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Abstract— This paper presents an estimation/adaptation
method based on the adaptive principal component analy-
sis (APCA) technique to guarantee the identification of the
minimum necessary parameters of a digital predistorter. The
proposed estimation/adaptation technique is suitable for online
field-programmable gate array or system on chip implementa-
tion. By exploiting the orthogonality of the resulting transformed
matrix obtained with the APCA technique, it is possible to reduce
the number of coefficients to be estimated which, at the same
time, has a beneficial regularization effect by preventing ill-
conditioning or overfitting problems. Therefore, this identifica-
tion/adaptation method enhances the robustness of the parameter
estimation and simplifies the adaptation by reducing the number
of estimated coefficients. Due to the orthogonality of the new
basis, these parameters can be estimated independently, thus
allowing for scalability. Experimental results will show that it
is possible to determine the minimum number of parameters to
be estimated in order to meet the targeted linearity levels while
ensuring a robust well-conditioned identification. Moreover, the
results will show how thanks to the orthogonality property of the
new basis functions, the coefficients of the digital predistorter can
be estimated independently. This allows to tradeoff the digital
predistorter adaptation time versus performance and hardware
complexity.

Index Terms— Digital predistortion (DPD), linearization,
machine learning, power amplifier (PA), principal component
analysis (PCA).

I. INTRODUCTION

D IGITAL predistortion (DPD) linearization is the most
common and spread solution to cope with the power
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amplifier’s (PA) inherent linearity versus efficiency tradeoff.
The use of fifth-generation new radio (5G-NR) spectrally
efficient signals with high peak-to-average power ratios
(PAPRs) occupying wider bandwidths only aggravates such
compromise. When considering wideband signals, carrier
aggregation, or multiband configurations in high-efficient
amplification architectures (i.e., Doherty PAs, envelope track-
ing PAs, or outphasing transmitters) in multiple-input multiple-
output transmitters, the number of parameters required by
the DPD behavioral model to compensate for the unwanted
nonlinearities and memory effects can be unacceptably high.

When targeting a field-programmable gate array (FPGA)
implementation, the DPD function in the forward path should
be designed as simple as possible (i.e., including the minimum
and most relevant basis functions) to save as many hardware
logic resources and memory as possible. A lot of effort has
been dedicated in the literature to propose efficient DPD archi-
tectures, either polynomial based [1] or lookup table (LUT)
based [2]–[4], in order to implement the forward path of the
digital predistorter in a real-time digital signal processor.

The processing capabilities and the memory of FPGAs have
increased dramatically over time. Despite this fact, having to
deal with parametric models with a huge number of coeffi-
cients is not desirable, not only because of its negative impact
on the FPGA resources utilization but also because of its
extraction/adaptation may derive to overfitting and uncertainty.
By applying regularization techniques [5], it is possible to
both avoid the numerical ill-conditioning of the estimation and
reduce the number of coefficients of the DPD function which
ultimately impacts the baseband processing computational
complexity and power consumption.

The objective of regularization techniques is to enforce the
sparsity constraint on the vector of parameters by minimizing
the number of active components (�0-norm) subject to a
constraint on the two-norm squared of the identification error.
Unfortunately, this is a nondeterministic polynomial-time hard
(NP-hard) combinatorial search problem. Therefore, in the
field of DPD linearization, several suboptimal approaches have
been proposed targeting both robust identification and model
order reduction, such as: the least absolute shrinkage and
selection operator, consisting in a �1-norm regularization [6];
the Ridge regression, consisting in a �2-norm regulariza-
tion [7]; the sparse Bayesian learning algorithm [8]; or the
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orthogonal matching pursuit (OMP), a greedy algorithm for
sparse approximation [4], [9] to select the most relevant basis
functions of the DPD function.

