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Vicenç Beltran*

Barcelona Supercomputing Center
vbeltran@bsc.es

Jesus Labarta*

Barcelona Supercomputing Center
jesus.labarta@bsc.es

ABSTRACT

In this paper we propose an API to pause and resume task
execution depending on external events. We leverage this
generic API to improve the interoperability between MPI
synchronous communication primitives and tasks. When an
MPI operation blocks, the task running is paused so that
the runtime system can schedule a new task on the core
that became idle. Once the MPI operation is completed, the
paused task is put again on the runtime system’s ready queue.
We expose our proposal through a new MPI threading level
which we implement through two approaches.

The first approach is an MPI wrapper library that works
with any MPI implementation by intercepting MPI synchro-
nous calls, implementing them on top of their asynchronous
counterparts. In this case, the task-based runtime system is
also extended to periodically check for pending MPI oper-
ations and resume the corresponding tasks once MPI oper-
ations complete. The second approach consists in directly
modifying the MPICH runtime system, a well-known imple-
mentation of MPI, to directly call the pause/resume API
when a synchronous MPI operation blocks and completes,
respectively.

Our experiments reveal that this proposal not only sim-
plifies the development of hybrid MPI+OpenMP applica-
tions that naturally overlap computation and communication
phases; it also improves application performance and scalabil-
ity by removing artificial dependencies across communication
tasks.
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1 INTRODUCTION

Current near-term and mid-term high-performance comput-
ing (HPC) architecture trends suggest that the first genera-
tion of exascale computing systems will consist of distributed
memory nodes, where each node is powerful and contains a
large number of compute cores. A well-established practice
in the HPC community is to develop hybrid applications
combining APIs such as MPI and OpenMP, which are spe-
cialized in exploiting inter-node and intra-node parallelism,
respectively. Although MPI and OpenMP were not origi-
nally designed to be used together, these have evolved to
provide some interoperability support. However, this minimal
support heavily determines how both models can be safely
combined to develop hybrid applications, posing performance
implications.

The MPI Standard guarantees that point–to–point commu-
nications among two ranks are always ordered as long as these
leverage the same tag and communicator. However, when
multiple threads communicate simultaneously, the operations
are logically concurrent and hence these threads can receive
them in any order. To avoid ordering problems on hybrid
applications, in practice MPI communications are usually re-
stricted to sequential parts of the application (what is known
as MPI’s thread funneled mode), while most computations
are performed in parallel. This results in a common pattern
that interleaves parallel computation phases (fork–join) with
sequential communication phases. This is the easiest and
most common way to combine both programming models,
but it is not free of drawbacks. On the one hand, it is not
easy to overlap computation and communication phases; on
the other hand, both inter-node and intra-node parallelism
may be potentially hindered due to the strict synchroniza-
tion enforced among computation phases and across nodes.
Hybrid applications may be restructured to manually overlap
computation and communication phases of the algorithm us-
ing asynchronous communication primitives and techniques
such as double-buffering. However, these techniques require
complex modifications of the code that, depending on the
application complexity, are not even feasible.
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An easy way to solve the previous issues would be to use
tasks to implement both computation and communication
phases, relying on task dependencies to deal with inter-node
and intra-node synchronizations. However, this approach
cannot be efficiently implemented with current MPI and
OpenMP specifications. MPI provides the MPI THREAD -
MULTIPLE mode that supports the concurrent invocation
of MPI calls from multiple threads, but this is not sufficient
to efficiently support task-based programming models such
as OpenMP. The main issue is that tasks are not aware
of the synchronous MPI primitives, which might block not
only the task but also the underlying hardware thread that
runs it. Even if the MPI implementation does not rely on
busy-waiting to check for operation completion and the hard-
ware thread becomes idle, the task runtime has no means
to discover that the hardware thread is available without an
explicit notification from the MPI side. Without this notifi-
cation mechanism, if the number of in-flight MPI operations
blocked reaches the number of available hardware threads,
the application will hang due to lack of progress. With the
current specification of MPI, it is the responsibility of the
application developer to avoid this situation. However, this
severely limits the ability of application developers to fully
benefit from task-based programming models.

In this work, (1) we introduce a generic API to program-
matically pause and resume task execution; (2) we propose
MPI TASK MULTIPLE, a new level of thread support for MPI
that leverages this generic API to better support blocking
MPI operations inside tasks; (3) we implement this support
into a portable MPI wrapper library that works with any MPI
implementation; (4) we also extend a well-known MPI imple-
mentation to directly use the pause/resume API, and (5) we
provide an in-depth performance and scalability evaluation
of our proposals.

The rest of the paper is structured as follows. Section 2
provides an introduction to the OpenMP and MPI program-
ming models. In Section 3 we review related literature. In
Section 4 we present the pause and resume API. Section 5
describes the MPI interception library and the MPICH na-
tive implementations. We evaluate our work in Section 6.
In Section 7 we describe the impact of our proposal to the
OpenMP and MPI standards. Finally, Section 8 provides
concluding remarks.

2 BACKGROUND

In this section we provide a brief overview of the OmpSs and
MPI programming models along with the implementations
we leverage.

