The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.KA118.003/60

The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca²⁺-ATPase, is a major determinant of Ca²⁺ alternans in intact mouse hearts

Bo Sun^{1,a}, Jinhong Wei^{1,b}, Xiaowei Zhong^{1,c}, Wenting Guo^{1,c}, Jinjing Yao^{1,a}, Ruiwu Wang¹, Alexander Vallmitjana², Raul Benitez², Leif Hove-Madsen³, and S.R. Wayne Chen^{1,d,*}

From the ¹Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada, ²Department of Automatic Control, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain, and ³Biomedical Research Institute of Barcelona (IIBB), CSIC, Sant Pau, Hospital de Sant Pau, Barcelona 08025, Spain

Running Title: Role of RyR2 and SERCA2a in Ca²⁺ Alternans

^aBS, JY, recipients of the Alberta Innovates-Health Solutions (AIHS) Fellowship Award. ^bJW, recipient of the Libin Cardiovascular Institute of Alberta and Cumming School of Medicine Postdoctoral Fellowship Award.

^cXZ, WG, recipients of the AIHS Studentship Award. ^dSRWC, AIHS Scientist.

*To whom correspondence should be addressed. S.R. Wayne Chen, 3330 Hospital Drive N.W., Calgary, Alberta, Canada, T2N 4N1. Tel.: 403-220-4235; e-mail: <u>swchen@ucalgary.ca</u>

Key words: Ventricular tachyarrhythmia, Ca²⁺ alternans, Ca²⁺ release refractoriness, sarcoplasmic reticulum, cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca²⁺ ATPase, phospholamban, confocal Ca²⁺ imaging, intact heart imaging, cardiac dysfunction

ABSTRACT

Sarcoplasmic reticulum (SR) Ca²⁺ cycling is governed by the cardiac ryanodine receptor (RyR2) and SR Ca^{2+} -ATPase (SERCA2a). Abnormal SR Ca²⁺ cycling is thought to be the primary cause of Ca²⁺ alternans that can elicit ventricular arrhythmias and sudden cardiac arrest. Although alterations in either RyR2 or SERCA2a function are expected to affect SR Ca²⁺ cycling, whether and to what extent altered RyR2 or SERCA2a function affects Ca²⁺ alternans is unclear. Here we employed a gainof-function RvR2 variant (R4496C) and the phospholamban-knockout (PLB-KO) mouse model to assess the effect of genetically enhanced RyR2 or SERCA2a function on Ca2+ alternans. Confocal Ca²⁺ imaging revealed that RyR2-R4496C shortened SR Ca²⁺ release refractoriness and markedly suppressed rapid pacing-induced Ca²⁺ alternans. Interestingly, despite enhancing RyR2 function, intact RyR2-R4496C hearts exhibited no detectable spontaneous SR Ca²⁺ release events during pacing. Unlike for RyR2, enhancing SERCA2a

function by ablating PLB exerted a relatively minor effect on Ca²⁺ alternans in intact hearts expressing RyR2 wildtype or a loss-of-function RyR2 variant, E4872Q, that promotes Ca^{2+} partial alternans. Furthermore, SERCA2a with inhibition 3 μM 2,5-di-tertbutylhydroquinone (tBHQ) also had little impact on Ca²⁺ alternans, while strong SERCA2a inhibition with 10 µM tBHQ markedly reduced the amplitude of Ca²⁺ transients and suppressed Ca²⁺ alternans in intact hearts. Our results demonstrate that enhanced RyR2 function suppresses Ca²⁺ alternans in the absence of spontaneous Ca^{2+} release and that RyR2, but not SERCA2a, is a key determinant of Ca²⁺ alternans in intact working hearts, making RyR2 an important therapeutic target for cardiac alternans.

Intracellular Ca^{2+} alternans, one of the many forms of cardiac alternans, is a beat-to-beat alternation in the amplitude of the cytosolic Ca^{2+} transient. An increasing body of evidence

indicates that Ca^{2+} alternans can occur in the absence of other forms of cardiac alternans, supporting the notion that Ca^{2+} alternans plays a primary role in the genesis of cardiac alternans (1-11). Despite the well-recognized risk of cardiac alternans in ventricular fibrillation and sudden cardiac arrest (12-19), the molecular mechanisms underlying cardiac alternans are not well understood.

Given its crucial role in cardiac alternans, understanding how Ca^{2+} alternans occurs would be key to the understanding of cardiac alternans. Over the past decades, major advances in the understanding of the mechanisms of Ca^{2+} alternans have been made. It has become clear that Ca^{2+} alternans results from altered SR Ca^{2+} cycling, which is governed by SR Ca^{2+} release and reuptake (9,11,20-25).

Inhibiting RyR2 function either bv tetracaine. intracellular acidification, or metabolic inhibition has been shown to prolong SR Ca²⁺ release refractoriness and promote Ca²⁺ alternans in isolated cardiomyocytes (26-30). On the other hand, increasing RyR2 function by caffeine shortens SR Ca2+ release refractoriness and suppresses Ca^{2+} alternans (31,32). These observations suggest that the activity of RyR2 is a major determinant of SR Ca2+ release refractoriness and Ca²⁺ alternans. Consistent with we showed that genetically this view. suppressing RyR2 function prolongs SR Ca²⁺ release refractoriness and promotes Ca²⁺ alternans in intact hearts (32). On the other hand, shortened refractoriness of SR Ca2+ release as a result of CASQ2 ablation suppresses Ca²⁺ alternans in intact hearts (33). These findings support a general notion that suppressing the activity of RyR2 prolongs the refractoriness of SR Ca²⁺ release and promotes Ca²⁺ alternans, whereas, enhancing RyR2 activity shortens the refractoriness of SR Ca²⁺ release and suppresses Ca^{2+} alternans (10,31,32,34,35). However and contrary to this expectation, enhanced RyR2 function as a result of some genetic mutations or abnormal redox modifications has been shown to Ca^{2+} promote alternans in isolated cardiomyocytes (36-38). For instance, the CPVT-causing, gain-of-function (GOF) RyR2 mutation R4496C has been shown to reduce the refractoriness of SR Ca²⁺ release in the mouse trabecular muscle (39). However, the same GOF RyR2 R4496C mutation was found to promote Ca^{2+} alternans in isolated cardiac cells (40). Therefore, it remains unclear whether enhanced RyR2 function suppresses or promotes Ca^{2+} alternans.

These seemingly conflicting observations also raise an important question of why shortened enhanced RyR2 activity and refractoriness of SR Ca²⁺ release are unable to suppress Ca²⁺ alternans in the isolated RyR2 R4496C mutant cells. One possible explanation is that enhanced RyR2 activity would increase the propensity for spontaneous Ca²⁺ release (SCR), such as Ca^{2+} sparks and Ca^{2+} waves, which in turn would promote Ca^{2+} alternans (25,28,38,41-46). Hence, it would be of interest and importance to determine whether enhanced RyR2 function promotes Ca²⁺ alternans in intact working hearts that exhibit little or no SCR during stimulation (47).

