As a contribution, thiswork presents a damage detection and classificationmethodologywhich
includes the use of data collected from a structure under different structural states bymeans of a piezoelectric sensor network taking
advantage of the use of guided waves, hierarchical nonlinear principal component analysis (h-NLPCA), andmachine learning.The
methodology is evaluated and tested in two structures: (i) a carbon fibre reinforced polymer (CFRP) sandwich structure with
some damages on the multilayered composite sandwich structure and (ii) a CFRP composite plate. Damages in the structures were
intentionally produced to simulate different damage mechanisms, that is, delamination and cracking of the skin.

1. Introduction

Data-driven algorithms have demonstrated their utility in
structural health monitoring (SHM) applications. In fact, the
use of this kind of approaches is a useful tool for real-time
condition monitoring (CM). However, one of the challenges
in the use of data-driven algorithms is associated with the
size and quantity of information which is often obtained from
sensor networks or multiple sensors. This information repre-
sents a great deal of data to process and analyse. In this sense,
it is necessary to develop better methodologies which allow
avoiding false alarms in the damage identification process.

An SHM system typically includes five steps in its design:
these are (i) sensor network design; (ii) data acquisition; (iii)
feature extraction, (iv) diagnosis, and (v) prognosis. The first
four stages normally involve methods for data-sensor fusion,
multivariate statistical modelling and pattern recognition
algorithms. For the later, a physics-based model is almost
inevitable so that reliable predictions can be performed. It is
evident that structural health monitoring systems have been
advancing worldwide as shown by the amount of relevant
available scientific papers and recent practical applications
[1–3]. Among the solutions in the application of data driven
algorithms for SHM, there are many applications in bridges
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[4–6], aeronautics [7, 8], aerospace [9, 10], wind turbines [11–
13], among others.

As a contribution to the development of new ways to
process and evaluate the condition of a structure using data
from sensors, a methodology for damage classification and
detection is presented in this paper. This work is also moti-
vated by the need to further develop, integrate and evaluate
damage identification algorithms [7, 14, 15]. The proposed
methodology is based on an acousto-ultrasonic approach
in which ultrasonic waves are generated in a piezoelectric
transducer sensor network in several actuation phases. The
captured signals are preprocessed by means of the discrete
wavelet transform (DWT) for feature extraction and then
integrated into a nonlinear multivariate model where some
nonlinear components are generated in order to form feature
vectors for all the actuation phases and to train a machine
by means of the machine learning point of view. Afterward,
measurements with the sensor network are captured from
the structure in an unknown state and the interaction with
the training machine allows defining the current structural
state according to the states defined in the training step. To
validate the proposed methodology, experiments are carried
out in a composite sandwich structure in which increasing
damage is intentionally introduced and a composite plate
with simulated damages.

The remaining part of this paper is organized as follows.
For completeness, the article first presents a brief summary of
the basic theoretical background for the different evaluated
signal processing algorithms. Afterward, the methodology is
introduced in Section 3. Section 4 is devoted to the experi-
mental validation, where the experimental setup and results
are included. Finally, conclusions are given in Section 5.

2. Theoretical Background

This section introduces some brief concepts about some well-
knownmethods that are used in the developed methodology.
Authors suggest reviewing the references in each subsection
if more information about each method is required.

2.1. Discrete Wavelet Transform. The discrete wavelet trans-
form (DWT) is a very useful tool, used in an increasingly
broad horizon, image processing, health care, energy dis-
tribution, SHM, and others. That can be defined as a filter
bank structure to distinguish features through the use of low-
pass filters and high-pass filters [16, 17]. This configuration
allows representing the variability of a given function by
means of coefficients at a specified time and scale. These
coefficients are calculated by using quadrature mirror filters
and are decomposed in approximation (A1, A2,. . .) and detail
coefficients (D1, D2,. . .) [7] as is shown in Figure 1.