2.1 OmpSs-2 and the BSC
Implementation

OmpSs-2 is the second generation of the OmpSs programming
model developed at the Barcelona Supercomputing Center.
It is open source and mainly used as a research platform to
conceive, implement and test new ideas that can be exported
to the OpenMP tasking model. OmpSs-2 (like OpenMP)

is based on directives and it enables the parallelism in a
data-flow way. The developer is in charge of decomposing
the code into tasks and identifying their data dependencies.
This information is later used by the source–to–source Mer-
curium [1] compiler to generate the corresponding calls to the
Nanos6 [11] runtime API. The runtime library is responsible
for scheduling and executing the annotated tasks, preserv-
ing the implied task dependency constraints. The Nanos6
runtime and the Mercurium compiler are publicly available
at http://pm.bsc.es.

2.2 MPI and the MPICH Implementation

MPI is a message-passing standard [10] broadly used by the
HPC community. MPICH is a popular open source MPI im-
plementation (see http://www.mpich.org), and its derivatives
(such as Intel’s, Cray’s, or IBM’s MPI) are default in 9 out of
the top 10 supercomputers in the current TOP500 list [14].
In this paper we introduce calls to the proposed API into the
latest MPICH stable release, version 3.2.1 dated Nov. 2017.

3 RELATED WORK

Overlapping computation and communication phases is a crit-
ical issue that has already been studied in several contexts. In
[2, 3], the authors developed a threading library for the Cell
B.E. processor that transparently overlaps the computation
and communication phases of different threads running on
the same SPU (Synergistic Processor Unit in the Cell B.E.
architecture). When the running threads are about to block
on a DMA operation (which would be equivalent to a wait all
or wait any operation in the MPI interface), the execution of
the thread is suspended until the DMA operation completes.
In the meantime, the execution of another thread is resumed
on the SPU to overlap the communication phase of the sus-
pended thread(s) with the computation phase of the current
thread. This work also studies double- and multi-buffering
techniques which also allows overlapping, but are limited to
applications with a regular and static communication pat-
terns, while the approach based on threads supports irregular
applications with a dynamic communication pattern.

The study of hybrid approaches [8, 12, 13] combining com-
munication libraries and shared memory programming models
has been considered over the last years both in research and
in performance analysis publications.

Using the comm thread approach of the hybrid MPI+SMPSs
programming model [9], authors allowed to exploit distant
parallelism separated by taskified MPI calls. These tasks
were also identified as communication tasks and were exe-
cuted by an additional thread called communication thread.
The runtime’s task scheduler could reorder the execution of
communication and computational tasks in such a way that
communication can happen as soon as possible, increasing
the parallelism within and across MPI processes. That pro-
posal requires changes to the programming model to allow
to identify ahead of time those tasks that have blocking-like
behavior. In addition, only one thread can execute them,
and it must do so in sequential order. Hence, this solution

2

http://pm.bsc.es
http://www.mpich.org


Improving the Interop. between MPI and Task-Based Programming Models

is suboptimal. In this paper we propose a runtime-agnostic
solution that does not require to pre-classify the work units,
that allows tasks to contain any mixture of computations and
communications, and that supports several communications
in parallel and out of order.

In the Habanero-C MPI (HCMPI) proposal [4], MPI calls
are tightly integrated with the task dependency system.
HCMPI treats all MPI calls as (asynchronous) tasks, which
brings well-known issues inherent to excessively fine-grained
tasking, such as increased scheduling overhead and load im-
balance. In contrast, our proposal is orthogonal to the depen-
dency system and is specially well suited to parallelize legacy
and library code, as it does not require to taskify every MPI
operation, resulting in a more natural and flexible approach.

4 INTEROPERABILITY BETWEEN
PARALLEL RUNTIMES AND
BLOCKING OPERATIONS

This section overviews and proposes solutions to the chal-
lenges of interoperating efficiently parallel runtimes with
operations that have blocking-like semantics.

For instance, synchronous I/O operations over files may
block the thread that invokes them for the duration of the
operation. On an environment with multiple processes com-
peting for CPU time, the time that the thread is blocked
may be used by another thread. However, on hosts dedicated
to a single multithreaded HPC job, the core is most likely to
remain idle.

In this section we discuss our proposal in the context of
OmpSs-2 and MPI.

4.1 Block and Unblock

To support the efficient execution of blocking-like operations
in parallel runtimes, we first propose an API to pause and
resume tasks. It is composed of three functions. The first has
the following prototype in C:

void *get current blocking context();

This function informs the runtime that the current task is
about to enter a pause–resume cycle. The function configures
everything needed to handle one round trip, and returns an
opaque pointer to runtime-specific data. Throughout the rest
of this text we call this data a blocking context. A block-
ing context is valid only for one pause–resume cycle, and
requesting a new context invalidates the currently active one.
The pause and resume operations are requested through the
following functions:

void block current task(void *blocking ctx);

void unblock task(void *blocking ctx);

On a call to the first function, the runtime suspends the
execution of the invoking task. The parameter must be the
current blocking context of the invoking task. The second
function indicates that the task associated to the blocking
context can be resumed. This function can be called by any
thread over a valid blocking context.

The general usage pattern consists in replacing blocking
operations by either asynchronous or non-blocking equiva-
lents, and to let the runtime perform the actual blocking.
The runtime can then schedule other computations during
the blocking period. This usage scheme is shown in Figure 1a.

Asynchronous operations that support callbacks can use
the callback function to unblock the task. If the operation
does not support callbacks, then another thread has to (1)
periodically test for its completion and (2) unblock the tasks
when it finishes. Figure 1b shows the pattern that the body
of the main loop of such a thread would contain. Notice that
the information that links an asynchronous operation with
a blocking context must be made visible to the thread that
will unblock it.

