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Abstract. A fundamentally new idea in grid generated turbulence is the 3D Sparse Grid
(3DS) concept [N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. US Patent
No. US 9,599,269 B2 (2017)] which reduces the effective blockage ratio compared to the 2D
flat fractal grids, σ3DS � σ2DF , and possess a much greater parameter space which could allow
further optimization of the turbulence as compared to the 2D fractal (2DF) grids. Here, we
report on some theoretical results regarding blockage ratio reduction in a 3-frame 3DS system,
and some results from Direct Numerical Simulations comparing the turbulence characteristics
generated by 3DS with Regular (RG) and 2DF grids cases.

1. Introduction to 3D Sparse Grids
One of the most important properties of turbulence is its ability to enhance mixing. This
has enumerable applications in chemical and industrial contexts and in many natural systems
where turbulence is present, such as drag reduction. The control of turbulence is therefore
desired. For example, 2D flat (2DF) square fractal grids have been shown to alter the turbulence

Figure 1: Left to rght: (a) 2D regular grid (RG). (b) 2D fractal square grid (2DF). (c) 3D sparse
grid (3DS).
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characteristics compared to the regular grids, it is believed that the turbulence intensity is
enhanced for the same blockage ratio.

Grid generated turbulence is the most common way of studying turbulence in laboratory
experiments. Until recently regular grids (RG), Figure 1(a), with bars of constant thickness
producing open cells of constant width for flow passage, have been used. As fractals became
popular in the 1990s a new type of grid with bars of different thicknesses and different lengths
in a flat 2D fractal arrangement (2DF) was developed, Figure 1(b). The essential idea here
is that different scales of turbulence are generated spontaneously in the same plane. The
turbulence generated has different characteristics compared to the RGs, with the turbulence
intensity peaking at a higher level [1].

A recent innovation in grid generated turbulence, the 3D Sparse Grid (3DS) [2, 3], called
the Sparse 3D Multi-Scale Grid Turbulence Generator, or 3D sparse grid (3DS) for short,
has excited interest in the turbulence community because of its potential to alter turbulence
characteristics downstream of the grid. The 3DS goes further than the 2DF construction by
separating each generation of length scale of turbulence grid elements in to its own frame in

Figure 2: a = 0.5, w1 = 0.05 Figure 3: a = 0.7, w1 = 0.05

Solidity (blockage ratios) against the scaling factor r. σ2DF , and σ3DS , and the scale-by-scale, σ1, σ2, σ3
in the 3DS are shown.

Figure 4: a = 0.5, w1 = 0.05 Figure 5: a = 0.7, w1 = 0.05

Reduced solidity against the scaling factor r. The scale-by-scale, R1, R2, R3, and R3DS in the 3DSGT

are shown.
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overall co-planar arrangement, Figure 1(c), which produces a 3D sparse grid system. Each
generation of grid elements produces a turbulent wake pattern that interacts with the other
wake patterns downstream. The length scale of the grid elements from frame to frame can be
in any multiscale ratios, although a fractal pattern is a popular choice.

Here, we report on some theoretical results regarding mass flow rates in 3DS in Section 2,
and some results from Direct Numerical Simulations (DNS) that demonstrate the performance
of the 3DS in a conduit compared to the classical flat 2D Fractal Grid (2DF) arrangement.

2. Some Properties of 3D Sparse Grids
A direct consequence of separating scales in the 3DS is that the effective blockage ratio (solidity),
is greatly reduced compared to the 2DF. Furthermore, the parameter space is increased because
the distances between successive frames are additional parameters.

In the 3DS arrangement, the optimal reduction in the blockage ratio as compared to the 2DF
flat fractal grid, R3DS(r) = σ3DS(r)/σ2DF , occurs when the geometric ratio between successive
length scales is, r = 0.5, see Figures 4 and 5. The mass flow rate is increased for the same
pressure gradient due to the lower blockage.

Consider a 3-generation 2DF, and a corresponding 3DS sparse arrangement. In both cases,
the grids are contained inside a square conduit of height and width equal to H, to give a cross-
sectional area of,

T = H ×H (1)

Suppose that in the first generation (largest scale) the fractal square grid has length L1 = aH,
with a < 1. The thickness of the grid bars is W1. The second generation of grid scales is produced
from the first generation by scaling with scaling factor r with 0 < r < 1; thus L2 = rL1 , and
W1 = rW0. In the third generation, L3 = r2L1 and W3 = r2W1.