Detail coefficients are low-scale, high-frequency com-
ponents, while the approximation coefficients represent the
high-scale, low-frequency components. The wavelet tech-
nique has been of great interest in recent years and has
direct application for the SHM like demonstrates some
research works [18–22]. For further details about DWT and
its implementation, please refer to [23].

Figure 1: Discrete wavelet transform decomposition.

2.2. Hierarchical Nonlinear Principal Component Analysis.
The hierarchical nonlinear principal component analysis is
also known as h-NLPCA and is also defined as a nonlinear
generalization of traditional PCA [24]. This is a method
based on a multi-layered perceptron (MLP) architecture with
an auto-associative topology. The auto-associative network
works with the inputs and outputs to perform the identity
mapping by using the square error [24]. This architecture,
shown in Figure 2, includes a bottleneck layer which allows
us to compress data and reduce the dimension of the original
data. Note that the nodes in the mapping and demapping lay-
ersmust have nonlinear transfer functions; nonlinear transfer
functions are not necessary for the bottleneck layer [25].With
the purpose of guaranteeing that the calculated nonlinear
components have the same hierarchical order as the linear
components in standard principal component analysis (PCA)
and in contrast to standard NLPCA, the reconstruction
error is controlled by searching a k dimensional subspace
of minimum mean square error (MSE) under the constraint
that the (k-1) dimensional subspace is also of minimal MSE
[26].

This process is repeated for any k-dimensional subspace
where all subspaces must be of minimal MSE. h-NLPCA
describes the data with greater accuracy and/or by fewer
factors than PCA, provided that there are sufficient data to
support the formulation of more complex mapping functions
[27, 28].

2.3. Machine Learning. In the recent years, the machine
learning (ML) has been the focus of many researchers
in the area of structural health monitoring (SHM) by its
effectiveness and continuous development [29–32]. Machine
learning is a set of algorithms that can extract, in an automatic
way, the hidden patterns in a large group of data [33, 34].
There are two different approaches in ML according to the
training process:

(i) Supervised, where the machine gets the inputs and the
expected outputs. The machine is trained to find the
complex patterns and relationships between themand
obtain generalized responses based on this training
with right answers [35, 36].
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Figure 2: Network architecture for h-NLPCA.

(ii) Unsupervised, where the machine is trained to find
the similarities in the data and provide a clustering
organization to indicate its proximity [37, 38].

In this work, a supervised training is explored; in this sense,
some of the supervised machines used in the methodology
are then explained. On one hand, k nearest neighbours
(kNN) is a machine learning algorithm that has a very
simple strategy. More precisely, the elements are classified
by the distance to others and the frequency with which this
proximity is presented. It is important not to take the risk
of overfitting. In this case, the trained machine will only
apply for the current group of data. Therefore, to ensure
that this does not occur, it is important to keep a moderate
number of characteristics and training examples. On the
other hand, decision trees are a predictive model used in,
for instance, data mining and statistics. This mechanism
maps the observations in a structure that allows us to reveal
conclusions about these observations. This structure also
allows us to extrapolate these conclusions and predict new
behaviours with new observations. To extract the desired
structure that describes the information, an analysis of the
data and the critical values that builds a better division of
them is performed. This division is performed after locating
the choice nodes and the change nodes in the decision
structure with the aim of obtaining a better decision branches
and a best behaviour in the prediction.

In order to facilitate that the machine reaches the goal,
it is very common to simplify the input data through some
techniques [2, 39]. In this work, only the supervised type is
explored and results are presented by the use of the confusion
matrices. These types of matrices are a very useful tool to
classify data considering the following classes: true positives,
false negatives, false positives and true negatives.