SR Ca²⁺ reuptake, another important aspect of SR Ca²⁺ cycling, is also believed to play an important role in Ca²⁺ alternans. Overexpression of the cardiac sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) suppresses Ca²⁺ alternans, whereas, reducing SERCA2a expression or activity promotes Ca^{2+} alternans (5,9,48-51). However, severely reducing the activity of SERCA2a may suppress, rather than promote, Ca²⁺ alternans, probably due to reduced SR Ca²⁺ (25,46,52). Interestingly, content atrial overexpression of SERCA2a has little effect on cardiac alternans (53). Hence, the effect of altered SERCA2a activity on Ca²⁺ alternans is complex and variable, and the relative contribution of altered RyR2 and SERCA2a activity to the genesis of Ca²⁺ alternans is also unclear.

In the present study, we carried out laserconfocal Ca^{2+} scanning imaging of cardiomyocytes in intact WT and RyR2 mutant hearts that exhibited little spontaneous Ca²⁺ release. We assessed the impact of the GOF RyR2 R4496C mutation on SR Ca²⁺ release refractoriness and Ca²⁺ alternans, and the effects of inhibiting or enhancing SERCA2a activity on Ca²⁺ alternans in intact hearts. We demonstrate that genetically enhancing RyR2 function shortens Ca2+ release refractoriness and suppresses Ca²⁺ alternans in intact hearts without producing spontaneous SR Ca²⁺ release. We also

demonstrate that genetically enhancing SERCA2a function by PLB ablation had a relatively minor impact on Ca^{2+} alternans in intact hearts. Furthermore, we found that modest inhibition of SERCA2a function also had little

Results

Genetically enhancing RyR2 function reduces the refractoriness of SR Ca^{2+} release in intact hearts

We have recently shown that genetically suppressing RyR2 function lengthens the refractoriness of SR Ca²⁺ release in intact hearts (32). It is unclear whether genetically enhancing RvR2 function would shorten the refractoriness of SR Ca²⁺ release in intact hearts. To address this question, we employed the RyR2 R4496C mutation, a CPVT-linked gain-of-function (GOF) RyR2 mutation that has been shown to significantly enhance the sensitivity of the channel to Ca^{2+} activation (54-56). We determined the refractoriness of SR Ca²⁺ release in isolated Langendorff-perfused intact RyR2 WT and heterozygous RyR2 R4496C mutant hearts using the S1S2 stimulation protocol (10). As shown in Fig.1, the amplitude of Ca^{2+} transients in both the WT and RyR2 R4496C hearts decreased when the S1S2 interval was progressively reduced (from 200 ms to 40 ms) (Fig. 1A, B). However, the WT and RyR2 R4496C hearts showed significantly different relationships between the Ca²⁺ transient amplitude and S1S2 interval (Fig. 1C) (P<0.05). The Ca²⁺ transient amplitude of the RyR2 R4496C hearts recovered faster than that of the WT hearts at S1S2 intervals between 75-160 ms. Therefore, these data demonstrate that, opposite to the effect of suppressing RyR2 function (32), genetically enhancing RyR2 function shortens the refractoriness of SR Ca²⁺ release.

Enhancing RyR2 function markedly suppresses rapid-stimulation induced Ca^{2+} alternans in intact hearts

Prolonged refractoriness of SR Ca^{2+} release is known to promote Ca^{2+} alternans (10,31,32,34,35). Thus, a shortened refractoriness of SR Ca^{2+} release as a result of the RyR2 R4496C mutation would be expected to suppress Ca^{2+} alternans. To test this possibility, we determined the propensity for impact on Ca^{2+} alternans in intact hearts. Collectively, our data demonstrate that the activity of RyR2, but not SERCA2a, is a major determinant of Ca^{2+} alternans in intact working mouse hearts.

 Ca^{2+} alternans in isolated Langendorff-perfused intact RyR2 WT and heterozygous RyR2 R4496C mutant hearts. As shown in Fig. 2, RyR2 WT hearts exhibited significant beat-tobeat alternations in the amplitude of Ca^{2+} transients at the stimulation frequency of 12 Hz (Fig. 2A). On the other hand, RyR2 R4496C mutant hearts displayed little or no beat-to-beat variations in the amplitude of Ca^{2+} transients at the same stimulation frequency (12 Hz) (Fig. 2B).

frequency-dependence Ca^{2+} The of alternans in intact WT and RyR2 R4496C hearts is shown in Fig. 2C, D. Substantial Ca2+ alternans could be readily detected in RyR2 WT hearts stimulated at 10-11 Hz, whereas higher stimulation frequencies (13-14 Hz) were required to induce considerable Ca²⁺ alternans in RyR2 R4496C mutant hearts (Fig. 2C,D). Furthermore, RyR2 R4496C hearts showed significantly lower alternans ratio and alternans duration at each stimulation frequency between 10-14 Hz (Fig.2C, D) (P<0.01). Taken together, these data indicate that, opposite to the effect of suppressing RyR2 function (32), genetically enhancing RyR2 function markedly suppresses rapid stimulation-induced Ca²⁺ alternans in intact hearts.

No spontaneous Ca^{2+} sparks or Ca^{2+} waves were detected in intact RyR2-R4496C mutant hearts during Ca^{2+} alternans

It has been shown that the RyR2 R4496C mutation increases the propensity for spontaneous Ca^{2+} release (SCR, Ca^{2+} sparks and Ca^{2+} waves) (40,55,57). It is thought that SCR necessitates and facilitates the occurrence of Ca^{2+} alternans (25,28,38,41-46). Hence, it is of interest to determine whether SCR is involved in the occurrence of Ca^{2+} alternans in intact working RyR2 R4496C mutant hearts. Figure 3 shows Ca^{2+} transients in intact RyR2-R4496C hearts continuously stimulated with increasing frequencies from 6 to 14 Hz (Fig. 3 and Suppl.

Fig. 1). Surprisingly, despite the enhanced RyR2 function, intact working RyR2 R4496C mutant hearts exhibited no detectable spontaneous Ca²⁺ sparks or Ca²⁺ waves before or after the occurrence of Ca²⁺ alternans. The continued high-frequency stimulations likely override SCR in the intact working RyR2-R4496C hearts. Consistent with this view, spontaneous Ca^{2+} waves were readily observed in intact RyR2-R4496C mutant hearts, but not in WT hearts, after the cessation of pacing in the presence of high adrenergic stress (1µM epinephrine plus 0.6 mM caffeine) (Fig. 4). It is important to note that the same condition (1µM epinephrine plus 0.6 mM caffeine) also induced VTs in intact working RyR2-R4496C hearts as reported previously (47). Hence, the Ca^{2+} alternans observed in rapidly-stimulated intact RyR2 R4496C mutant hearts are unrelated to spontaneous Ca²⁺ sparks or Ca²⁺ waves.

Enhancing SERCA2a function by phospholamban knock-out has relatively small impact on Ca^{2+} alternans in intact RyR2 WT or E4872Q mutant hearts

It is clear that modulating the activity of RyR2 has a major impact on Ca²⁺ alternans (26-30,32). However, the relative impact of modulating the activity of SERCA2a, another key component of SR Ca²⁺ cycling, on Ca²⁺ alternans is unclear. To this end, we assessed the impact of phospholamban knock-out (PLBKO) on Ca²⁺ alternans in intact RyR2 WT or E4872Q mutant hearts. The RyR2 E4872Q mutation has been shown to suppress Ca²⁺ activation of RyR2 and the occurrence of spontaneous Ca²⁺ waves (32,58,59). As expected, PLBKO markedly increased the amplitude of Ca²⁺ transients and reduced the transient decay time (T50) as compared with WT hearts (Suppl. Fig. 2), consistent with its stimulatory action on and SR Ca^{2+} reuptake (60). SERCA2a Surprisingly, PLBKO did not significantly alter the average alternans ratios at stimulation frequencies from 5 to 14 Hz (Fig. 5). PLBKO significantly reduced the average alternans durations only at stimulation frequencies of 10, 11 and 12 Hz (Fig. 5D). Thus, Comparing to enhancing RyR2 function, enhancing SERCA2a function as a result of PLBKO has relatively small impact on Ca^{2+} alternans in intact WT hearts.