4.2 Polling

The detection of finished operations can be either blocking or
non-blocking. To simplify the non-blocking case, we propose
an additional API that avoids the need for the additional
thread. Instead, the runtime can address of those actions at
regular intervals or on a best-effort basis.

To make this part generic, the API provides a periodic
callback mechanism. The callback should check for the com-
pletion of the asynchronous operation and perform the calls
to unblock the associated task. The prototype to register the
callback is the following:

void register polling service(char const *service name,

polling service t service function, void *service data);

It receives a string parameter that is a description for
debugging purposes, the callback function and an opaque
pointer to data to pass to the callback. The prototype of the
callback is the following:

typedef int (*polling service t)(void *service data);

It receives as a parameter the opaque pointer, and returns
a boolean value that indicates whether its purpose has been
attained: if true, the callback is automatically unregistered;
otherwise the runtime will continue to call it. Throughout the
rest of this text we will refer to callback as the pair composed
by the callback function and the opaque data passed to the
registration function.

Figure 2a shows a callback function that can be used for
multiple operations. During initialization, the callback would
be registered to ensure that the runtime calls it periodically.
The body of the callback is essentially the code already shown
in Figure 1b but adapted to work in a non-blocking fashion
and with multiple operations.

During finalization, the following function can be used to
unregister a callback. It receives the same parameters as the
registration function and returns once the callback has been
disabled:

void unregister polling service(char const *service name,

polling service t service function, void *service data);

In addition to a single callback for many operations, the
API also supports using one callback per operation. This is
possible by passing the operation information through the
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1 async handler = start async op(...);

2 void *blocking ctx = get current blocking context();

3 associate(async handler, blocking ctx);

4 block current task(blocking ctx);

(a) Code that performs the blocking operation

1 async handler = wait until one async op finishes();

2 void *blocking ctx = get assigned blocking context(async handler);

3 unblock task(blocking ctx);

(b) Body of the code that handles the unblocking of the op-
eration

Figure 1: Pause and resume pattern to handle a synchronous operation

1 int polling callback(void *service data) {
2 while (have ready operations()) {
3 async handler = get ready operation();

4 void *blocking ctx = get assigned blocking context(async handler);

5 unblock task(blocking ctx);

6 }
7 return 0;

8 }
(a) Callback code that handles multiple operations

1 int polling callback(void *service data) {
2 operation info t *oi = (operation info t *) service data;

3 int finished = operation has finished(oi−>async handler);

4 if (finished) {
5 unblock task(oi−>blocking ctx);

6 }
7 return finished;

8 }
(b) Callback code that handles only one operation

1 operation info t oi;

2 oi.async handler = start async op(...);

3 oi.blocking ctx = get current blocking context();

4 register polling service(”service−per−request−example”, polling callback, &oi);

5 block current task(oi.blocking ctx);

(c) Modified blocking code to use one callback per operation

Figure 2: Pause and resume patterns with two polling approaches

service data parameter and by automatically unregistering
the callback through its return value. Figure 2c shows the
blocking-side code. Unlike in the code previously shown in
Figure 1a, the callback is not registered during initialization.
Instead, before blocking, the new code registers the actual
callback function together with the data associated with the
operation. The callback function, which is shown in Figure 2b,
uses that data to recover the actual asynchronous operation
and its associated blocking context. If it detects that the
operation has finished, in addition to unblocking the task, it
also returns a value that indicates that the callback should
be automatically unregistered.

4.3 Blocking and Unblocking in Nanos6

The blocking call in Nanos6 forces a scheduling point in the
task. At this point, the task will not be able to resume until
it is sent back to the scheduler. If there are ready tasks, the
scheduler will assign one to the core. Otherwise, the core will
become idle.

The unblocking call sends the task back to the scheduler.
During this process, the scheduler may choose to wake up an
idle core and assign the task to it. In that case, the runtime
resumes the execution on that core. Otherwise, the task will
eventually resume when there is a core available for it.

4.4 Polling in Nanos6

Nanos6 invokes the polling callbacks both at periodic intervals
and opportunistically. The runtime has a thread dedicated to
management operations, which processes the list of callbacks
every 1 ms. Performing calls at regular intervals allows it
to support implementations that require them to guarantee
progress.

In addition, worker threads serve the list of callbacks before
letting their core become idle. The implementation allows sev-
eral threads to process the list concurrently. However, at this
time we assume that callbacks may not support concurrent
execution.

The current polling API and its implementation in Nanos6
are at an early stage. In the future we may add options related
to callback concurrency and quality of service requirements.

4.5 Genericity

While we focus on OpenMP tasks and MPI, the API can
also be applied to other task-based programming models and
even other OpenMP work-sharing constructs. For instance, an
OpenMP runtime could execute more parallel loop iterations
while others are blocked on MPI calls. The API also supports
other types of operations with blocking and asynchronous
variants, e.g., file accesses.

4
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5 MPI

In this Section we present the modification of the MPI model
required to improve the interoperability between MPI and
OmpSs. The ability to notify the task runtime that a task can
be paused, and to permit that task to be resumed by the run-
time, is specific to each runtime. However, the changes needed
to the MPI semantics to benefit from the pause/resume abil-
ity could be useful in other over-subscription scenarios. For
example, in Cooperative Multithreading (CMT), one user-
level thread could explicitly yield to others during a blocking
MPI operation and be resumed only when the MPI operation
is ready to be completed. Similarly, this mechanism could
be used in any form of Asynchronous Multi-Tasking (AMT)
environment, such as OpenMP tasks, HPX-5, or PaRSEC.