3. Damage Classification Methodology

In this work, piezoelectric transducers were used because
these devices are cheap, easy to install, lightweight, and with

several other good characteristics [40, 41]. Figure 3 shows
a representation of the methodology applied. This can be
divided into two parts: training and testing, where in both
cases the strategy uses data from the structure collected by a
piezoelectric sensor network in several actuation phases.This
network is built with several piezoelectric transducers which
are attached to the structure under test in a permanent way
and distributed over its surface as in Figures 9 and 13. Because
these transducers can work as actuators or as sensors, each
actuation phase is defined by a PZT working as an actuator
and using the rest of PZTs as sensors, this procedure is
repeated for each PZT in the sensor network [42].Thismeans
that an excitation signal is applied to a piezoelectric sensor
and propagated signals through the structure are collected by
the rest of sensors, organized and preprocessed. This process
is repeated for each sensor in the structure [43, 44]. Each
signal captured by the acquisition system is preprocessed by
the Discrete Wavelet Transform at a defined decomposition
level and, as result, a reduced signal is obtained and organized
by each actuation phase as in [43]. These steps are the same
for training and testing steps. Once data are preprocessed and
organized, during the training step, h-NLPCA is applied to
the data by each actuation phase and a determined number of
nonlinear components are obtained and used for training the
machines; in particular for the explored cases in this paper the
first three scores (S1, S2, and S3) were used by each actuation
phase to define the feature vector for training the machines
as it is shown in Figure 4. This Figure is an example when
only four sensors are used as in the case of the specimen
1. As result of this step, a machine with the information of
the structural states is trained and is available for the testing
step.

Testing is performed by using data from the structure in
an unknown structural state and projecting the information
to the nonlinear components, as results of this projection
appear the scores which are used as input to the trained
machine to predict the kind of structural state.This procedure
allows us to detect and classify the structural state.
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Figure 3: Damage classification methodology.
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Figure 4: Methodology-machine learning.

4. Experimental Validation

To validate the methodology, data from two structures
are considered. A carbon fiber-reinforced plastic (CFRP)

sandwich structure with some damages on the multilay-
ered composite sandwich structure and a CFRP plate with
an added mass to simulate damages were used. Several
experiments were collected per each structural damage state
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Table 1: Damage description.

Damage Number Description

1
Delamination: started symmetrically from the right side of the sample
at its middle position along the y-axis. Its width along the y-axis is 16

mm and its depth along the x-axis is 10 mm

2 Extended the previous damage to a width of 33 mm and depth of 42
mm

3 A crack of 25 mm length initiated at the middle position along the
vertical y-axis and in the parallel direction to the x-axis

4 Extended the previous crack to a length of 30 mm
5 Extended the previous crack to a length of 45 mm
6 Extended the previous crack to a length of 70 mm

SENSORAS
ACTUATOR SENSOR

Hamming
Signal
12Vpp
30Khz

Signal collected
60.000 samples per channel

60.000 X 3 sensors
180.000

Figure 5: Structure exploration.

(including undamaged state) to train the machines and to
test the behaviour of the prediction as will be explained in
the following subsections. In addition, there is a detailed
description of the measurement procedure, the structures,
and the results obtained from the use of the developed
methodology.

4.1. Measurement Procedure. As it has been previously intro-
duced in the last section, the interaction with the structure
is performed by the signals applied and collected to the
piezoelectric sensor network. In the cases of the structures
evaluated in this paper, piezoelectric sensors PIC-151 were
used. The inspection is performed in four phases for the
specimen 1 and nine phases for the specimen 2 due to the
number of piezoelectric sensors installed in each structure.
During the first actuation phase (phase I), the first piezoelec-
tric was stimulated with aHamming windowed cosine signal,
12 volts of the peak value, and a frequency determined for
each structure, and the information of the interaction of the
propagated waves with the structure is collected in different
places of the structure by the rest of the sensors. Figure 5
describes an example of this actuation phase. The second
actuation phase (phase II) implies the use of the second
piezoelectric as an actuator and the rest used as sensors and
so on. This process ends when all piezoelectric transducers
have been used as an actuator. All this information is stored
for the subsequent process in several matrices and files, one
per each actuation phase.