We also assessed whether PLBKO could rescue the enhanced Ca²⁺ alternans in RyR2 E4872O mutant hearts with suppressed RvR2 function. Similar to those observed in RyR2 WT hearts (Suppl. Fig. 2), PLBKO significantly increased the amplitude of Ca²⁺ transients and reduced the transient decay time (T50) in intact RyR2 E4872Q mutant hearts (Suppl. Fig. 3). PLBKO also significantly increased the SR Ca²⁺ content in WT ventricular myocytes, as expected, and dramatically increased the SR Ca²⁺ content in RyR2 E4872Q mutant cells (Suppl. Fig. 4). However, PLBKO had no significant impact on the average alternans ratio E4872Q hearts at stimulation of RyR2 frequencies from 5 to 14 Hz (Fig. 6). PLBKO significantly reduced the average alternans duration only at the stimulation frequency of 9 Hz (Fig. 6D). Thus, enhancing SERCA2a function by PLBKO does not suppress the enhanced Ca^{2+} alternans in RyR2 E4872Q mutant hearts. These observations also suggest that, although the SR Ca²⁺ content is an important regulator of SR Ca²⁺ handling, it does not seem to play a critical role in Ca^{2+} alternans.

Effect of SERCA2a inhibition on Ca^{2+} alternans in intact hearts

We next assessed the effect of 2, 5-di-tertbutylhydroquinone (tBHQ), an inhibitor of SERCA2a, on Ca²⁺ alternans in intact RyR2 WT and E4872Q mutant hearts. As expected, tBHQ at 3 and 10 µM significantly reduced the amplitude of Ca²⁺ transients. It also prolonged the transient decay time (T50) in RyR2 WT hearts by 13% (at 3 μ M) and 16% (at 10 μ M) (Suppl. Fig. 5). This is consistent with the inhibitory action of tBHQ on SERCA2a and SR Ca²⁺ reuptake. However, despite its significant impact on SERCA2a, tBHQ at 3 µM did not significantly affect the average alternans ratio or duration in intact RyR2 WT hearts stimulated at a wide range of frequencies (from 5 to 14 Hz) (Fig. 7). Surprisingly, tBHQ at 10 µM markedly reduced both the average alternans ratio and duration in intact RyR2 WT hearts at stimulation frequencies of 11 - 14 Hz (Fig. 7). These data indicate that, depending on the extent of SERCA2a inhibition, reducing SERCA2a

function either has a relatively minor impact on Ca^{2+} alternans or can lead to marked suppression of Ca^{2+} alternans.

We also assessed the impact of tBHQ on Ca2+ alternans in intact RyR2 E4872Q mutant hearts (32,58). Similar to those observed in RyR2 WT hearts, tBHQ at 3 and 10 µM significantly reduced the amplitude of Ca^{2+} transients. It also prolonged the decay time (T50) of Ca²⁺ transients by 8% (at 3 μ M) and 16% (at 10 µM) (Suppl. Fig. 6). As with intact WT hearts, tBHQ at 10 µM also significantly reduced the average alternans ratio and duration in intact RyR2 E4872Q mutant hearts (Fig. 8). On the other hand, tBHO at 3 µM had minor effect on the average alternans ratio or duration in intact E4872Q hearts (Fig. 8). Collectively, these data indicate that compared with RyR2, SERCA2a plays a relatively minor role in Ca²⁺ alternans in intact hearts.

Discussion

Beat-to-beat alternations in the amplitude of the cytosolic Ca^{2+} transient (Ca^{2+} alternans) are thought to be the primary cause of cardiac alternans (1-11), which is a major risk factor for ventricular arrhythmias and sudden cardiac arrest (12-19). Despite its important role in arrhythmogenesis, the molecular mechanism underlying Ca²⁺ alternans remains undefined. An increased body of evidence suggests that Ca²⁺ alternans results from abnormal SR Ca²⁺ cycling (9,11,21-25). Since SR Ca²⁺ cycling is governed by SR Ca²⁺ release via RyR2 and SR Ca²⁺ reuptake by SERCA2a (20), altered RyR2 or SERCA2a function would be expected to affect SR Ca^{2+} cycling, thus leading to Ca^{2+} alternans. However, how changes in the activity of RyR2 or SERCA2a affect Ca²⁺ alternans is unclear. To address this question, here we determined the impact of genetically or pharmacologically enhancing or suppressing RyR2 or SERCA2a function on Ca2+ alternans in intact working hearts. We found that altering RyR2 function, but not SERCA2a function, has a major impact on Ca^{2+} alternans. These findings shed new insights into the molecular mechanism of Ca²⁺ alternans and have important therapeutic implications to cardiac alternans.

Recent studies have consistently shown that suppressing the function of RyR2 prolongs

the refractoriness of SR Ca2+ release and promotes Ca²⁺ alternans (26-30,32). However, the impact of enhanced RyR2 function on Ca²⁺ alternans is unclear. On the one hand, enhancing RvR2 function would increase spontaneous Ca^{2+} release (Ca²⁺ sparks/Ca²⁺ waves), which would promote Ca^{2+} alternans (25,28,38,41-46). On the other hand, enhancing RyR2 function would shorten SR Ca²⁺ release refractoriness, which Ca^{2+} would suppress alternans (10,31,32,34,35,39).То ascertain these seemingly paradoxical effects of enhanced RyR2 function on Ca²⁺ alternans, we determined the impact of a disease-causing RyR2 mutation (R4496C) with enhanced channel activity on Ca²⁺ alternans in the setting of intact working hearts. We found that, despite the enhanced RyR2 activity, intact working RyR2 R4496C mutant hearts displayed little or no spontaneous Ca²⁺ sparks or waves during electrical stimulation, similar to that reported previously (47). This is also consistent with the observation that increased heart rate alone (as in programmed electrical stimulation) can rarely trigger VTs in patients with CPVT (61). In contrast, accelerating heart rate (in the absence of excessive adrenergic stress) suppresses spontaneous Ca²⁺ release and prevents VTs in both CPVT animal models and patients (62). Furthermore, we found that, in the absence of Ca²⁺ sparks/waves, enhancing RyR2 function shortens SR Ca2+ release refractoriness and suppresses Ca²⁺ alternans. Hence, opposite to depressed RyR2 function, which promotes Ca²⁺ release refractoriness and Ca2+ alternans and suppresses stress-provoked CPVT, enhanced RyR2 function protects against Ca²⁺ alternans, but promotes CPVT. These observations suggest that the mechanisms underlying stress-provoked CPVT and Ca²⁺ alternans are different. It is of interest to not that, opposite to our findings, enhanced RvR2 function has been shown to promote Ca^{2+} alternans in isolated cardiomyocytes where spontaneous Ca²⁺ release is present (36,38,40). These observations suggest that the presence or absence of spontaneous SR Ca²⁺ release may influence whether enhanced RvR2 function will promote or suppress Ca²⁺ alternans, and that the nature and mechanisms of Ca²⁺ alternans with or without spontaneous SR Ca²⁺ release may be different. Further studies are needed to fully understand the role of spontaneous Ca^{2+} release in the genesis of Ca^{2+} alternans.