The key components of the MPI changes proposed in this
paper are: 1) introduction of an API to notify that an MPI
operation has blocked/unblocked; 2) modifications to the
progress rule for MPI communication operations in multi-
threaded and multi-tasking; and 3) creation of an additional
thread support level to expose a provided/requested “opt-in”
mechanism for both users and MPI libraries.

5.1 MPI Interoperability Layer

The MPI interoperability library uses the standard MPI inter-
ception techniques that enable transparent interception of all
the MPI calls performed by an application. Figure 3 shows
the code that is executed when the application performs
an MPI RECV call from inside a task. The first operation
performed at line 3 is to check if the interception library is en-
abled. If this is not the case, the original blocking MPI RECV
operation is executed (line 15) using the PMPI interface. Oth-
erwise, the blocking call is transformed into its non-blocking
counterpart, in this case an MPI IRECV (line 5). The code
then checks if the operation is immediately completed. In
such case, the function returns without blocking the task,
since the MPI operation has been completed. Otherwise, a
ticket object is created and filled with the information about
the ongoing MPI operation and the current task (line 9). The
ticket is next registered inside the interception library and the
task is paused (line 11). MPI asynchronous operations do not
feature a callback to wake up the thread once the operation
is completed. To handle this, the library defines a polling
service callback (line 18), which the runtime system calls
periodically to check if any MPI operation has completed
(line 21). When an MPI operation completes, the task waiting
for that MPI operation is resumed (line 24) and returned to
the runtime system’s ready queue. All other blocking MPI
primitives, including collective operations, are intercepted
and managed similarly.

5.2 MPI Progress and Thread Support
Levels

The specification of the thread support levels and the modifi-
cations to the progress rules necessary for a thread-compliant
MPI library are given in Chapter 12.4 of the MPI-3.1 Stan-
dard. This section proposes changes to the MPI Standard to

1 int MPI Recv(void *buf, ..., MPI Status *status) {
2 int err, completed = 0;

3 if (Interop::isEnabled()) {
4 MPI Request request;

5 err = MPI Irecv(buf, ..., &request);

6 MPI Test(&request, &completed, status);

7 if (!completed) {
8 Ticket ticket(&request, status);

9 ticket. waiter = get current blocking context();

10 pendingTickets.add(ticket);

11 block current task(ticket. waiter);

12 }
13 return err;

14 }
15 return PMPI Recv(buf, ..., status);

16 }
17

18 void Interop::poll() {
19 for (Ticket &ticket : pendingTickets) {
20 int completed = 0;

21 MPI Test(ticket. request, &completed, ticket. status);

22 if (completed) {
23 pendingTickets.remove(ticket);

24 unblock task(ticket. waiter);

25 }
26 }
27 }

Figure 3: Implementation of the MPI RECV function
in the interoperability library and the polling func-
tion executed periodically by the runtime system

support interoperability with task-based runtime pause/re-
sume ability.

Replacing blocking operations with non-blocking opera-
tions via the profiling interface will work, in practice, for
all correct thread-compliant MPI library implementations
because one set of correct MPI function calls is replacing
another. Strictly, however, this replacement does not comply
with the MPI Standard because there could be situations
where multiple function calls, issued by multiple threads, are
not serializable. Specifically, their combined effect is not the
same as any of the possible linear orderings of those function
calls. For example, consider a single thread in a single process
executing a task-based runtime with two tasks—one calls a
blocking synchronous-mode send and the other calls a block-
ing receive (these calls match and there are no other calls
that can match). In MPI, as it is today, this must certainly
deadlock and is therefore erroneous by definition. Whichever
order the blocking send and blocking receive are executed
in, either the MPI SSEND will block until the MPI RECV is
issued, or vice versa. The only execution thread available
cannot proceed to the second call without completing the
first. However, with the pause/resume API, the first blocking
function call can pause the calling task, enter the task-based
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1 int *sentinel; // Sentinel used to serialize communication tasks

2

3 int main(int argc, char * argv[]) {
4 int provided;

5 MPI Init thread(&argc, &argv, MPI TASK MULTIPLE, &provided);

6 if (provided == MPI TASK MULTIPLE) sentinel = 0;

7 else sentinel = (int *) 1;

8

9 for (int i=0; i<NT; i++) {
10 // Dependency enforced only if *sentinel != 0

11 #pragma oss task inout(tile[i]) inout(*sentinel)

12 communication task(tile[i]);

13 }
14 }

Figure 4: Portable initialization using
MPI TASK MULTIPLE

runtime, schedule the other task, issue the second MPI block-
ing function call, complete it because now both send and
receive have been posted, then return and resume the first
task, which can complete its MPI function. These MPI func-
tions were not executed in some order—their effects (as well
as their execution) were interleaved. Therefore, the ”executed
in some order” requirement in the MPI Standard [10] should
have to be weakened or removed.

The requirements and guarantees for this new support
level are not clear from the existing text. In addition, the
use of this new pause/resume API requires stronger progress
rules than those currently in the MPI Standard. Specifically,
we propose that these rules include an additional statement
similar to the following: “MPI functions are not permitted to
block the calling thread indefinitely. Every MPI function call
must either complete or yield to other runnable threads or
tasks in finite time.” In combination with the existing rules,
this gives the guarantee that users and task-based runtimes
need but it also forces MPI to implement a mechanism like
the pause/resume API proposed in this paper. Since this
requires a stronger guarantee from MPI and permits oth-
erwise erroneous code, it should be exposed via an “opt-in”
requested/provided mechanism.