Experiments consider different structural states (healthy
and structure with damage in different positions) as it will be

explained in the following subsections. Number of samples of
each sensor is 60.000.Thismeans that the number of columns
in this matrix is (n-1) sensors x 60.000 samples. Figure 6
shows this organization, the corresponding preprocessing,
and the procedure to extract the h-NLPCA scores for the case
of a structure with four piezoelectric sensors. In this case,
the first 30 scores are retained during the model construction
with h-NLPCA.

After scores are obtained per each actuation phase, the
feature vector for training is defined. Figure 7 shows the
assembled training vector. In this case, training is made with
a vector of twelve elements (three scores from each actuation
phase), this means that, for instance, in the case of specimen
1 with 4 sensors, 4 actuation phases were considered as in
Figure 7. In the sameway, the Figure shows the casewhere 150
experiments were acquired for each structural damage state.
With respect to the normalization, group scaling was used in
each matrix from each actuation phase [45].

These steps are repeated in the same way for data during
training and testing process. Following some details about the
particular experiments with each evaluated specimen will be
presented.

4.2. Specimen 1: CFRP Sandwich Structure. Thefirst structure
corresponds to a CRFP sandwich structure (Figure 8), where
the damages are intentionally produced to simulate different
damage mechanisms, i.e. delamination and cracking of the
skin. These damage mechanisms are summarized in Table 1.
The overall size of this structure is 217 mm x 217 mm x 31
mm and it is made of carbon/epoxy material with a 0.5 mm
thickness. The stacking sequence is [0∘ 90∘] (Figure 9).

The core is made of polyetherimide foam with a 30
mm thickness. Four PIC-151 piezoelectric transducers from
PI Ceramics are attached to the surface of the structure
with equidistant spacing. Figure 9 shows a photo of the
experiment.

The scan frequency was a 50 kHz, with a peak voltage of
12 V, and Hamming windowed cosine form, with five cycles.
Seven structural states were studied (healthy state and six
damages) as it was previously explained. In each structural
state 150 experiments were performed, according to the fol-
lowing distribution: 100 experiments were used for training
and 50 experiments for testing. Data from each experi-
ment was preprocessed by means of the DWT. The family
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Figure 6: Data organization: h-NLPCA scores, before building the training vector.

Daubechies (db8) was chosen to obtain the approximation
coefficients [46, 47].This selection was applied since previous
works demonstrated that this family contains most relevant
information for this kind of applications. Coefficients are
used to build the hierarchical nonlinear PCA model for
each actuation phase. The architecture of the h-NLPCA is
a five-layer nonlinear autoencoder network with 3-4-2-4-3
components as in [48]. As a result, three components by
each actuation phase are used to build the feature vector
that is used as the input for the training process to different
machines. For the training part, the MATLAB classification
learner app was used.

Subsequently, testing is performed by using data from
the structure in an unknown structural state and projecting
the information to the nonlinear components. The projected
information, called scores, is used as the input to the trained
machine to predict the kind of structural state.This procedure
allows to detect and classify the structural state.

Several machines were trained to determine the elements
in the feature vector, i.e., to determine the influence and the
number of scores to use by actuation phase and the number of
experiments for an adequate training machine. Table 2 shows
the results in the prediction process when two scores by each
actuation phase and fifty experiments are used in the training
step. During the prediction, one hundred experiments per
damage are used. Twenty supervised learning machines were
training using MATLAB’s classification learner toolbox.

As it is possible to observe, all structural states are
not properly predicted in all the trained machines, this
means that a low number of scores affect the classification
process. Table 3 shows the results when the number of scores
per actuation phase are increased to five. As it is possible
to observe, prediction improves in most of the machines,
however, it is necessary to determine an adequate number of
scores, because when it is increased could produce machine
overfitting, and the learning may be poor. This is that the
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Figure 8: Specimen 1: CFRP sandwich structure and PZT distribution.

mistakes are added to others predictions and growing up the
uncertainty.