The role of SERCA2a in Ca²⁺ alternans is complex. On the one hand, reduced SERCA2a function would decrease SR Ca2+ content and thus SR Ca²⁺ release, which would suppress Ca²⁺ alternans. On the other hand, reduced SERCA2a function would prolong Ca2+ transient decay and elevate cytosolic Ca²⁺ concentration, which would promote Ca^{2+} alternans (25,31,46,52). Similarly, enhanced SERCA2a function would increase SR Ca2+ content and thus SR Ca2+ release, which would promote Ca²⁺ alternans. In contrast, enhanced SERCA2a function would hasten Ca²⁺ transient decay and reduce cytosolic Ca²⁺ concentration, which would suppress Ca²⁺ alternans (25,31,46,52). Thus, changes in the activity of SERCA2a would promote or suppress Ca²⁺ alternans, depending on the relative changes in the cytosolic Ca²⁺ concentration and the SR Ca²⁺ content. Furthermore, since the activity of SERCA2a oppositely affects the cytosolic Ca2+ concentration and SR Ca2+ content, changes in the SERCA2a activity would be expected to have only a minor impact on Ca²⁺ alternans due to the resultant opposite changes in the cytosolic Ca²⁺ concentration and SR Ca²⁺ content. Indeed, consistent with this view, we found that genetically enhancing the SERCA2a function by PLBKO significantly increased the amplitude of SR Ca^{2+} release, which would promote Ca²⁺ alternans, but decreased the decay time of Ca²⁺ transients, which would suppress Ca^{2+} alternans. As a result of these opposing effects, PLBKO did not markedly alter Ca²⁺ alternans in intact WT hearts. We also found that PLBKO did not rescue the enhanced Ca²⁺ alternans in intact RyR2 E4872Q mutant hearts.

We also investigated the impact of reduced SERCA2a function on Ca^{2+} alternans. Partially reducing SERCA2a activity using a low concentration of tBHQ (3 μ M) reduced the amplitude of SR Ca^{2+} release, which would suppress Ca^{2+} alternans, but increased the decay time of Ca^{2+} transients, which would promote Ca^{2+} alternans. As a result, these opposing actions of tBHQ in the amplitude and decay time of Ca^{2+} transients led to no marked alteration in Ca^{2+} alternans in intact WT hearts. We also found that tBHQ (3 μ M) had no major impact on

the enhanced Ca²⁺ alternans in intact RvR2 E4872Q mutant hearts. Interestingly, further inhibition of SERCA2a activity using a higher concentration of tBHQ (10 µM) significantly suppressed Ca²⁺ alternans in intact WT or E4872Q mutant hearts. This suppression on Ca²⁺ alternans likely resulted from the stronger effect of 10 µM tBHO on the reduction in SR Ca²⁺ content, as a result of stronger inhibition of SERCA2a activity, than on the increase in Ca²⁺ transient decay. Taken together, our findings indicate that moderate changes in the SERCA2a function have a relatively minor impact on Ca²⁺ alternans in intact working hearts. However, it is important to note that altered SERCA2a function also affects the propensity for spontaneous Ca²⁺ release. Thus, changes in SERCA2a function may play an important role in Ca²⁺ alternans in the setting of disease hearts where spontaneous Ca^{2+} release is enhanced.

Although genetically engineered mouse models harboring a RyR2 GOF or loss-offunction mutation or a PLB deletion allow us to determine the effect of specifically reducing or enhancing RyR2 or SERCA2a function on Ca2+ alternans, whether our findings from these mouse hearts could be translated into the human hearts is unclear. It is known that intracellular Ca^{2+} handling and electrophysiological properties of the mouse hearts are substantially different from those of the human hearts. Hence, the significance and relative contribution of RyR2 and SERCA2a function on Ca²⁺ alternans in human hearts has yet to be determined.

summary, In the present study demonstrates for the first time that genetically enhancing RyR2 function shortens SR Ca2+ release refractoriness and protects against Ca²⁺ alternans in intact working hearts. On the other hand, enhancing or suppressing SERCA2a function have a relatively minor impact on Ca²⁺ alternans in intact working hearts. These findings indicate that the activity of RyR2, but not SERCA2a, is a major determinant of Ca2+ alternans. Thus, RyR2 represents a promising therapeutic target for cardiac alternans.

Experimental procedures

Animal studies — All animal studies were approved by the Institutional Animal Care and Use Committee at the University of Calgary and performed in accordance with NIH guidelines. The phospholamban (PLB) knockout, RyR2-R4496C, and RyR2-E4872Q knock-in mutant mice were generated as previously described (56,58,60). The RyR2-E4872O mutant mice were cross-bred with the phospholamban (PLB) knockout mice (PLN-KO) to produce a PLB expressing deficient mouse line the heterozygous RyR2-E4872Q^{+/-} mutation (PLB-KO/EQ^{+/-}). Adult RyR2-R4496C^{+/-}, RyR2-E4872Q^{+/-}, PLB-KO, and PLB-KO/EQ^{+/-} mutant and wildtype control mice (8-12 weeks) were used for all experiments.

Determination of refractoriness of SR Ca^{2+} release — The refractoriness of voltage-induced release of Ca²⁺ from the sarcoplasmic reticulum (SR) was determined by using the S1S2 stimulation protocol as described previously with some modifications (10,32). Briefly, Ca²⁺ transients in Rhod-2 AM loaded hearts were first induced at 5 Hz for 5 seconds (S1), followed by a single S2 stimulation at a specific interval. The hearts were repeatedly stimulated by a series of S1S2 protocols with progressively decreased S1S2 intervals (from 200 to 40 ms). Ca²⁺ transients before and after S2 stimulation were continuously recorded by using the Nikon- A1R confocal microscope in the line-scan mode.

Laser scanning confocal Ca^{2+} imaging of intact hearts - WT and mutant mice were sacrificed by cervical dislocation. Their hearts were quickly removed and loaded with 4.4 µM Rhod- 2 AM (Biotium, Inc. Hayward, CA) in oxygenated Tyrode's buffer (118 mM NaCl, 5.4 mM KCl, 25 mM NaHCO₃, 1 mM MgCl₂, 0.42 mM NaH₂PO₄, 11.1 mM glucose, 10 mM taurine, 5 mM creatine, and 1.8 mM CaCl₂, pH 7.4) via retrograde Langendorff perfusion system at 25°C for 45 minutes (47,63). The Langendorff-perfused hearts were placed in a recording chamber mounted onto the Nikon A1R microscope for in situ confocal imaging (line-scan) of Ca²⁺ signals from epicardial ventricular myocytes. The temperature of the heart was kept at 35°C throughout the experiment with 5 μ M blebbistatin (Toronto Research Chemicals, Toronto, ON) to prevent motion artifact. The pixel size of the resulting line-scan images ranged between 1.8 and 2 ms in the temporal dimension and between 0.1 to 0.4 microns in the spatial dimension. Ca²⁺ alternans in the WT and mutant hearts in the absence or presence of 2,5-di-tert-butylhydroquinone (tBHQ) (3 μ M or 10 μ M) was induced by rapid electrical stimulation at increasing frequencies (5-14 Hz, 6 V).