Consequently, we propose that MPI should define a new
thread support level, which each MPI library can choose
to support or not during initialization of MPI. The new
thread support level could be called MPI TASK MULTIPLE
and its constant value would be monotonically greater than
the existing MPI THREAD MULTIPLE constant. In this way,
applications can request support for the pause/resume func-
tionality via the MPI Init thread call and check whether the
underlying MPI library provides it.

Figure 4 shows an example of how a hybrid MPI+OmpSs
code may use this new thread support level to write portable
applications. First, the application checks if the MPI TASK -
MULTIPLE threading level is supported by the underlying
MPI library. If this is the case, it defines a sentinel variable
pointing to NULL, which will be ignored by the runtime

system; otherwise, it sets the sentinel variable to one, so that
communication tasks will be serialized. This is shown in lines
11–12, where communication tasks are created with a regular
dependency over the block these will work on, as well as an
artificial inout dependency on the address pointed by the
sentinel variable to serialize the execution of these tasks and
avoid deadlocks.

5.3 Native MPI Implementations

The modifications in an MPI library in order to use the
proposed API are relatively simple and nonintrusive. In this
section we describe the two approaches we have implemented.

5.3.1 Interop(mpich): Interoperability Calls within the MPI
Runtime. The modifications in this case mainly involve the
introduction of a block current task call during blocking MPI
calls and an unblock task call once the corresponding blocking
operation is determined to have finished. The former should
be introduced after performing the appropriate networking
interactions—for the sake of performance, and if this infor-
mation is available within the MPI implementation, only in
case the underlying networking operations returned reporting
deferred completion. The latter, on the other hand, is called
during the actions performed to set the status of a pending
request as completed.

Since the task blocking call actually blocks the execution
of the calling task context until the corresponding unblock-
ing operation is issued—yielding execution control back to
the tasking runtime—this requires the MPI implementation
to leverage an asynchronous progress thread to ensure all
request completions are adequately handled and hence the
unblock task function is properly called. Note that the MPI
progress engine has to be aware of the appropriate task to
unblock, which should be easily accomplished, e.g. by attach-
ing the blocking context to the internal request information
before calling the blocking function. Figure 5 illustrates in
pseudocode the described proposed implementation.

We advocate that this interoperability option should pose
very low intrusiveness into MPI implementations. First, the
required additions are highly localized and comprise just
a few lines of source code. Second, the additional proposed
code is easily protected by a new threading level (MPI TASK -
MULTIPLE) which is checked and selected by applications
according to the current MPI Init thread semantics. Last,
most MPI implementations already feature the necessary
asynchronous progress thread.

5.3.2 Interop(polling): Leveraging the Progress Engine from
the Tasking Runtime. Since the former implementation may
suffer from oversubscription due to the additional MPI progress
engine thread, we propose alternatively leveraging the Nanos6
polling service to make MPI progress. On top of the native
MPI implementation, in MPI Init thread we insert a call to
the function defined in Section 4.2 to register in Nanos6 a call
to the MPI progress engine as a polling service. Similarly, we
modified MPI Finalize to unregister the MPI polling service
in Nanos6 before program termination.
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1 int MPI Recv(...) {
2 ...

3 if (!request is complete(req)) {
4 req−>blocking ctx = get current blocking context();

5 block current task(req−>blocking ctx);

6 ...

7 }
8 ...

9 }
10

11 void request complete(req) { // Called by the progress engine

12 ...

13 unblock task(req−>blocking ctx);

14 ...

15 }

Figure 5: Pseudocode illustrating main modifications
in an MPI implementation to leverage the proposed
API

6 EVALUATION

In this section we provide an in-depth evaluation of the pro-
grammability and performance of our proposal to improve
MPI and OpenMP interoperability. We analyze our results
based on two benchmarks: an iterative Gauss–Seidel method
and a mock-up of a meteorological forecasting application.
We have used up to 64 compute nodes of the Marenostrum 4
supercomputer to run the experimental validation. Each com-
pute node is equipped with 2 sockets of Intel Xeon Platinum
8160 CPUs, with 24 cores each, totaling 48 cores per node,
and 96 GB of main memory. The interconnection network is
based on 100 Gbit/s Intel Omni-Path HFI technology. We
have used the latest stable release of MPICH (3.2.1) and
OmpSs-2 (17.11).

6.1 Gauss–Seidel

In this section we use the iterative Gauss–Seidel method [6]
to solve the Heat equation [5], which is a parabolic partial
differential equation that describes the distribution of heat
in a given region over time. We have developed five versions
of the Gauss–Seidel method for 2-D matrices. The next two
are MPI-based:

∙ Pure MPI: This version is a straightforward implementa-
tion of the algorithm using synchronous MPI primitives
to exchange boundaries among neighbouring ranks. The
computation phase of the algorithm is sequential. The 2-D
matrix is distributed across ranks assigning a consecutive
set of rows to each one (a single block per rank). Boundary
exchanges correspond to whole rows.