Consistent with previous research, fine kNN and
weighted kNN showed better results in the classification.
However, when the number of scores is increased, other
machines such as bagged trees and subspace kNN
significantly improved their performance. Following
this analysis, three scores were defined as the number of
scores to use because present similar results to the obtained
with a greater number of scores.

Some consideration about the algorithms can be summa-
rized as follows, the k nearest neighbour (kNN) classifier is
an algorithm recommended to work with low dimensional
data. Particularly, in this kind of machine, the number of
neighbours have an effect over the response so, in general,
the use of a reduced number of neighbours improve the
outcome. Decision trees (DT) are a different kind ofmachine.
In this case, DT is a classification mechanism that allows us
to construct a predictive model where the value of splits can
increase or decrease the flexibility of this algorithm, as well
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Table 2: Behavior of machines with two scores per sensor (specimen 1, four sensors).

Machine type UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6
Complex Tree 90% 99% 13% 92% 100% 90% 100%
Medium Tree 90% 88% 13% 92% 100% 90% 100%
Simple Tree 90% 99% 0% 0% 100% 90% 100%
Linear SVM 96% 98% 81% 95% 99% 99% 100%
Quadratic SVM 96% 98% 96% 95% 99% 99% 100%
Cubic SVM 96% 99% 98% 95% 99% 99% 100%
Fine Gaussian SVM 68% 100% 57% 87% 79% 78% 99%
Medium Gaussian SVM 97% 100% 76% 100% 97% 98% 100%
Coarse Gaussian SVM 95% 98% 94% 96% 99% 99% 100%
Fine KNN 97% 100% 96% 98% 99% 100% 100%
Medium KNN 95% 100% 93% 94% 99% 100% 100%
Coarse KNN 91% 100% 85% 80% 99% 100% 94%
Cosine KNN 95% 100% 74% 89% 99% 100% 100%
Cubic KNN 95% 99% 89% 93% 99% 99% 100%
Weighted KNN 95% 100% 95% 97% 99% 100% 100%
Boosted Trees 90% 100% 20% 1% 100% 98% 100%
Bagged Trees 99% 100% 71% 95% 100% 100% 100%
Subspace Discriminant 97% 100% 64% 97% 100% 100% 100%
Subspace KNN 97% 100% 82% 98% 100% 100% 100%
Rusboosted Trees 90% 100% 0% 0% 0% 0% 0%

Table 3: Behavior of machines with five scores per sensor (specimen 1, four sensors).

Machine type UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6
Complex Tree 90% 99% 18% 99% 99% 97% 100%
Medium Tree 90% 99% 18% 99% 99% 97% 100%
Simple Tree 90% 99% 0% 100% 0% 97% 100%
Linear SVM 97% 100% 100% 99% 99% 99% 100%
Quadratic SVM 97% 100% 100% 99% 99% 99% 100%
Cubic SVM 97% 100% 100% 99% 99% 99% 100%
Fine Gaussian SVM 100% 9% 8% 28% 8% 30% 56%
Medium Gaussian SVM 99% 100% 98% 99% 99% 98% 100%
Coarse Gaussian SVM 98% 100% 100% 100% 99% 100% 100%
Fine KNN 97% 100% 100% 100% 99% 100% 100%
Medium KNN 97% 100% 100% 100% 99% 100% 100%
Coarse KNN 93% 100% 100% 99% 97% 100% 100%
Cosine KNN 96% 100% 100% 100% 99% 100% 100%
Cubic KNN 95% 100% 100% 100% 99% 99% 100%
Weighted KNN 97% 100% 100% 100% 99% 100% 100%
Boosted Trees 90% 100% 0% 100% 0% 100% 100%
Bagged Trees 99% 100% 100% 100% 100% 100% 100%
Subspace Discriminant 98% 100% 100% 100% 99% 100% 100%
Subspace KNN 98% 100% 100% 100% 99% 100% 100%
Rusboosted Trees 90% 100% 0% 0% 0% 0% 0%

as the use of various trees (ensemble). Other kind of machine
explored in this paper is the RUS (Random Under Sampling)
algorithm in RUSBoost, which is a mechanism to eliminate
data distribution imbalances.