Image and signal processing — The signal and image processing methods were implemented using MATLAB (The Mathworks Inc., Boston, MA) as previously described (32). Briefly, linefluorescence images were filtered scan according to the noise level estimated by the median absolute deviation of the pixel intensities. Individual cells in the images were manually marked and the average fluorescence in each cell obtained for further analysis. A wavelet peak detection algorithm was used in order to detect individual calcium release events in the average fluorescence signals. For each event detected in each cell, we determined the peak amplitude (local min-max difference) and the alternans ratio (relative amplitude difference between consecutive peaks). The presence of alternans periods was established when six consecutive peaks presented an alternans ratio above 0.05. Alternans duration was defined as the percentage of alternans periods over the total line-scan duration. Average magnitudes were obtained by taking the mean over each line-scan.

Statistical Analysis — GraphPad Prism 6.0 was used for statistical analyses. All values shown are mean \pm SD unless indicated otherwise. To test for differences between groups, we used Student's t test (2-tailed) or one or two-Way ANOVA with a Dunnett's or Bonferronis's post hoc test when appropriate. A P value <0.05 was considered to be statistically significant. **Acknowledgements:** This work was supported by research grants from the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Alberta, Northwest Territories and Nunavut, the Canada Foundation for Innovation (CFI), the Heart and Stroke Foundation Chair in Cardiovascular Research, the Alberta Innovates-Health Solutions (to SRWC), the Spanish Ministry of Economy and Competitiveness (MINECO) (to RB, DPI2013-44584-R and to LHM, SAF2014-58286-C2-1R), and Generalitat de Catalunya (to LHM and RB, SGR2014-1465). We would also like to thank Dr. Evangelia G. Kranias, University of Cincinnati, for kindly providing the phospholamban knockout mice, and Dr. Long-Sheng Song, University of Iowa, for his continued support and helpful discussion on intact heart Ca²⁺ imaging.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author Contributions: BS, JW, XZ, WG, JY, RW, RB, LHM, SRWC designed the research; BS, JW, XZ, WG, JY, RW performed the research; BS, JW, XZ, WG, AV, RB, LHM, SRWC analyzed data; and BS, XZ, AV, RB, LHM, SRWC wrote the paper.

References

- Kihara, Y., and Morgan, J. P. (1991) Abnormal Cai²⁺ handling is the primary cause of mechanical alternans: study in ferret ventricular muscles. *The American Journal of Physiology* 261, H1746-1755
- 2. Chudin, E., Goldhaber, J., Garfinkel, A., Weiss, J., and Kogan, B. (1999) Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. *Biophysical journal* **77**, 2930-2941
- 3. Diaz, M. E., O'Neill, S. C., and Eisner, D. A. (2004) Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. *Circ Res* **94**, 650-656
- 4. Goldhaber, J. I., Xie, L. H., Duong, T., Motter, C., Khuu, K., and Weiss, J. N. (2005) Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. *Circ Res* **96**, 459-466
- 5. Wan, X., Laurita, K. R., Pruvot, E. J., and Rosenbaum, D. S. (2005) Molecular correlates of repolarization alternans in cardiac myocytes. *Journal of Molecular and Cellular Cardiology* **39**, 419-428
- 6. Eisner, D. A., Li, Y., and O'Neill, S. C. (2006) Alternans of intracellular calcium: mechanism and significance. *Heart rhythm : the official journal of the Heart Rhythm Society* **3**, 743-745
- 7. Laurita, K. R., and Rosenbaum, D. S. (2008) Cellular mechanisms of arrhythmogenic cardiac alternans. *Progress in biophysics and molecular biology* **97**, 332-347
- 8. Laurita, K. R., and Rosenbaum, D. S. (2008) Mechanisms and potential therapeutic targets for ventricular arrhythmias associated with impaired cardiac calcium cycling. *Journal of Molecular and Cellular Cardiology* **44**, 31-43
- 9. Xie, L. H., Sato, D., Garfinkel, A., Qu, Z., and Weiss, J. N. (2008) Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. *Biophysical journal* **95**, 3100-3110
- Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K., Bers, D. M., and Ripplinger, C. M. (2014) Optical mapping of sarcoplasmic reticulum Ca²⁺ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. *Circulation research* 114, 1410-1421
- 11. Kanaporis, G., and Blatter, L. A. (2015) The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. *Circulation research* **116**, 846-856
- 12. Rosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., and Cohen, R. J. (1994) Electrical alternans and vulnerability to ventricular arrhythmias. *The New England journal of medicine* **330**, 235-241
- 13. Armoundas, A. A., Tomaselli, G. F., and Esperer, H. D. (2002) Pathophysiological basis and clinical application of T-wave alternans. *Journal of the American College of Cardiology* **40**, 207-217
- 14. Narayan, S. M. (2006) T-wave alternans and the susceptibility to ventricular arrhythmias. *Journal* of the American College of Cardiology **47**, 269-281
- 15. Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., Laurita, K. R., and Rosenbaum, D. S. (2009) Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. *Heart rhythm : the official journal of the Heart Rhythm Society* **6**, 251-259
- 16. Qu, Z., Xie, Y., Garfinkel, A., and Weiss, J. N. (2010) T-wave alternans and arrhythmogenesis in cardiac diseases. *Frontiers in physiology* **1**, 154
- 17. Verrier, R. L., and Nieminen, T. (2010) T-wave alternans as a therapeutic marker for antiarrhythmic agents. *Journal of cardiovascular pharmacology* **55**, 544-554
- 18. Verrier, R. L., and Malik, M. (2013) Electrophysiology of T-wave alternans: mechanisms and pharmacologic influences. *Journal of electrocardiology* **46**, 580-584
- 19. Escobar, A. L., and Valdivia, H. H. (2014) Cardiac alternans and ventricular fibrillation: a bad case of ryanodine receptors reneging on their duty. *Circulation research* **114**, 1369-1371
- 20. Bers, D. M. (2002) Cardiac excitation-contraction coupling. *Nature* **415**, 198-205.