∙ N-Buffer MPI: This version is significantly more elaborate
than Pure MPI. In this case the rows of each rank are
horizontally divided by blocks, hence a distinct boundary
exchange is performed for each block. This version starts
to exchange block boundaries as soon as possible using
asynchronous MPI primitives. For instance, a rank starts
to send (MPI Isend) its last row of a block once it has

i

i i-1 i-1

i-1

Rank 0

Rank 1

Rank 2

Task that computes a block 
on the i-th iterationRank 3

Figure 6: 2-D matrix of 3 × 12 blocks split in four
ranks. On the hybrid versions, for each iteration a
task is created to update each block using values
of both current (top and left blocks) and previous
(current, right and bottom blocks) iterations

been computed, but also starts to receive (MPI Irecv) the
lower boundary for the next iteration. Before starting the
computation of a block, it waits (MPI Wait) for the com-
pletion of all pending MPI requests related to the block.
Thus the computation is partially overlapped by boundary
exchanges.

The rest are hybrid MPI+OmpSs versions which divide
the matrix into squared blocks and these are distributed
across MPI ranks. The left-hand side of Figure 6 shows how
a domain of 3 × 12 blocks would be split across four MPI
ranks. These hybrid versions are:

∙ Fork-Join: This is a hybrid version with a sequential com-
munication phase and a parallel computation phase. The
communication phase uses synchronous primitives to ex-
change boundaries among neighbours as in Pure MPI. On
the computation phase, a task is created to update each
block using the top and left blocks of the current iteration,
and the current, left and bottom blocks of the previous
iteration, as shown in Figure 6. Tasks use fine-grained de-
pendencies to exploit the spatial wave-front parallelism.
However, there is a global synchronization point after each
computation phase that prevents this version from exploit-
ing parallelism across iterations (temporal wave-front).

∙ Sentinel: A hybrid version where both communication and
computation are implemented using tasks. The communica-
tion phase uses tasks to execute the synchronous MPI prim-
itives that exchange boundary blocks among neighbours.
These communication tasks are serialized by a sentinel
dependency to avoid deadlocks (as explained in Section 5).
This version avoids the global synchronization (taskwait) by
leveraging fine-grained dependencies between computation
and communication tasks.

∙ Interop: This version uses the MPI TASK MULTIPLE mul-
tithreading level proposed in this paper to avoid the serial-
ization of communication tasks. This is the only difference
with the Sentinel version. It has been evaluated with the
interoperability library presented in Section 5.1 and the
two modified versions of MPICH described in Section 5.3.
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Figure 7: Above: dependency graph for Pure MPI and
Fork-Join. Below: dependency graph for N-Buffer MPI,
Sentinel (with red dependencies) and Interop (no red
dependencies)

The three variants are named Interop(lib), Interop(mpich)
and Interop(polling), respectively.

In N-Buffer MPI each block has total rows/num ranks rows
and 1K columns. In the hybrid versions, each compute task
processes a block of 1K×1K elements. This is the smallest
block size required to attain peak performance.

Figure 7 compares the dependency graph of Pure MPI
and Fork-Join (above) and N-Buffer MPI, Sentinel and In-
terop (below). For the sake of clarity, both graphs have been
simplified by showing up to the first six iterations, fusing
the explicit communication tasks with the tasks that com-
pute boundary blocks and also other redundant dependencies
such as anti-dependencies. In the Pure MPI and Fork-Join
versions, the execution of each iteration inside an MPI rank
depends on the completion of the previous iteration of its
neighbor MPI ranks, which results in a strong serialization
effect that affects the execution of the whole program.

In N-Buffer MPI, the strong serialization effect can be
avoided by exchanging block boundaries as soon as possible,
performing calls to the corresponding asynchronous MPI
primitives right after processing each block. The Sentinel
version also exchanges block boundaries at the earliest, using
tasks with fine-grained dependencies to execute MPI primi-
tives. However, since this version uses synchronous primitives,
it still has to serialize communication tasks to avoid dead-
locks. This introduces the red dependencies that also reduce
significantly the parallelism within and across iterations.

Finally, the Interop version that uses MPI TASK MULTIPLE
removes the red dependencies and thus can fully exploit both
spatial and temporal wave-front parallelism. Moreover, in
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Figure 8: Speedup and parallel efficiency of the
Gauss–Seidel strong scaling with 64K x 64K total
elements

this version, tasks blocked on MPI calls never block the un-
derlying CPU, so resource undersubscription is also avoided.
In summary, MPI TASK MULTIPLE allows the programmer
to parallelize applications in a more natural way, without
requiring artificial dependencies that hinder the available
parallelism.

Pure MPI and N-Buffer MPI experiments have been per-
formed using 48 MPI ranks per node. Hybrid versions have
used 1 rank per node and 48 OmpSs threads per rank. The
upper part of Figure 8 shows a strong-scaling study of the five
versions using the performance of Pure MPI running on one
node as a baseline. On a single node, all hybrid versions expe-
rience higher performance than Pure MPI. When the hybrid
versions run on a single node (one rank), the MPI primitives
are completely avoided. Thus the rigid serialization effect
introduced by MPI is fully removed and these versions can
fully exploit the spatial and temporal wave-front parallelism.
It is worth noting that the Fork-Join version is significantly
slower than the other task-based versions due to the global
synchronization point after each iteration that prevents the
exploitation of the temporal wave-front. As we increase the
number of nodes, the performance of the Pure MPI version
also increases, but the scalability is clearly sub-optimal. On
the other hand, both Fork-join and Sentinel stop scaling at
two and four nodes, respectively. Note that these versions
are the only that can be easily implemented with current
OpenMP and MPI standards.

The N-Buffer MPI version outperforms all previous ver-
sions since it avoids the strong serialization of iterations
between ranks, which is observed in Pure MPI and Fork-
Join. In addition, this version allows to overlap computation

8
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and communication phases. However, the scalability is still
sub-optimal and it is difficult to implement.