However, little attention is paid to the identification/
adaptation subsystem that most of the time is addressed in the
literature by simply solving the least squares (LS) regression
applying the Moore–Penrose inverse to extract the DPD para-
meters. In addition, in order to deal with an overdetermined
system or an ill-conditioned covariance matrix, most of the
times the straightforward solution used in the literature con-
sists in using MATLAB’s backslash operator (otherwise known
as the “mldivide” function) that employs a QR solver for
dense nonsquare matrices like those typically found in DPD.
Either in commercial products or in publications addressing
FPGA implementation, one of the most common solutions
to avoid calculating the inverse of the covariance matrix is
extracting the parameters through QR factorization combined
with recursive LS [10]. Wang et al. [11] present a method
to reduce the computational complexity of the direct learning
architecture by making use of the constant covariance matrix
to avoid recalculating the time-varying matrix for OFDM-like
input signals seen as stationary ergodic random processes.
The approach and the complexity versus convergence bench-
marking are worth considering but, in our work, we take
benefit from the independence of the transformed basis in the
feedback path to propose an online scalable solution to meet
the requirements at the lowest usable complexity.

In [12], we proposed the parameter extraction of the DPD
behavioral models using a new method based on the adaptive
principal component analysis (APCA) technique. The APCA
approach resembles the singular value decomposition but the
main difference relies on the fact that APCA is able to con-
tinuously track and adapt to the evolution of the eigenvectors
required for doing DPD [13]. The proposed block deflated
(BD-APCA) technique is a modification of the complex
domain generalized Hebbian algorithm [14]. In this paper,
we will prove that thanks to the APCA technique, we can
iteratively find a new orthogonal basis that will solve the
covariance matrix inversion problem by converting the original
LS regression into a set of independent adaptive least mean
square (LMS) identifications. This process can run online in
an FPGA for not only ensuring a proper well-conditioned
estimation but also allowing to reduce the number of parame-
ters in the identification process. In [12], we focused on the
BD-APCA algorithm description for DPD identification and
provided a preliminary experimental validation of the method
applicability to DPD by considering an offline precalculated
transformation matrix delivering 60 independently calculated
coefficients in a row. This paper expands the applicability of
the PCA to DPD demonstrated in [15]. Unlike in [15], in this
paper, we do not assume that the transformation matrix is
calculated only once, offline, and then used for all the data
having the same statistical properties as the one used to extract
the transformation matrix. Instead, we go a step further toward
a possible online implementation of the APCA by demonstrat-
ing (both theoretically and experimentally) the benefits of the
independent calculation of the DPD coefficients. Alleviating
the data processing implementation bottlenecks of the PCA
technique, the scalable APCA method is in this paper further

Fig. 1. Block diagram of a closed-loop DPD system following a direct
learning approach.

experimentally validated for DPD application by employing an
increasing transformation matrix which produces an increasing
set of independently calculated coefficients only if the system
performance requirements are not yet met (i.e., starting with
one coefficient and increasing the number of coefficients by
one at every iteration).

Therefore, the remainder of this paper is organized as
follows. To create a self-contained paper for the reader,
Section II summarizes the basic principles of the closed-loop
DPD and the PCA theory. In Section III, the independent iden-
tification/adaptation subsystem based on the APCA method,
to further reduce the number of the parameters required for
a robust identification, is presented. Section IV describes the
experimental test bench, while Section V shows experimental
results proving the advantages of the proposed independent
DPD estimation using the APCA algorithm. Finally, the con-
clusions are given in Section VI.

II. CLOSED-LOOP DIGITAL

PREDISTORTION LINEARIZATION

A. Digital Predistortion Forward Path
The block diagram of our closed-loop adaptive DPD archi-

tecture is shown in Fig. 1. In comparison to the indirect
learning approach, with the direct learning estimation, we gain
robustness against noisy PA output observations and avoid the
offset of the coefficient vector from its optimal value [16].
In the forward path, the input–output relationship at the DPD
block can be described as

x[n] = u[n] − d[n] (1)

where x[n] is the signal at the output of the DPD block, u[n]
is the input signal, and d[n] is the distortion signal which
is described in this paper through the generalized memory
polynomial (GMP) behavioral model as defined in [17]

d[n] =
Na−1∑

i=0

Pa−1∑

p=0

αpi · u
[
n − τ a

i

]∣∣u
[
n − τ a

i

]∣∣p

×
Mb∑

j=1

Nb−1∑

i=0

Pb−1∑

p=1

βpi j · u
[
n − τ b

i

]∣∣u
[
n − τ b

i − τ b
j

]∣∣p

×
Mc∑

j=1

Nc−1∑

i=0

Pc−1∑

p=1

γpi j · u
[
n − τ c

i

]∣∣u
[
n − τ c

i + τ c
j

]∣∣p
. (2)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LÓPEZ–BUENO et al.: INDEPENDENT DIGITAL PREDISTORTION PARAMETERS ESTIMATION USING APCA 3

In a more compact notation, (1) can be rewritten as

x[n] = u[n] − ϕT [n]w[n] (3)

where w[n] = (w1[n], . . . , wi [n], . . . , wM [n])T is a vector of
coefficients at time n with dimensions M × 1, where M is
the order of the behavioral model, and ϕT [n] = (ϕ1[n], . . . ,
ϕi [n], . . . , ϕM [n]) is the vector containing the basis functions
ϕi [n], with i = 1, . . . ,M . By taking into account the GMP
behavioral model in (2), the order of the behavioral model is
defined as M = Na Pa + Mb Nb(Pb − 1) + Mc Nc(Pc − 1).
The mapping between the GMP specific coefficients
(αpi , βpi j , γpi j ) in (2) and the general purpose DPD coeffi-
cients wi [n] in (3) is straightforward.

Finally, when expressed in matrix notation, (1) can be
rewritten as

x = u − Uw (4)

where x = (x[0], . . . , x[n], . . . , x[N − 1])T and u =
(u[0], . . . , u[n], . . . , u[N − 1])T , with n = 0, . . . , N − 1,
are the predistorted and input vectors, respectively, and U =
(ϕ[0], . . . ,ϕ[n], . . . ,ϕ[N − 1])T is the N × M data matrix,
with N being the number of samples and M being the number
of basis functions or the order of the model.

The DPD function in the forward path can be implemented
in a programmable logic (PL) device following either an
LUT interpolation approach as in [2] or by using complex
multipliers following a polynomial approach using Horner’s
rule [1], for example. The implementation and order reduction
of the DPD function in the forward path has been addressed
by the authors in previous publications, and thus falls out of
the main scope of this paper.

B. Principal Component Analysis

The PCA theory is used to generate a new basis set
of orthogonal components, as explained in [15], which is
obtained through a change of basis using a transformation
matrix V that contains the eigenvectors of the covariance
matrix of U

cov(U) = 1

N − 1

(
(U − E{U})H (U − E{U})) ≈ U H U (5)

where E{·} is the expected value. The principal components of
the basis functions (i.e., columns of U) are the eigenvectors
of UU H . However, as it will be proved, U H U and UU H

have the same eigenvalues and, moreover, their eigenvectors
are related as described in the following:

(U H U)vi = λivi → (UU H )Uvi = λi Uvi (6)

with vi being the i th eigenvector of U H U . For each i

(U H U)V = λV → (UU H )U V = λU V (7)

where V = (v1, . . . , vi , . . . , vL) is the M × L transforma-
tion matrix, where L ≤ M . The linear combination UV
corresponds to the eigenvectors of the matrix UU H , which
are the desired principal components of the basis functions
(i.e., columns) of U . Moreover, λ is the diagonal matrix

containing the eigenvalues of both the UU H and the U H U
matrices. Therefore, the new transformed matrix is found as

Û = UV (8)

with Û = (ψ[0], . . . ,ψ[n], . . . ,ψ[N − 1])T being the N × L
data matrix, where ψT [n] = (ψ1[n], . . . , ψ j [n], . . . , ψL [n])
is the 1 × L data vector containing the new orthogonal basis
functions ψ j [n] (with j = 1, . . . , L) at time n.

C. Digital Predistortion Adaptation Path

Following a closed-loop error minimization technique as in
[18], the coefficients can be extracted iteratively finding the LS
solution. At the nth iteration (i.e., when considering buffers of
N data samples), the coefficients are obtained as

w[n + 1] = w[n] + μ(UHU)−1UHe (9)

with μ (0 ≤ μ ≤ 1) being the weighting factor and e =
(e[0], . . . , e[n], . . . , e[N − 1])T is the N × 1 vector of the
error defined as

e = y
G0

− u (10)

where G0 determines the desired linear gain of the PA, and
where y and u are the N ×1 vectors of the PA output and the
transmitted input, respectively.

In Section III, we will discuss a possible FPGA implemen-
tation of the DPD adaptation considering a reduced basis of
coefficients that can be estimated independently, thanks to the
APCA technique.

III. INDEPENDENT DPD PARAMETER ESTIMATION

BASED ON THE APCA ALGORITHM

As discussed earlier, there are several order reduction
techniques published in the literature targeting a simplified
implementation of the DPD function in the forward path.
In this section instead, we will focus on how to address the
LS matrix inversion of the covariance matrix to extract the
DPD model parameters in order to enable implementation in
an FPGA (containing a PL device and a processing system).

Taking into account, the transformation matrix Û in (8) with
orthogonal basis functions, the coefficients extraction in (9)
can be rewritten as

ŵ[n + 1] = ŵ[n] + μ(Û
H

Û)−1Û
H

e (11)

where

w = V ŵ (12)

where by taking into account the orthogonal basis func-
tions in Û

(Û
H

Û)−1 = (λ−1
1 , . . . , λ−1

j . . . , λ−1
L )I (13)

with λ j being the eigenvalues of U H U and UU H (with j =
1, . . . L). The coefficients can be now estimated independently
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Fig. 2. Flowchart of the independent DPD identification process using APCA.

in an LMS fashion at every sample iteration n, and thus (11)
becomes
⎛

⎜⎜⎜⎜⎜⎜⎝

ŵ1[n + 1]
...

ŵ j [n + 1]
...
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⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛
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...

ŵ j [n]
...

ŵL [n]

⎞

⎟⎟⎟⎟⎟⎟⎠
+ μ

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
1 ψ1[n]
...

λ−1
j ψ j [n]
...

λ−1
L ψL [n]

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

e[n]. (14)

By exploiting the orthogonality of the resulting transformed
basis functions, the coefficient adaptation can therefore be
carried out independently as follows:

ŵ j [n + 1] = ŵ j [n] + μλ−1
j ψ j [n]e[n] (15)

with j = 1, . . . , L, where ψ j [n] is the j th transformed basis
function at time n. A schematic flowchart describing the inde-
pendent DPD extraction is depicted in Fig. 2. The goal is to
estimate the minimum necessary number of transformed coef-
ficients ŵ j to meet the target linearity levels, specified in terms
of the adjacent channel power ratio (ACPR) and normalized
mean square error (NMSE). As explained in [12], with the pro-
posed BD-APCA algorithm, the columns r j ( j = 1, 2, . . . , L)
of the transformation matrix R are iteratively found one by
one. Therefore, the next column is estimated by using the
values of the previously extracted components. Eventually,
the M × L transformation matrix R = (r1, . . . , r j , . . . , r L)
will converge to V . Therefore, as shown in Fig. 2, until
the desired linearity levels are met, the algorithm increases
the number of transformed coefficients to be estimated. First,
after several APCA iterations, a new transformation vector
r j is obtained. This vector, together with the other j − 1
previously calculated vectors (i.e., j − 1, j − 2, . . . , 1), define

the j components of the transformation matrix R( j ). Then,
each one of the j transformed coefficients ŵ j [n] can be esti-
mated/updated independently (e.g., in parallel) by following
an LMS approach:

ŵ j [n + 1] = ŵ j [n] + μλ−1
j ϕ

T [n]r j [n]e[n]. (16)

Consequently, the input–output relationship of the DPD func-
tion in the forward path described in (3) can be rewritten as

x[n] = u[n] − ψT [n]ŵ[n] (17)

or, alternatively, be expressed in terms of the original basis
functions ϕ[n] and the transformation matrix R

x[n] = u[n] − ϕT [n]Rŵ[n]. (18)

In Sections IV and V, we will show experimental results
proving the robustness of the independent DPD algorithm
described in Fig. 2.

IV. EXPERIMENTAL SETUP

The proposed independent DPD parameter extraction using
the APCA technique was experimentally evaluated with
a 5G-like communication system. Given the unavailability
of 5G-NR waveforms at the time of testing, we employed
a carrier-aggregated fast convolution filter bank multicarrier
signal with 80-MHz bandwidth built with four 64-quadratic
amplitude modulation modulated 20-MHz FC-FBMC chan-
nels that were carrier aggregated. Each channel follows
an OFDM-like waveform configuration and a frame struc-
ture similar to that used for Long-Term Evolution (LTE)
FDD (Rel. 9) and enables spectral coexistence with LTE
primary systems through subcarrier group deactivation. These
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Fig. 3. (a) Block diagram of the test setup employed for experimental validation. The digital linearization test bench combines (b) waveform generation and
capture boards, RF analog control parts including the PA and (c) laboratory instrumentation. TX: transmitted, RX: received, WFM: waveform, CH: channel,
MOD: modulator, AMP: amplifier, ADC: analog-to-digital converter, DAC: digital-to-analog converter, CLK: clock, LO: local oscillator, dc PWR: dc power,
Vdd: drain-to-drain voltage, Vgs: gate-to-source voltage, and Vds: drain-to-source voltage.

complex waveforms feature around 13-dB PAPR. In our exper-
iments, we used a MATLAB-controlled digital linearization
test bench (shown in Fig. 3) interfacing some commercial
boards for waveform playback and data capture, digital-to-
analog conversion (DAC), in-phase and quadrature-phase (IQ)
modulator, and analog-to-digital conversion (ADC) for direct
RF sampling (i.e., TI TSW1400EVM and TSW30H84EVM
at Tx side and TI ADC32RF45EVM and TSW14J56EVM at
Rx side). In order to account for the out-of-band distortion,
a 368.64-MSa/s DPD signal with 240-MHz bandwidth was
upconverted to the 875-MHz RF frequency to feed a class-
J PA based on the Cree CGH35030F gallium nitride (GaN)
high-electron-mobility transistor. The PA output signal (with
+28-dBm mean output power) was attenuated, RF sampled
at 2457.6 MSa/s, and further downsampled to the DPD
signal sample rate for time alignment and DPD processing.
An Agilent E4440A spectrum analyzer was used to character-
ize the spectrum and ACPR at the output of the PA, three Agi-
lent E4438C signal generators were used as a data converter
clock and as an IQ modulator local oscillator sources (sharing
the 10-MHz reference) and an Agilent N6710B modular direct

current (dc) power system was employed to supply the active
RF elements of the test setup.

V. EXPERIMENTAL RESULTS

The independent DPD closed-loop adaptation described
in Fig. 2 has been validated in a MATLAB-controlled hard-
ware test bench. Thus, instead of running the algorithm sample
by sample (as it would be done in an FPGA), we considered
the use of input–output data vectors for faster evaluation of the
proposed algorithms. At every iteration, a different set of data
was used, presenting different PAPR values (around 13±1 dB)
to prove the robustness of the proposed DPD linearization
algorithm.

As shown in (9), typically, the Moore–Penrose inverse
(i.e., (U H U)−1U H ) is used to solve the LS identifica-
tion. However, when the covariance matrix (U H U) is ill-
conditioned, the values of the estimated coefficients are no
longer reliable. As discussed earlier in Section I, most of the
published DPD solutions based on MATLAB designs address
this problem by using MATLAB’s backslash operator (“\”).
Table I shows the linearization achieved [in terms of ACPR,
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TABLE I

DPD PERFORMANCE COMPARISON

Fig. 4. NMSE and ACPR versus coefficients reduction.

NMSE, and error vector magnitude (EVM) in the worst case
channel] when considering two cases: 1) the direct estima-
tion of the best performing 322 coefficients found by brute
force using MATLAB’s backslash operator (since using the
Moore–Penrose inverse the coefficient estimation diverges)
and 2) the independent DPD adaptation of 60 coefficients
using APCA.

The original data matrix containing 322 basis functions
could have been reduced by applying some model order
reduction such as OMP (as the authors already did in [4]).
However, this is not the scope of this paper and, by assuming
an initial data matrix with 322 basis functions, we can prove
the regularization and coefficient reduction capabilities of the
proposed approach. Having said this, and just to have some
order reduction assessment, the authors have applied OMP to
reduce the original data matrix in the forward path and found
that by using 227 coefficients, the performance being attained
is very similar to that featured by the 322 coefficients found
by the brute force. Therefore, the order reduction factor in
the feedback path would be around 3.5 if we consider that, to
meet the target ACPR≤ −45 dBc and NMSE≤ −38 dB, only
60 coefficients of the new transformed basis were required.
This number is consistent with the experiment results shown
in Fig. 4 which are further detailed in the next paragraph.

Before applying APCA to iteratively build the 60 coeffi-
cients, several tests were conducted to characterize the perfor-
mance of PCA versus the number of transformed coefficients.
In order to have good measurement resolution and better
exploit the eigenvalue information, the following procedure
was used: first, the eigenvectors and eigenvalues of the
matrix U H U were calculated to build the transformation

Fig. 5. Independent partial identification of DPD coefficients per iteration.

matrix for the full set of 322 coefficients. Second, the ratio in
decibel between the absolute value of the last diagonal element
(having the lowest value for a given number of transformed
coefficients) and the absolute value of the first diagonal
element (having the maximum value) was characterized in
MATLAB as in Fig. 4 (black trace). Third, every measurement
point defined a maximum number of consecutive transforma-
tion matrix columns (i.e., comprising a specific eigenvalue
decibel reduction factor) and thus DPD coefficients that were
employed in every PCA DPD experiment. A total of 25 exper-
iments of 21 iterations each were conducted (different PAPR
statistically representative waveforms were applied to check
the robustness). After a training period of 10 iterations (by
using a decreasing μ weighting factor), the NMSE and ACPR
values for every experiment became stabilized and the worst
case value was recorded and annotated in Fig. 4. Finally, this
information is later used to validate the APCA operation by
comparing the number of coefficients progressively obtained
by APCA to reach the required performance versus that
offered by the original PCA DPD approach taking the whole
coefficient set from the first iteration.

By considering the 60 coefficients being required to meet
the NMSE and ACPR thresholds and before experimenting
with the BD-APCA method, another set of PCA experi-
ments was set to demonstrate the independent estimation of
coefficients. In these experiments, at every DPD iteration,
only a portion of the overall transformed coefficients was
updated, while the rest was left unaltered. The results in Fig. 5
satisfactorily show that a similar performance is reached when
comparing full update with partial update at different indepen-
dent update ratios. As expected, a lower number of coefficients
being updated take more iterations to reach the required
performance. However, by properly tuning the μ weighting
factor being applied at every DPD iteration, the delay can be
minimized so that the desired performance is reached during
the aforementioned 10-iteration training period.

In the following, we will discuss the APCA experimental
validation. Fig. 6 shows the NMSE and ACPR evolution
when considering that at each iteration, a new component is
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Fig. 6. Evolution of the NMSE and the ACPR considering up to 60 com-
ponents and 75 iterations.

Fig. 7. Evolution of the absolute value of the 60 DPD coefficients.

included in the estimation set and thus a new coefficient is
estimated. By following the algorithm described in Fig. 2,
we can see that, thanks to the orthogonal property even if
at every iteration, a new coefficient is included which can
be estimated independently and each one contributes to the
linearization. After a given number of coefficients (in our
particular case 60), the targeted NMSE and ACPR are reached
and then we can stop adding components and coefficients to
the estimation set. In our experiment, we have considered up
to 75 iterations to check the method’s performance stability
once the number of coefficients is no longer increased.

Fig. 7 shows the evolution of the absolute value of the
estimated coefficients. The estimation is perfectly regularized,
the absolute value of the coefficients is below 1, and every time
a new coefficient is added as it converges in few iterations and,
because of their independence, the value of the already existing
coefficients is kept unaltered despite the addition of new
coefficients to the estimation set. This cannot be done with the
original basis, since the basis functions are not orthogonal and
thus the value of the coefficients is dependent on the number of
selected basis. This solution is very versatile because, thanks
to the independent estimation, several strategies to reduce the

Fig. 8. Spectra of the PA output before and after DPD linearization.

Fig. 9. (a) AM–AM and (b) AM–PM characteristics before and after DPD
linearization.

computational complexity can be considered. For example,
we could adapt only one coefficient at every iteration following
a round robin scheduling and thus leaving the others unadapted
until their turn arrives. Fig. 7 also depicts the μ DPD weighting
factor strategy being applied at every experiment iteration.
This factor takes into account the first iteration at which such
coefficient was generated and the following updates being
applied to that coefficient as if there was a specifically bounded
training period for it. The rationale behind such a strategy is to
contribute to guarantee the convergence time and to a shorter
extent to help preserving the regularization.

Finally, Figs. 8 and 9 show the unlinearized and linearized
spectra taken from the spectrum analyzer and the ampli-
tude modulation-to-amplitude modulation (AM–AM) and
amplitude modulation-to-phase modulation (AM–PM) char-
acteristics, respectively, when considering independent DPD
adaptation with 60 coefficients.

VI. CONCLUSION

This paper has shown the versatility of the independent
DPD identification method using the PCA theory to find a
transformed matrix with new orthogonal components. With
the independent DPD identification, it is possible to tradeoff
updating or identification convergence time versus compu-
tational complexity. That is, updating in parallel at every
iteration (in a more relaxed time scale than the real-time
digital predistorter in the forward path), following an LMS
gradient technique, as many components as you want (tradeoff
convergence time vs. FPGA resources). The independent DPD
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relies on the need to find a transformation matrix, which
thanks to the APCA algorithm in [12] can be iteratively found
and, moreover, it is suitable to be implemented online in an
FPGA. Therefore, in this paper, we proved a new identification
algorithm by merging the APCA technique with the closed-
loop DPD adaptive estimation. This way, we obtain a robust
independent DPD identification by using the minimum neces-
sary coefficients in the adaptation subsystem to meet specific
linearity levels.

APPENDIX

BD-APCA ALGORITHM

Input: the M × 1 vector containing the basis functions
ϕT [n] = (ϕ1[n], . . . , ϕi [n], . . . , ϕM [n]).

Output: The transformation matrix R = (r1, r2, . . . , r L).
1) Set j = 1, initialize small random values to the matrix

R and assign b j [n] = ϕ∗[n], with n = 0, 1, . . . , N −1,
where ∗ denotes the complex conjugate.

2) Set k = 1, B j = (b j [0], b j [1], . . . , b j [N − 1])T .
2.1) For n = 0, 1, . . . , N − 1, update the vector r j as

follows:

r j,k[n + 1]
= r j,k[n] + η j,k(d j,k[n])∗b j [n]−d j,k[n]r j,k[n])

(19)

where d j,k[n] = r H
j,k[n]b j [n] and the learning rate

parameter is

η j,k = σ · trace
(

BH
j B j

)
/k (20)

with σ being a constant factor. The trace can
be calculated as the sum of the vector’s squared
modulus, thus avoiding the need to calculate the
full correlation matrix.

2.2) Increment k by 1, go back to step 2.1, and continue
until the values of r j,k become steady. Store the
estimated eigenvector r j = r j,k[N]. Go to step 3.

3) Deflat the data vectors b j+1[n], with n = 0, 1, . . . , N−1

b j+1[n] = b j [n] − (
r H

j b j [n])r j . (21)

4) Increment j by 1 and go back to step 2, continue until
the last r j is obtained.
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