- 21. Cordeiro, J. M., Malone, J. E., Di Diego, J. M., Scornik, F. S., Aistrup, G. L., Antzelevitch, C., and Wasserstrom, J. A. (2007) Cellular and subcellular alternans in the canine left ventricle. *Am J Physiol Heart Circ Physiol* **293**, H3506-3516
- 22. Aistrup, G. L., Shiferaw, Y., Kapur, S., Kadish, A. H., and Wasserstrom, J. A. (2009) Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart. *Circ Res* **104**, 639-649
- 23. Alvarez-Lacalle, E., Cantalapiedra, I. R., Penaranda, A., Cinca, J., Hove-Madsen, L., and Echebarria, B. (2013) Dependency of calcium alternans on ryanodine receptor refractoriness. *PloS one* **8**, e55042
- 24. Edwards, J. N., and Blatter, L. A. (2014) Cardiac alternans and intracellular calcium cycling. *Clin Exp Pharmacol Physiol* **41**, 524-532
- 25. Qu, Z., Liu, M. B., and Nivala, M. (2016) A unified theory of calcium alternans in ventricular myocytes. *Scientific reports* **6**, 35625
- 26. Orchard, C. H., McCall, E., Kirby, M. S., and Boyett, M. R. (1991) Mechanical alternans during acidosis in ferret heart muscle. *Circulation research* **68**, 69-76
- 27. Huser, J., Wang, Y. G., Sheehan, K. A., Cifuentes, F., Lipsius, S. L., and Blatter, L. A. (2000) Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. *The Journal of physiology* **524 Pt 3**, 795-806
- 28. Diaz, M. E., Eisner, D. A., and O'Neill, S. C. (2002) Depressed Ryanodine Receptor Activity Increases Variability and Duration of the Systolic Ca²⁺ Transient in Rat Ventricular Myocytes. *Circ Res* **91**, 585-593
- 29. Kockskamper, J., Zima, A. V., and Blatter, L. A. (2005) Modulation of sarcoplasmic reticulum Ca²⁺ release by glycolysis in cat atrial myocytes. *J Physiol* **564**, 697-714
- 30. Kapur, S., Wasserstrom, J. A., Kelly, J. E., Kadish, A. H., and Aistrup, G. L. (2009) Acidosis and ischemia increase cellular Ca²⁺ transient alternans and repolarization alternans susceptibility in the intact rat heart. *American journal of physiology.Heart and circulatory physiology* **296**, H1491-1512
- 31. Shkryl, V. M., Maxwell, J. T., Domeier, T. L., and Blatter, L. A. (2012) Refractoriness of sarcoplasmic reticulum Ca²⁺ release determines Ca²⁺ alternans in atrial myocytes. *American journal of physiology.Heart and circulatory physiology* **302**, H2310-2320
- 32. Zhong, X., Sun, B., Vallmitjana, A., Mi, T., Guo, W., Ni, M., Wang, R., Guo, A., Duff, H. J., Gillis, A. M., Song, L. S., Hove-Madsen, L., Benitez, R., and Chen, S. R. (2016) Suppression of Ryanodine Receptor Function Prolongs Ca²⁺ Release Refractoriness and Promotes Cardiac Alternans in Intact Hearts. *The Biochemical journal*
- Kornyeyev, D., Petrosky, A. D., Zepeda, B., Ferreiro, M., Knollmann, B., and Escobar, A. L. (2012) Calsequestrin 2 deletion shortens the refractoriness of Ca²⁺ release and reduces rate-dependent Ca²⁺-alternans in intact mouse hearts. *J Mol Cell Cardiol* 52, 21-31
- 34. Picht, E., DeSantiago, J., Blatter, L. A., and Bers, D. M. (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. *Circulation research* **99**, 740-748
- 35. Lugo, C. A., Cantalapiedra, I. R., Penaranda, A., Hove-Madsen, L., and Echebarria, B. (2014) Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: insights from a human atrial model. *American journal of physiology.Heart and circulatory physiology* **306**, H1540-1552
- Belevych, A. E., Terentyev, D., Viatchenko-Karpinski, S., Terentyeva, R., Sridhar, A., Nishijima, Y., Wilson, L. D., Cardounel, A. J., Laurita, K. R., Carnes, C. A., Billman, G. E., and Gyorke, S. (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. *Cardiovasc Res* 84, 387-395
- Sabir, I. N., Ma, N., Jones, V. J., Goddard, C. A., Zhang, Y., Kalin, A., Grace, A. A., and Huang,
 C. L. (2010) Alternans in genetically modified langendorff-perfused murine hearts modeling catecholaminergic polymorphic ventricular tachycardia. *Frontiers in physiology* 1, 126

- 38. Xie, W., Santulli, G., Guo, X., Gao, M., Chen, B. X., and Marks, A. R. (2013) Imaging atrial arrhythmic intracellular calcium in intact heart. *J Mol Cell Cardiol* **64**, 120-123
- Ferrantini, C., Coppini, R., Scellini, B., Ferrara, C., Pioner, J. M., Mazzoni, L., Priori, S., Cerbai, E., Tesi, C., and Poggesi, C. (2016) R4496C RyR2 mutation impairs atrial and ventricular contractility. *J Gen Physiol* 147, 39-52
- 40. Kang, G., Giovannone, S. F., Liu, N., Liu, F. Y., Zhang, J., Priori, S. G., and Fishman, G. I. (2010) Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. *Circulation research* **107**, 512-519
- 41. Wasserstrom, J. A., Sharma, R., Kapur, S., Kelly, J. E., Kadish, A. H., Balke, C. W., and Aistrup, G. L. (2009) Multiple defects in intracellular calcium cycling in whole failing rat heart. *Circulation. Heart failure* **2**, 223-232
- 42. Xie, L. H., and Weiss, J. N. (2009) Arrhythmogenic consequences of intracellular calcium waves. *American journal of physiology.Heart and circulatory physiology* **297**, H997-H1002
- 43. Rovetti, R., Cui, X., Garfinkel, A., Weiss, J. N., and Qu, Z. (2010) Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. *Circ Res* **106**, 1582-1591
- 44. Kapur, S., Aistrup, G. L., Sharma, R., Kelly, J. E., Arora, R., Zheng, J., Veramasuneni, M., Kadish, A. H., Balke, C. W., and Wasserstrom, J. A. (2010) Early development of intracellular calcium cycling defects in intact hearts of spontaneously hypertensive rats. *American journal of physiology.Heart and circulatory physiology* **299**, H1843-1853
- 45. Llach, A., Molina, C. E., Fernandes, J., Padro, J., Cinca, J., and Hove-Madsen, L. (2011) Sarcoplasmic reticulum and L-type Ca²⁺ channel activity regulate the beat-to-beat stability of calcium handling in human atrial myocytes. *The Journal of physiology* **589**, 3247-3262
- 46. Qu, Z., Nivala, M., and Weiss, J. N. (2013) Calcium alternans in cardiac myocytes: order from disorder. *J Mol Cell Cardiol* **58**, 100-109
- 47. Chen, B., Guo, A., Gao, Z., Wei, S., Xie, Y. P., Chen, S. R., Anderson, M. E., and Song, L. S. (2012) In situ confocal imaging in intact heart reveals stress-induced Ca(2+) release variability in a murine catecholaminergic polymorphic ventricular tachycardia model of type 2 ryanodine receptor(R4496C+/-) mutation. *Circulation.Arrhythmia and electrophysiology* **5**, 841-849
- 48. Kameyama, M., Hirayama, Y., Saitoh, H., Maruyama, M., Atarashi, H., and Takano, T. (2003) Possible contribution of the sarcoplasmic reticulum Ca²⁺ pump function to electrical and mechanical alternans. *J Electrocardiol* **36**, 125-135
- 49. Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., and Rosenbaum, D. S. (2009) Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. *Circulation. Arrhythmia and electrophysiology* **2**, 686-694
- Cutler, M. J., Wan, X., Plummer, B. N., Liu, H., Deschenes, I., Laurita, K. R., Hajjar, R. J., and Rosenbaum, D. S. (2012) Targeted sarcoplasmic reticulum Ca²⁺ ATPase 2a gene delivery to restore electrical stability in the failing heart. *Circulation* 126, 2095-2104
- 51. Stary, V., Puppala, D., Scherrer-Crosbie, M., Dillmann, W. H., and Armoundas, A. A. (2016) SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. *Journal of applied physiology (Bethesda, Md. : 1985)* **120**, 865-875
- 52. Weiss, J. N., Karma, A., Shiferaw, Y., Chen, P. S., Garfinkel, A., and Qu, Z. (2006) From pulsus to pulseless: the saga of cardiac alternans. *Circulation research* **98**, 1244-1253
- Nassal, M. M., Wan, X., Laurita, K. R., and Cutler, M. J. (2015) Atrial SERCA2a Overexpression Has No Affect on Cardiac Alternans but Promotes Arrhythmogenic SR Ca²⁺ Triggers. *PLoS One* 10, e0137359
- 54. Jiang, D., Xiao, B., Zhang, L., and Chen, S. R. (2002) Enhanced basal activity of a cardiac Ca²⁺ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. *Circ Res* **91**, 218-225.
- 55. Jiang, D., Xiao, B., Yang, D., Wang, R., Choi, P., Zhang, L., Cheng, H., and Chen, S. R. W. (2004) RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca²⁺ release (SOICR). *Proc.Natl.Acad.Sci.U.S.A.* **101**, 13062-13067