Figures 10 and 11 show the results in the damage classifi-
cation process for fine kNN, weighted kNN, simple tree, and
rusboosted trees. Detailed information about the definition
of these machines can be found in [7, 44, 49]. As it is
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Figure 10: Confusion matrices for fine kNN (left) and weighted kNN (right) machines.

possible to observe in Figure 10, both fine kNN and weighted
kNN presented some of the best results since in most of
the experiments, the classification was properly performed,
verifying its good behaviour like a statistical classifier [50].
For instance, in the fine kNN classifier, 348 cases have
been correctly classified out of 350 cases. This magnitude
represents 99,4% of correct decisions. It is worth noting that
the specimen with damage is never confused with the healthy
state of the structure thus leading to an absence of missing
faults. The only misclassification between damages occurs
with a sample corresponding to damage 2 that is classified
as damage 3. Similar results are obtained when the weighted
kNN is considered as the classifier. In this case, 348 cases have
been correctly classified out of 350 cases, which represents
99,4% of correct decisions, too. However, in this case, all the
damages are perfectly classified. The number of false alarms

is quite reduced in both cases: 1 out of 50 (2%) and 2 out
of 50 (4%), with respect to fine kNN and weighted kNN,
respectively.

Worst results in the classification are obtained when
rusboosted trees and simple tree machines are used. These
results are summarized through the corresponding confusion
matrices in Figure 11. The overall accuracy is 26,3% and
88,9%, in the case of rusboosted trees and simple tree
machines, respectively. The classification is especially unac-
ceptable in the case of rusboosted trees where damages 2 to 6
are all misclassified.

4.3. Specimen 2: CFRP Composite Plate. The second struc-
ture, shown in Figures 12 and 13, corresponds to a CFRP
plate made of 4 equal layers and stacking of [0∘ 90∘ 90∘ 0∘].
Dimensions are 200mmx 250mmwith a thickness of 1.7mm
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Figure 11: Confusion matrices for rusboosted trees (left) and simple tree (right) machines.

CFRP PLATE
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S5
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Figure 12: Specimen 2: CFRP composite plate, sensors distribution.

Figure 13: CFRP composite plate.

and a density of 1.700 kg/m3. Nominal material parameters of
the unidirectional (UD) layers are E1 =122 GPa, E2 = 10 GPa,
]12= 0,33, ]13=0,3, ]23=0,34,G12=G13=7,4 GPa, and G23=5,4
GPa.

This structure was instrumented with nine piezoelectric
transducers PIC-151 from PI Ceramics which are attached to
the surface of the structure as it is shown inFigure 12.Damage
on the tested composite was simulated by localizing masses at
different positions as described in Table 4.

The excitation signal is a 12 V Hamming windowed
cosine train signal with 5 cycles, 150 experiments have been
performed and signals from sensors have been also recorded
per sensor–actuator configuration to each structural state.
To determine the carrier central frequency for the actuation
signal in each structure, a frequency sweep was performed
and spectral analysis of each signal was analysed in order to
determine the optimal excitability frequency (structure and
sensors) where the obtained signals have a signal/noise ratio
that helps to the data analysis. The carrier frequency in this
specimen was found to be 30 kHz. A photo of this second
specimen can be found in Figure 13.

As with the previous specimen, several machines were
trained and three scores were used per actuation phase.



Complexity 11

Table 4: Damages in the CFRP composite plate.

Damage number Damage location between sensors X position [mm] Y position [mm]
1 Sensors 1-2 65 220
2 Sensors 2-3 135 220
3 Sensors 3-6 170 172.5
4 Sensors 6-9 170 66.5
5 Sensors 5-8 100 66.5
6 Sensors 5-4 65 125
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Figure 14: Confusion matrices for fine kNN (left) and weighted kNN (right) machines.

For this second experiment and for the case of fine kNN
and weighted kNN, the result are even better (Figure 14).
More precisely, in the fine kNN classifier, 349 cases have
been correctly classified out of 350 cases. This magnitude
represents 99,7% of correct decisions. It is worth noting that
the specimen with damage is never confused with the healthy
state of the structure thus leading to an absence of missing
faults. The only misclassification between damages occurs
with a sample corresponding to damage 1 that is classified
as damage 2. A perfect classification is obtained when the
weighted kNN is considered as the classifier. In this case, 350
cases have been correctly classified out of 350 cases, which
represents 100% of correct decisions. With respect to this
second specimen, false alarms are no longer present.

Worst results in the classification are obtained when
rusboosted trees and simple tree machines are used. These
results are summarized through the corresponding confusion
matrices in Figure 15. The overall accuracy is 28,3% and
70,9%, in the case of rusboosted trees and simple tree
machines, respectively. The classification is especially unac-
ceptable in the case of rusboosted trees where damages 2 to
6 are all misclassified. Although the percentage of correct
decisions fluctuates between 28,3% and 70,9%, bothmachines
are able to accurately identify the structure with no damage.

In general, the behaviour of these four machines in
this paper with respect to both specimens is coherent with
previous results in the literature. For instance, in the work

of Vitola et al. [44, 49], a distributed sensor network is used
to detect and classify structural changes with and without
the influence of environmental conditions. Although in those
papers how the data is collected and preprocessed differs
significantly from the current work, the performance of both
fine kNN and weighted kNN is similar.

5. Conclusions

In this work, a damage classification methodology has been
introduced. The proposed methodology includes the use
of a piezoelectric sensor network, discrete wavelet trans-
form, hierarchical nonlinear PCA, and machine learning
approaches. The methodology has been validated with excel-
lent results showing its capability for damage classification
tasks. Althoughdifferentmachineswere trained, only the best
two and the worst two of them were included in the paper,
showing that the best resultswere obtainedwith fine kNNand
weighted kNNmachines andworst results are obtained by the
use of trees. This is because the way as the data is organized
by the different machines as was introduced along the paper.

In order to work with machine learning algorithms, it is
very important to select the training data in a proper way.
Otherwise, results in the trained machine can be different to
the system expectations. The nonlinear scores demonstrated
that the extracted information was very useful, since these
scores reduced significantly the information by facilitating
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Figure 15: Confusion matrices for simple tree (left) and rusboosted trees (right) machines.

the training and reducing the error possibilities in the
predictions. In all studied cases, the use of three nonlinear
scores demonstrates to be enough for building the featured
vector by fusing data from all actuation phases.

The k nearest neighbours algorithm has also shown to be
an efficient and useful mechanism to applications in struc-
tural health monitoring. Results in this work also indicated
its usefulness with the use of nonlinear features.

The use of neural networks in this work is only considered
to obtain the nonlinear components; however it is expected
to work in a near future with different neural networks
approaches for classification.

Although this work is not focused on the study of the
relationship between the number and the location of sensors
but on the damage classification methodology, the inspected
structures allow us to extend the idea of the usefulness of
this methodology by the following differences between the
validations:

(1) Different structures with different materials and con-
figurations.

(2) Structures with real (delamination and cracks) and
simulated damage (addedmass in different locations).

(3) Progressive damage.
(4) Structures with different sizes.
(5) Structures inspected with a different number of sen-

sors at different locations. In the case of the first
structure only four sensors were used and the second
structure was inspected with nine sensors.

Future work will involve the influence of the number of
sensors and location. However this study allows us to observe
that the methodology can be used with similar results in
different structures with different number and position of the
sensors and with different kind of damages because of the
pattern recognition approach.
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