Then, the 2DF flat grid in Fig. 1, has the total cross-sectional area,

A2DF = (L1W1 −W 2
1 )(4 + 16r2 + 64r4)−W 2

1 (8r + 32r3) (2)

This is an exact expression, taking in to account the small overlap areas between the different
generations. Laziet & Vassilicos [1] derive an approximate expression in terms of the perimeter

Figure 6: a = 0.5, w1 = 0.05 Figure 7: a = 0.7, w1 = 0.05

Enhanced mass flux against the scaling factor r. The scale-by-scale, f1, f2, f3, and f3DS in the 3DSGT

are shown.
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of the square fractal arrangement. The cross-sectional areas for each generation of grid bars in
the 3DS separately, are

A1 = 4(L1W1 −W 2
1 ) (3)

A2 = 16r2(L1W1 −W 2
1 ) = 4r2A1 (4)

A3 = 64r2(L1W1 −W 2
1 ) = 4r2A2 = 16r4A1 (5)

We non-dimensionalise all lengths by H to obtain the non-dimensional parameters, l1 =
L1/H, and w1 = W1/H . Then, the blockage ratio (solidity) in the 2D flat grid is given by
σ2DF = A2DF /T ,

σ2DF = (aw1 − w2
1)(4 + 16r2 + 64r4)− w2

1(8r + 32r3) (6)

and the solidity of each of grid frame separately in the 3DS are,

σ1 = 4(aw1 − w2
1); σ2 = 4r2σ1; σ3 = 16r4σ1 (7)

The effective solidity of the 3DS arrangement is therefore smaller than the corresponding
2DF,

σ3DS = Max(σ1, σ2, σ3) (8)

The solidity is a function of three non-dimensional variables,

σ3DS = σ3DS(w1, a, r) < σ2DF (9)

Figures 2 and 3 show the σ′s against r for w1 = 0.05, and for a = 0.5 and 0.7 respectively.
From equations (7)-(9), for r = 0.5 we have σ1 = σ2 = σ3. This is because the increase in the

number of self-similar squares competes with the decrease in the per unit area from generation
to generation. At r = 0.5 these two effects exactly balance and lead to the optimal reduction at
r = 0.5.

We define the reduction in solidity (blockage ratio) from 2DF to 3DS to be,

Rσ(w1, a, r) =
σ3DS
σ2DF

. (10)

We also define scale-by-scale solidity reduction by,

R1 =
σ1
σ2DF

; R2 =
σ2
σ2DF

; R3 =
σ3
σ2DF

. (11)

Figures 4 and 5 shows the solidity reductions R as a function of r, for w1 = 0.05, and for
a = 0.5 and 0.7 respectively. Rσ shows a minimum of Rσ ≈ 0.36 at r = 0.5.

If we approximation the mass flux rate through a grid with blockage ratio σ to be,

M = (1− σ)F (Re; ρ, U, µ, L) (12)

where F is some function (for example, F could be proportional to the pressure gradient). ρ is
the fluid density, U is the mean flow velocity, ν is the kinematic viscosity Re is the Reynolds
number. The increase in mass flow rate from the 2DF flat to the 3DS sparse grids is,

fσ(w1, a, r) =
M

M2DF
=

1− σ
1− σ2DF

(13)

and similar expressions f1, f2, f3 for each generation can be obtained.
Figures 6 and 7 shows the enhanced mass flow rates, f ′s, against r for the same cases as in

Figures 4 and 5 respectively. We obtain fσ = 1.21 which is an increase of 21%. Although fσ
continues to increase for r > 0.5, the solidity approaches 1, and 1 − σ → 0, and the flow rate
approaches zero. Thus r = 0.5 is the optimal enhancement in mass flux rates.
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3. Direct Numerical Simulations
The aim here is to compare the turbulence characteristics produced by RG, 2DF, and 3DS grids.
We use DNS for this purpose.

The domain is a cuboid of dimensions 460.8×115.2×115.2d3min where dmin is the thickness of
the smallest square. Thus, the height and width of the channel is H = 115.2dmin. We consider
three different grids, regular grid RG, 2D flat fractal grid 2DF, and 3D sparse grid 3DS. The
blockage ratios in the RG and 2DF is equal to 32%, and the constant effective mesh size in the
RG is Mef = 13.33dmin . The bars have length 115.2dmin in the RG with thickness 2.6dmin, the
same as in [1].

The bars in the 3DS have the same lengths and thicknesses as in the 2DF. All lengths are
henceforth non-dimensionalized by dmin.

The 2DF has non-dimensionlized lengths and widths {li, di} , in generation i = 0, 1, 2,. The
geometric ratio for the large grid scales is, r = 0.5, and a = 0.5. Thus, l0 = 57.6 = 0.5h,
l1 = 0.5l0, l2 = 0.5l1. The geometric ratio for the bar thicknesses is 1/

√
8.5 = 0.34, thus

d0 = 8.5, d1 = 2.9d2, d2 = 1.
The time scale is defined by t2 = dmin/U∞ where U∞ is the inlet velocity set equal to 1.

Figure 8: Turbulence intensity along pencils in the channel x-directions. Left: RG; Centre:
2DF; Right: 3DS.

Figure 9: Turbulence intensity along pencils in the channel x-directions. Left: RG; Centre:
2DF; Right: 3DS.
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The 3DS has the same lengths and thickness as the 2DF in [1], however each generation is
held in a frame separated from the next by non-dimensional distances, r1 = x1 − x0 = 17, and
r2 = x2−x1 = 8.5, and x0 = 10, where x′is are the non-dimensionalised x-coordinates of the ith
frame.