The three Interop versions have good scalability with up
to 32 nodes. With 64 nodes the curve flattens because the
problem size is too small to get sufficient parallelism to exploit
48 cores. The Interop(lib) and Interop(polling) versions reveal
identical performance, since both approaches implement a
similar strategy where both runtimes cooperate to check for
the completion of MPI requests, registering a polling service
on the Nanos6 runtime that ensures progress by testing
pending requests periodically. On the Interop(mpich) version,
the helper thread used by MPICH also ensures application
progress but, since it runs on the same cores as the worker
threads of the Nanos6 runtime, performance degrades due to
oversubscription.

The lower part of Figure 8 shows the parallel efficiency of
all five versions. In this case each version uses as a baseline
its own performance on a single node. From 1 to 16 nodes
the efficiency of the three Interop variants is almost the same,
but then it quickly decreases, since the problem size becomes
too small to feed all the cores. The parallel efficiency of Pure
MPI and N-Buffer MPI steadily decrease from 1 to 0.1 at
64 nodes. Fork-Join and Sentinel have a big drop of parallel
efficiency at two and four nodes, respectively.

Figure 9 shows five traces of Pure MPI, N-Buffer, Fork-
Join, Sentinel and Interop(lib), respectively, running on four
nodes (192 cores) with the same time-scale. The traces show
the time-line on the X axis and the MPI ranks/OmpSs threads
on the Y axis. In Pure MPI and N-Buffer there are 192 ranks;
in the other versions there are four ranks—one rank per
node—and each rank has 48 OmpSs threads. On the three
hybrid versions, the red lines correspond to the execution of
the Gauss–Seidel tasks.

On the Pure MPI version (Figure 9a) the last rank (191)
cannot start computing the first iteration until all the other
ranks have completed the first iteration. This introduces a big
delay at the beginning that is also symmetrically reproduced
at the end.

The same effect can be observed on the Fork-Join (Fig-
ure 9c) and Sentinel (Figure 9d) versions, but in this case
there are only four ranks, so only four full iterations are
required to have all the MPI ranks working. In the Fork-Join
version, the global synchronization at the end of each itera-
tion produces a strong serialization effect among iterations
(that is the same effect found on the Pure MPI version), so
one iteration cannot start until the same iteration of the
previous MPI rank has been fully completed. Moreover, the
global synchronization at the end of the compute phase also
limits the available parallelism, so only 8 out of the 48 cores
can work in parallel (running computation tasks).

The Sentinel version improves over the Fork-Join version
because one MPI rank can start computing an iteration as
soon as the previous rank has completed the computation of
the first boundary block of the same iteration. This allows to
partially overlap the computation of the same iteration across
MPI ranks. However, the artificial dependencies introduced
to serialize the communication tasks still hinder the available

Rank 0

Rank 191

MPI_Send
1st iteration

MPI_Barrier

All Iterations

MPI_Send + MPI_Recv + Calculation

10 Iterations

(a) Pure MPI

Rank 0

Rank 191

All Iterations
10 Iterations

MPI_Isend + MPI_Irecv 

+ MPI_Wait + Calculation

MPI_Barrier

MPI_Wait

(b) N-Buffer MPI

Rk0, 0

Rk3, 47

10 Iterations

Calculation

MPI_Send + MPI_Recv

Communication

(c) Fork-join

Rk0, 0

Rk3, 47

10 Iterations

MPI_Send

Calculation

MPI_Recv

(d) Sentinel

Rk0, 0

Rk3, 47

All Iterations

MPI_Send
+ MPI_Recv

+ Calculation

(e) Interop

Figure 9: Execution traces with 4 nodes. The Y axis
shows MPI ranks/OmpSs threads and the X axis is
the time-line

parallelism inside one iteration. In this case, 8 cores can run
computation tasks in parallel with another core running a
communication task. Although these hybrid versions take
less time to complete a single iteration, Pure MPI pipelines
iterations in a better way and ends up outperforming them
in overall iteration throughput.

N-Buffer MPI (Figure 9b) does not show the big delay at
the first iteration seen in Pure MPI and Fork-Join. This is
because it exchanges boundaries as soon as possible, thus
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Figure 10: Speedup and parallel efficiency of the
Gauss–Seidel weak scaling with 32K x 32K elements
per node

ranks can process different blocks from the same iteration
concurrently. In addition, it is more flexible than the previous
ones due to the use of asynchronous MPI primitives. The
aforementioned reasons make this version outperform previ-
ous versions both in iteration latency and overall iteration
throughput. However, it does not reach Interop’s performance
and it requires more development effort than them.

Finally, the Interop(lib) (Figure 9e) version avoids any
global synchronization or serialization of communication
tasks, so an iteration can be almost fully overlapped across
the ranks. Moreover, this version is the only that can exploit
both spatial wave-front and temporal wave-front parallelisms,
benefiting from the 48 cores.

To finalize the performance analysis, we have performed a
weak-scaling experiment. The speed-up graph (upper part of
Figure 10) uses the performance of the Pure MPI version on
a single node as a baseline for all versions. For the parallel
efficiency graph (lower part of Figure 10), each version uses
its own performance on one node as the baseline. This exper-
iment shows again the good scalability of the three Interop
versions that scale linearly up to 64 nodes. The parallel ef-
ficiency of Pure MPI and N-Buffer MPI steadily decreases
from 1 to 0.3 at 64 nodes, while Fork-Join and Sentinel fea-
ture a parallel efficiency of 0.4 and 0.2, respectively, with
only four nodes.