- 56. Zhou, Q., Xiao, J., Jiang, D., Wang, R., Vembaiyan, K., Wang, A., Smith, C. D., Xie, C., Chen, W., Zhang, J., Tian, X., Jones, P. P., Zhong, X., Guo, A., Chen, H., Zhang, L., Zhu, W., Yang, D., Li, X., Chen, J., Gillis, A. M., Duff, H. J., Cheng, H., Feldman, A. M., Song, L. S., Fill, M., Back, T. G., and Chen, S. R. (2011) Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca²⁺ release. *Nature medicine* **17**, 1003-1009
- 57. Fernandez-Velasco, M., Rueda, A., Rizzi, N., Benitah, J. P., Colombi, B., Napolitano, C., Priori, S. G., Richard, S., and Gomez, A. M. (2009) Increased Ca²⁺ sensitivity of the ryanodine receptor mutant RyR2R4496C underlies catecholaminergic polymorphic ventricular tachycardia. *Circulation research* 104, 201-209, 212p following 209
- 58. Chen, W., Wang, R., Chen, B., Zhong, X., Kong, H., Bai, Y., Zhou, Q., Xie, C., Zhang, J., Guo, A., Tian, X., Jones, P. P., O'Mara, M. L., Liu, Y., Mi, T., Zhang, L., Bolstad, J., Semeniuk, L., Cheng, H., Zhang, J., Chen, J., Tieleman, D. P., Gillis, A. M., Duff, H. J., Fill, M., Song, L. S., and Chen, S. R. (2014) The ryanodine receptor store-sensing gate controls Ca²⁺ waves and Ca²⁺ triggered arrhythmias. *Nature medicine* **20**, 184-192
- 59. Zhang, J., Chen, B., Zhong, X., Mi, T., Guo, A., Zhou, Q., Tan, Z., Wu, G., Chen, A. W., Fill, M., Song, L. S., and Chen, S. R. (2014) The cardiac ryanodine receptor luminal Ca²⁺ sensor governs Ca²⁺ waves, ventricular tachyarrhythmias and cardiac hypertrophy in calsequestrin-null mice. *The Biochemical journal* 461, 99-106
- 60. Luo, W., Grupp, I. L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J. J., Doetschman, T., and Kranias, E. G. (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. *Circulation research* **75**, 401-409
- 61. Priori, S. G., Napolitano, C., Memmi, M., Colombi, B., Drago, F., Gasparini, M., DeSimone, L., Coltorti, F., Bloise, R., Keegan, R., Cruz Filho, F. E., Vignati, G., Benatar, A., and DeLogu, A. (2002) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. *Circulation* **106**, 69-74.
- 62. Faggioni, M., Hwang, H. S., van der Werf, C., Nederend, I., Kannankeril, P. J., Wilde, A. A., and Knollmann, B. C. (2013) Accelerated sinus rhythm prevents catecholaminergic polymorphic ventricular tachycardia in mice and in patients. *Circ Res* **112**, 689-697
- 63. Bai, Y., Jones, P. P., Guo, J., Zhong, X., Clark, R. B., Zhou, Q., Wang, R., Vallmitjana, A., Benitez, R., Hove-Madsen, L., Semeniuk, L., Guo, A., Song, L. S., Duff, H. J., and Chen, S. R. (2013) Phospholamban knockout breaks arrhythmogenic Ca²⁺ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. *Circulation research* 113, 517-526

FOOTNOTES

The abbreviations used are: RyR2, cardiac ryanodine receptor; CPVT, catecholaminergic polymorphic ventricular tachycardia; DAD, delayed afterdepolarization; PLB, phospholamban; SR, sarcoplasmic reticulum; SCR, spontaneous Ca²⁺ release; SERCA2a, cardiac sarco/endoplasmic reticulum Ca²⁺-ATPase; AP, action potential; tBHQ, 2,5-di-tert-butylhydroquinone; CASQ2, cardiac calsequestrin; LTCC, L-type Ca²⁺ Channel; Na⁺/Ca²⁺, sodium/calcium exchange; GOF, gain-of-function; LOF, loss-of-function.

FIGURES

Figure 1. RyR2-R4496C mutation shortens the refractoriness of SR Ca²⁺ release. Langendorffperfused intact RyR2 WT (A) and R4496C mutant (B) hearts were loaded with Rhod-2 AM. Hearts were first stimulated at 5 Hz for 30 beats (S1), followed by a single S2 stimulation. A series of S1S2 stimulations were repeatedly applied with progressively reduced S1S2 intervals from 200 ms to 40 ms. Ca²⁺ transients were recorded using line-scanning confocal imaging. (C) The relationship between A2/A1 ratio of the Ca²⁺ transient amplitude and S1S2 interval is shown. Data shown are mean \pm SD (n = 5 hearts for WT, n = 7 hearts for R4496C) (*P<0.05).

Figure 2. Ca²⁺ transient alternans in intact RyR2 WT and RyR2-R4496C hearts. Langendorffperfused intact RyR2 WT (A) and R4496C mutant (B) hearts were loaded with Rhod-2 AM. Ca²⁺ transients in intact Rhod-2 AM loaded RyR2 WT and RyR2-R4496C mutant hearts were elicited by pacing at different frequencies (5-16 Hz), and recorded using line-scanning confocal imaging. Cell boundaries were indicated by short bars to the left. The $\Delta F/F_0$ traces depict the average fluorescence signal of the scan area. Alternans ratio for each cell that displayed alternans in the scan area and alternans duration for each cell in the same scan area were determined and averaged per cell to yield the average alternans ratio (C) and average alternans duration (D). Alternans ratio is defined as the ratio of the difference in amplitude between the large and small Ca²⁺ transients over the amplitude of the large Ca²⁺ transient. Alternans duration is defined as the percentage of time in alternans over the 10-s scanning period. Data shown are mean \pm SD (n = 6 hearts for WT at stimulation frequencies 5-14 Hz, and n=3 hearts for WT at 15-16 Hz; n = 11 hearts for R4496C at stimulation frequencies 5-14 Hz, and n = 6 hearts for RC for 15-16 Hz). Two-Way ANOVA with a Bonferroni's post hoc test (**P<0.01). For the analysis of alternans ratios, the F statistics for the Row factor (pacing frequency) is F=112.763, p<0.01; the column factor (genotypes) F=282.836, P<0.01; interaction between the Column and Row Factors F=26.7164; P<0.01. For the analysis of alternans durations, the F statistics for the Row factor (pacing frequency) is F=59.165, p<0.01; the column factor (genotypes) F=83.86, P<0.01; interaction between the Column and Row Factors F=11.127; P<0.01.