The solidity (blockage ratio) in the 2DF is 32%, and the solidity in the 3DS is 15%.
To resolve down to the smallest scales, a numerical grid size of one fifth of the thickness of the

smallest bar is created, ∆x = 0.2dmin. This creates a grid of Nx×Ny ×Nz = 2304× 576× 576.
The RG and 2DF turbulence grids lie in the plane x0 = 10 downstream of the channel inlet.
Periodic boundary conditions are applied on the walls in the y and z directions; and inlet-outlet
boundary conditions were applied in the x-direction. The initial condition is a uniform inflow
velocity U∞ = 1. The Reynolds number is, Re = U∞dmin

ν = 300.
OpenFOAM, (OFoam), an opensource CFD toolbox, is chosen for the simulation. OFoam

uses finite volume discretization is performed using Pressure Implicit Splitting of Operator
Algorithm (PISO). Time discretization using Backward Euler method, whereas gradient and
Laplacian term discretization using Gauss linear method are performed. Divergence term
discretization is done using Gauss cubic method which is a third order scheme. Interpolation
and other terms are discretized using Gauss Linear schemes. The resulting linear systems
are solved by preconditioned conjugate gradient method with diagonal incomplete Cholesky
preconditioner for pressure solution whereas iterative solver is used with symmetric Gauss-
Siedel as the smoother to calculate velocities. Tolerance is set at 10−6. Simulation time step is
∆t = 0.015dmin/U∞ which corresponds to a Courant number of 0.75. Probes and pencils are
placed at various locations and 100 complete field snapshots have also been recorded in the time
range from 300t2 to 600t2. The flow statistics have also been averaged over this time.

Figures 8-10 shows comparison of turbulence characteristics from RG, 2DF, and 3DS grids
from the current DNS simulations. The RG and 2DF plots are close to the results of Laziet &
Vassilicos [1], which validates the current DNS for these calculations.

Figure 8 compares the turbulence intensities u′/U∞ along the channel length in the x-
directions – pencils taken at various (y, z) locations as indicated by the different colors. The
peak intensities in the 3DS is lower than in 2DF. After about x/dmin = 100 the intensities in
the 3DS is higher and sustained for longer than from the RG, but lower than in 2DF. The latter
is probably due to the lower blockage in the 3DS (15%) compared to the 2DF (32%).

Figure 9 shows the plots of the turbulence intensity and the mean flow along the central
pencil (y, z) = (0, 0). The mean flows in the 2DF and 3DS are close, and both are significantly

Figure 10: Turbulence intensity along pencils in the channel x-directions. Left: RG; Centre:
2DF; Right: 3DS.
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higher than in the RG grid.
Figure 10 shows the mean x-velocity along the y-axis, U(y)/U∞ , taken at different stations

along the channel. There is significant difference between the 2DF and 3DS grids. The 2DF
grid produces smooth non-oscillating profiles that peak and are uniform in the central region
and eventually flatten out further downstream. The results from the 3DS is similar to that from
the RG in so far as it shows an oscillating profile across the y-direction, however it shows peak
levels similar to the 2DF of about 1.25, compared to the RG where the average is about 1 at all
stations along the channel. The 3DS does not flatten out as fast as the 2DF being sustained on
average at a higher level further downstream.

The overall impression from the results from the 3DS, with the given configuration, is that
the 3DS is roughly in between the RG and 2DF cases for the turbulence characteristics shown.

However, it is important to remember that the blockage ratio in the 3DS is about half of the
RG and 2DF so that the mass flow rate in the 3DS turbulence here is about half of that in the
other two; to obtain the same flow rate in the RG and 2DF the pressure gradient would have to
be doubled, so the mixing efficiency in the 3DS may yet to be greater.

These are the first results from DNS that we have obtained. The aim of this work is a
parametric study of 3DS for different r1 and r2, and for different blockage ratios, and to address
to question of mixing efficiency.

4. Conclusions
The 3DS [2, 3] has been investigated, and some comparisons with the Regular RG and flat 2D
fractal grid 2DF has been made. Theoretically, the 3DS admits a higher mass flow rate for
the same pressure gradient because of the lower blockage ration (solidity), equation (13). An
optimal value for the geometric ratio was found to be 0.5.

DNS was first validated against the previous work of Laziet & Vassilicos [1]. The DNS was
then used to simulate RG, 2DF, and 3DS with frame separations of r1 = 17dmin and r2 = 8.5dmin
and a blockage ratio of 15%, compared to 32% for the RG and 2DF. It was found that overall
the turbulence characteristics generated by 3DS was generally in between the RG and 2DF grids
cases; the peak turbulence intensities were lower than in 2DF, and downstream the intensities
were also lower than in 2DF. But the intensities were higher than in RG and were sustained for
longer downstream.

A critical question is what happens if the blockage ratio of the 3DS is increased towards the
2DF value of 32%. Another is, does 3DS lead to greater mixing efficiency? These issues are
currently under investigation numerically. In addition to the velocity field, we are looking at the
vorticity field, the pressure field, and diffusing scalar fields.
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