In addition, we obtained the expected proportional results
when performing these experiments in other systems, e.g.
Cray ARCHER.

6.2 IFSKer

IFSKer is a mock-up application parallelized with MPI. It
mimics the communication and computational patterns of the

meteorological forecasting model called Integrated Forecast-
ing System (IFS). IFS employs a spectral transform method
which represents fields by using a set of coefficients of a basis
function (e.g. a sine function).

The algorithmic structure consists of time-step cycles di-
vided into two phases: grid-point physics computations and
Fast Fourier transforms. Data representation and distribu-
tion among MPI ranks is different in each stage. Therefore,
communication among ranks occurs during the transitions
among stages, where the data needs to be transposed and
redistributed among the ranks.

The original implementation is based on MPI (Pure MPI),
but we have implemented a new version (Interop) that uses
tasks for both the compute and communication phases. How-
ever, in this application the compute phase is very fine-
grained, so it is not worth to fully parallelize it. Hence, we
only use tasks to have more in-flight MPI operations and to
overlap the communication and computation phases. In this
evaluation there is one MPI rank per core for both the Pure
MPI and Interop versions, so Fork-Join and Sentinel used on
Gauss–Seidel would be equivalent to Pure MPI.

We have executed the hybrid version with the three in-
teroperability approaches previously explained: Interop(lib),
Interop(mpich) and Interop(polling). Figure 11 shows the
speed-up and parallel efficiency of the two versions on a
strong-scaling scenario. In the speed-up graph (upper part)
we have used the performance of the Pure MPI version run-
ning on a single node as a baseline. For the parallel efficiency
graph (lower part), each version uses as baseline its perfor-
mance on a single node. The speed-up graph shows that,
on a single node, the performance of Interop(lib) and In-
terop(polling) is 4x higher than that of the Pure MPI version.
However, Interop(mpich) is only 2x faster than Pure MPI.
This can be explained by the oversubscription problems be-
tween the helper thread of MPICH and the worker thread of
the OmpSs runtime. The Interop versions scale linearly up
to 16 nodes; after this point the problem size becomes too
small. It is worth noting that Pure MPI scales superlinearly
and with 16 nodes it reaches the performance of the Interop
versions. This effect is clearly reflected on the parallel effi-
ciency graph (lower part of Figure 11). The parallel efficiency
of Pure MPI grows until it reaches 3.2x at 8 nodes. Lastly,
we have performed a weak-scaling analysis, but figures are
not shown due to limited space.

7 STANDARDIZATION

In this section we will discuss the impact of the proposal in
the two mentioned standard bodies. First we will discuss what
changes we will need to include in the OpenMP standard
and how the implementation could be affected. Then we
will discuss how these features could be included in an MPI
implementation.
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Figure 11: Speedup and parallel efficiency of the
IFSKer strong scaling with 653K total gridpoints

7.1 OpenMP

The impact on the OpenMP standard could be measured
according to two different fronts: language and implementa-
tion. The impact on language affects OpenMP programmers
and the way they can interact with the programming model.
The impact on the implementation affects compiler–library
providers and the way the infrastructure should behave when
executing the OpenMP program.

In terms of language the specification should include the
four API routines described in Section 4 and provide the
functionality of pause/resume tasks and register/unregister
polling services.

In addition, this proposal should also impact on the speci-
fication’s section concerning task scheduling and, more specif-
ically, the inclusion of new task scheduling points (TSPs).
The call to the blocking service must be considered as a TSP
allowing the implementation to set aside the current task and
start/resume the execution of any other task from the ready
task pool. The unblock service could also be included as a
TSP allowing the scheduler to continue with the execution
of the current flow or resume the execution of the unblocked
task, but in this case it will be optional.

7.2 MPI

In order for the MPI Standard to be made aware of the
task blocking possibility, we propose a new threading level
(e.g. MPI TASK MULTIPLE that can be checked and selected
by MPI applications following the current MPI Init thread
semantics. As mentioned in Section 5.2, this new threading
level will have implications on the definition of the ordering
of execution of MPI calls along with the progress rules. In
addition, the syntax and semantics of the interoperability

API should also be specified within the Standard. This cross-
referenced standardization could be accomplished, e.g., by all
implied standards pointing to a certain revision of a separate
interoperability standard. We note that the inclusion of this
tasking interoperability awareness in the MPI Standard would
not be specific for OpenMP interoperability, but it would
also work with other programming models featuring similar
tasking features (such as Cilk or TBB) and implementing
the proposed API.

We have begun the formal procedure of standardizing
the changes to MPI proposed in this paper by creating an
issue for consideration by the Hybrid Programming working
group [7].

8 CONCLUSION AND FUTURE WORK

In this paper we have introduced a generic API to pause and
resume task execution depending on external events. This
API has been used to extend MPI with a new threading
level called MPI TASK MULTIPLE, which notifies task-based
runtime systems when a synchronous MPI operation blocks
and unblocks. We have demonstrated how this new thread-
ing level improves the programmability and performance of
hybrid MPI+OmpSs applications. Moreover, this threading
level can be leveraged by any other task-based programming
model that implements the pause/resume API.

As future work, we plan to study how the presented pause
and resume API performs in MPI RMA operations. We
also plan to use it to improve the integration of task-based
programming models with other synchronous APIs.
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