Figure 3. Intact working RyR2-R4496C hearts exhibit no detectable spontaneous Ca^{2+} release events during pacing. Intact Rhod-2 AM loaded R4496C mutant hearts were stimulated at increasing frequencies (6-14 Hz), and recorded using line-scanning confocal imaging. (A) Ca^{2+} transients at 6 Hz. (B) Ca^{2+} transients at 10 Hz. (C) Ca^{2+} transients at 14 Hz. There were no spontaneous Ca^{2+} sparks or Ca^{2+} waves detected during pacing.

Figure 4. Intact working RyR2-R4496C hearts display spontaneous Ca^{2+} waves after cessation of stimulation. Intact Rhod-2 AM loaded RyR2 WT (A) and R4496C mutant (B) hearts were stimulated at 6 Hz (indicated by a red line) and recorded using line-scanning confocal imaging during stimulation and after the cessation of stimulation. (C) Percentage (%) of cells in intact WT and R4496C hearts that displayed spontaneous Ca^{2+} waves (indicated by red triangles). Spontaneous sinus rhythm is indicated by a green line or green triangles. Data shown are mean \pm SD (n=5 hearts for RyR2 WT; n=5 hearts for R4496C (**P<0.01).

Figure 5. Ca²⁺ transient alternans in intact WT and PLB-KO hearts. Langendorff-perfused intact RyR2 WT (A) and PLB-KO (B) hearts were loaded with Rhod-2 AM. Ca²⁺ transients were elicited by pacing at different frequencies (5-14 Hz), and recorded using line-scanning confocal imaging. Cell boundaries were indicated by short bars to the left. The Δ F/Fo traces depict the average fluorescence signal of the scan area. The average alternans ratio (C) and average alternans duration (D) in intact RyR2 WT and PLB-KO hearts at different stimulation frequencies are shown. Data shown are mean ± SD (n = 6 hearts for WT, n = 9 hearts for PLB-KO). Two-Way ANOVA with a Bonferroni's post hoc test (*P<0.05). For the analysis of alternans ratios, the F statistics for the Row factor (pacing frequency) is F=113.179, p<0.01; the column factor (genotypes) F=2.859, P=0.0932; interaction between the Column and Row Factors F=1.589; P=0.1249. For the analysis of alternans durations, the F statistics for the Row factor (pacing frequency) is F=124.8, p<0.01; the column factor (genotypes) F=18.94, P<0.01; interaction between the Column and Row Factors F=1.65; P=0.1215.

Figure 6. Ca²⁺ alternans in intact RyR2-E4872Q hearts with or without PLB-KO. Langendorffperfused intact RyR2-E4872Q (A) and PLB-KO/RyR2-E4872Q^{+/-} (PLB-KO/EQ) (B) hearts were loaded with Rhod-2 AM. Ca²⁺ transients were elicited by pacing at different frequencies (5-14 Hz), and recorded using line-scanning confocal imaging. Cell boundaries were indicated by short bars to the left. The Δ F/Fo traces depict the average fluorescence signal of the scan area. The average alternans ratio (C) and average alternans duration (D) intact RyR2-E4872Q and PLB-KO/EQ at different stimulation frequencies are shown. Data shown are mean ± SD (n = 5 hearts for E4872Q, n = 8 hearts for PLB-KO/EQ). Two-Way ANOVA with a Bonferroni's post hoc test (*P<0.05). For the analysis of alternans ratios, the F statistics for the Row factor (pacing frequency) is F=54.76, P<0.01; the column factor (genotypes) F=13.26, P<0.01; interaction between the Column and Row Factors F=1.276; P=0.257. For the analysis of alternans durations, the F statistics for the Row factor (pacing frequency) is F=38.66, P<0.01; the column factor (genotypes) F=13.874, P<0.01; interaction between the Column and Row Factors F=0.726; P=0.6834.

Figure 7. Effect of tBHQ on Ca²⁺ alternans ratio and duration in intact RyR2 WT hearts. Langendorff-perfused intact RyR2 WT hearts were loaded with Rhod-2 AM. Ca²⁺ transients were elicited by pacing at different frequencies (5-14 Hz), and recorded using line-scanning confocal imaging before (A) and after the treatment of 3 μ M (B) or 10 μ M (C) tBHQ. Cell boundaries were indicated by short bars to the left. The Δ F/Fo traces depict the average fluorescence signal of the scan area. The average alternans ratio (D) and average alternans duration (E) at different stimulation frequencies are shown. Data shown are mean \pm SD (n = 11 hearts before tBHQ treatment, n=8 hearts after 3 μ M tBHQ, n = 6 hearts after 10 μ M tBHQ). Two-Way ANOVA with a Dunnett's post hoc test (**P<0.01). For the analysis of alternans ratios, the F statistics for the Row factor (pacing frequency) is F=153.906, P<0.01; the column factor (tBHQ treatment) F=108.024, P<0.01; interaction between the Column and Row Factors F=17.8275;

P<0.01. For the analysis of alternans durations, the F statistics for the Row factor (pacing frequency) is F=84.08, P<0.01; the column factor (tBHQ treatment) F=86.24, P<0.01; interaction between the Column and Row Factors F=7.386; P<0.01.

Figure 8. Effect of tBHQ on Ca²⁺ alternans ratio and duration in intact RyR2-E4872Q hearts. Langendorff-perfused intact RyR2-E4872Q hearts were loaded with Rhod-2 AM. Ca²⁺ transients were elicited by pacing at different frequencies (5-14 Hz), and recorded using line-scanning confocal imaging before (A) and after the treatment of 3 μ M (B) or 10 μ M (C) tBHQ. Cell boundaries were indicated by short bars to the left. The Δ F/Fo traces depict the average fluorescence signal of the scan area. The average alternans ratio (D) and average alternans duration (E) at different stimulation frequencies are shown. Data shown are mean \pm SD (n = 5 hearts each for control, 3 μ M, and 10 μ M tBHQ groups. Two-Way ANOVA with a Dunnett's post hoc test (*P<0.05, **P<0.01). For the analysis of alternans ratios, the F statistics for the Row factor (pacing frequency) is F=32.41, P<0.01; the column factor (tBHQ treatment)

F=107.4, P<0.01; interaction between the Column and Row Factors F=6.527; P<0.01. For the analysis of alternans durations, the F statistics for the Row factor (pacing frequency) is F=28.754, P<0.01; the column factor (tBHQ treatment) F=35.61, P<0.01; interaction between the Column and Row Factors F=1.538; P=0.1035.

The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca2+-ATPase, is a major determinant of Ca2+ alternans in intact mouse hearts

Bo Sun, Jinhong Wei, Xiaowei Zhong, Wenting Guo, Jinjing Yao, Ruiwu Wang, Alexander Vallmitjana, Raul Benitez, Leif Hove-Madsen and S.R. Wayne Chen

J. Biol. Chem. published online July 9, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA118.003760

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts