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ABSTRACT
Data-level parallelism is frequently ignored or underutilized. Achieved
through vector/SIMD capabilities, it can provide substantial per-
formance improvements on top of widely used techniques such
as thread-level parallelism. However, manual vectorization is a te-
dious and costly process that needs to be repeated for each specific
instruction set or register size. In addition, automatic compiler vec-
torization is susceptible to code complexity, and usually limited
due to data and control dependencies. To address some these issues,
Arm recently released a new vector ISA, the Scalable Vector Exten-
sion (SVE), which is Vector-Length Agnostic (VLA). VLA enables
the generation of binary files that run regardless of the physical
vector register length.

In this paper we leverage the main characteristics of SVE to im-
plement and optimize stencil computations, ubiquitous in scientific
computing. We show that SVE enables easy deployment of textbook
optimizations like loop unrolling, loop fusion, load trading or data
reuse. Our detailed simulations using vector lengths ranging from
128 to 2,048 bits show that these optimizations can lead to perfor-
mance improvements over straight-forward vectorized code of up
to 56.6% for 2,048 bit vectors. In addition, we show that certain op-
timizations can hurt performance due to a reduction in arithmetic
intensity, and provide insight useful for compiler optimizers.

CCS CONCEPTS
•Computer systems organization→ Single instruction,mul-
tiple data; • Theory of computation→ Parallel computing mod-
els;
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1 INTRODUCTION
One of the major constraints when designing high-performance
parallel architectures is energy efficiency. Achieving good energy
efficiency requires scalable architectures, that not only exploit
thread-level parallelism, but also parallelism at instruction and
data level via vector/SIMD instructions. In fact, under area con-
straints, the usage of vector architectures clearly outperforms chip
multi-processors (CMPs) in flops per watt [10]. Power savings come
mainly from reducing front-end pressure, since a single instruction
encodes multiple operations, and from the reduction in execution
time achieved by vectorized code.

While multi-threaded implementations have become the de facto
solution to software design, developers commonly neglect the us-
age of vector capabilities, e.g. SIMD. The underutilization of vec-
tor/SIMD features usually lies in the limited capabilities of auto-
matic vectorization and the complexity of handcrafted vectorization.
The quality of automatically generated vector code is closely related
to the complexity of the code being vectorized, and often limited by
intra-vector dependencies. In addition, manually-vectorized codes
need to be maintained to support new features or vector lengths.

To address these issues, Arm recently released a new vector
Instruction Set Architecture (ISA), the Scalable Vector Extension
(SVE) [22], which extends the Armv8-A ISA. SVE targets complex
parallel codes that go beyond the workloads that typically run on
embedded or mobile systems. In particular, one of the areas that is
expected to be more impacted by SVE is HPC. Some of the most
ambitious research projects aiming to build exascale systems are
based on Arm architectures that will feature SVE [28]. Rather than
having a fixed vector length (VL), SVE gives flexibility to hardware
designers to implement their vector length of choice from 128 to
2048 bits. The Vector-Length Agnostic (VLA) programming model
adjusts dynamically to the available VL.
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SVE improves manual, automatic and user-directed (pragma-
based) code generation by easing the vectorization process to both
compilers and developers. In particular, SVE has been tested to
improve vectorized code generated on applications from different
fields of research, including: sorting, dense and sparse linear alge-
bra, n-body methods, LU-decomposition, graph traversal, stencil
codes, etc. [22]. Stencil codes are of particular interest, since they
are the basis for HPC applications targeting problems from many
scientific domains such as fluid dynamics, structural mechanics,
and image processing. Stencils are iterative kernels that operate
over N-dimensional data structures with a fixed computational pat-
tern. These kernels are commonplace in finite-difference methods
used to solve large-scale and highly-dimensional partial differential
equations (PDEs).

The implementation of stencil computations to efficiently ex-
ploit the resources available in the system is a difficult task that
has been previously studied [4, 30]. Stencils are typically memory
bound, which is also a challenge for vector architectures [7]. VLA
facilitates the deployment of well-known code optimizations that
significantly benefit from the semantics offered by SVE. By using
SVE the loop control flow is driven by predicates, therefore, port-
ing the while(cond)-end control statement is straight-forward and
automatically applies VLA to our baseline (non-optimized) codes.

This paper makes the following contributions:
• We present a novel analysis on how the Arm SVE vector ISA
can be used to increase the performance of a highly relevant
group of numerical kernels - stencil computations. We describe
how different optimizations such as loop unrolling, loop fusion,
data reuse, and load trading can easily be implemented using
the SVE ISA. We have implemented the scalar baseline and all
the SVE-enabled optimizations on 7-point and 27-point stencils
using hand-coded assembly to ensure controlled and optimized
code generation.
• A comprehensive performance evaluation based on detailed ar-
chitectural simulations that faithfully model the SVE architecture.
We study the impact of different vector lengths ranging from 128
to 2048 bits, as well as the performance impact of each of the
different code optimizations. We find that loop fusion unlocks
the largest performance improvements, up to 56.6% for 2048-bit
vectors.
• We compare performance of out-of-order and in-order cores us-
ing different vector lengths and find that out-of-order capabilities
offer significant performance advantages. This is because in vec-
torized codes the time spent in arithmetic operations decreases
and higher memory contention is usually present, leading to
stalls in in-order pipelines.
• We report our experience vectorizing and optimizing stencil
codes using SVE, which serves a two-fold purpose: (i) detail how
VLA and per-lane predication aid programming certain optimiza-
tions, providing a recipe for manual vectorization; and (ii) useful
insight to train automatic vectorization tools. In addition, we
provide guidelines on the appropriate vector lengths to employ
depending on workload characteristics.

2 RELATEDWORK
Stencil Codes: Partial differential equations (PDEs) are used for
solving large-scale and high-dimensional problems using finite-
difference methods (FDM). PDEs are the base to provide numerical
approximations to complex computational problems from science
and engineering [9, 14, 18, 26, 31]. FDMs use an N-dimensional
array of elements in which each element is updated every time-step
based on the weighted contribution of neighboring elements (the
stencil).

The most commonly used sets of neighboring elements are called
Von Neumann and Moore neighborhoods [25]. Both the Von Neu-
mann and Moore neighborhoods of an element x and radius d are
formed by all the elements, y, such that dist (x ,y) <= d . The differ-
ence strives in how the distance is calculated. For Von Neumann,
the distance between two elements is the addition of the distances
in each dimension. For Moore, the distance between two elements
is the max of the distances in each dimension. In this paper, we
consider two neighborhoods, 7-point and 27-point stencil, which are
the names commonly used to designate, respectively, Von Neumann
and Moore neighborhood of radius 1.
Vector/SIMD Architectures: Vector architectures have been pre-
sent almost since the beginning of the history of parallel comput-
ing [6]. The first vector supercomputers, TI-ASC and STAR-100,
were released in 1970 and consisted of a powerful vector unit that
was served by the scalar unit, which comparatively had poor per-
formance. Both were memory-to-memory machines, equipped with
a very high bandwidth memory system. As opposed to present ar-
chitectures, specially RISC-based ones, the instruction sets of these
machines had so much semantic content that it would be very diffi-
cult for a compiler to auto-vectorize programs. Nevertheless, some
of the features we see in today’s vector architectures were already
present in TI-ASC and STAR-100. Bit masks to implement condi-
tional operations were one of the features implemented in these
first machines. Current architectures offer similar functionalities:
AVX-512 [3] has masked operations and gather/scatter memory
operations, and PowerPC AltiVec [8] implements the compare op-
eration to create field masks.

There are also recent proposals from academia, such as the
Hwacha Design [16], which extends the RISC-V ISA [27]. Its phi-
losophy is based on traditional vector architectures, similar to
Cray1 [21], allowing to have a variable vector length configured
through the vector length register. The key difference is that vector
instructions execute in their own vector fetch block, while the scalar
control processor continues doing useful work independently. Ad-
ditionally, the instruction set has predicate registers to mask vector
operations. SVE shares with Hwacha a VLA approach without the
needing a specific vector length register

The paradigm implemented in GPUs, single instruction multiple
thread (SIMT) has similar functionalities, as it also permits han-
dling divergent threads by predicating operations. In general, codes
targeting GPUs are independent of micro-architectural parameters
such as warp size, which could relate to the VLA feature of SVE.
Stencils onVector/SIMDArchitectures: Naive implementations
of stencil computations usually achieve only a fraction of the sys-
tem’s peak performance [20]. Additionally, stencils usually suffer
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f o r ( t←1; t ≤T; ++ t )
f o r ( i←1; i ≤ I ; ++ i )

f o r ( j←1; j ≤ J ; ++ j )
f o r ( k←1; k≤K; k+=VL )

B[ i ] [ j ] [ k ] ← (A[ i ] [ j ] [ k ] +
A[ i ] [ j ] [ k +1] + A[ i ] [ j ] [ k−1] +
A[ i ] [ j +1 ] [ k ] + A[ i ] [ j −1] [ k ] +
A[ i +1 ] [ j ] [ k ] + A[ i −1] [ j ] [ k ] ) / 7

A ← B

Figure 1: Pseudo-code of a 3D Jacobianmethod (T time-steps)
with computational and copy loops.

from a high cache miss-rate, and their performance drops dras-
tically once input sizes exceed the size of the last level cache.
Memory-boundedness of a stencil depends on the arithmetic inten-
sity of the computations done over the neighbors (computations per
loaded byte). Many optimizations try to improve data locality, data
reuse and other performance-critical factors of stencil computa-
tions [2, 11–13, 15, 23]. There are also stencil-specific optimization
frameworks [30] and compiler support [24] to ease the optimization
process for developers.

Optimization of stencil computations via SIMD instructions is
also a common approach [5, 19], and the usage of GPUs has also
been considered [17]. Wider register sizes for CPU ISAs clearly
offer some advantages in terms of data migration reduction and
ease the programming effort. However, programming for GPUs
is complex and error-prone. Programming models for GPUs, like
CUDA and OpenCL, require programmers with expertise on the
target micro-architecture. The vector length agnosticism of SVE
is a key feature to match the acceleration capabilities that GPUs
offer, exploiting long SIMD units without the need for generating
binaries for specific lengths.
Scalable Vector Extension: SVE is Arm’s response to the increas-
ing needs of energy efficient computing systems in the HPC domain.
One of the highlights of SVE is Vector-Length Agnosticism (VLA).
VLA enables the generation of binary files that run independently
of the underlying physical vector register length. The immediate
consequence of VLA is performance portability, exploiting wider
registers in high-end implementations of the architecture with the
same binary. Additionally, VLA also comes with the benefit of hav-
ing an efficient utilization of instruction opcodes throughout the
wide range of vector lengths: the same opcode is used for a given
instruction independently of the vector length. In fact, only one
sixteenth of the available opcodes are needed to encode SVE in-
structions. SVE encoding fits in a 28-bit region (Armv8-A is encoded
in 32 bits), leaving room for future extensions. SVE supports vector
lengths ranging from 128 to 2048 bits in multiples of 128.

VLA is achieved using a predicate register driven loop control
flow. Predicate registers are constructed and/or modified when the
loop condition is checked. This functionality results in accomplish-
ing two tasks with a single instruction: a) setting condition flags,
and b) preparing predicate registers to be used as masks for in-
structions in the loop body. As a consequence, there is no need
for treating loop prologues and epilogues aside of the main loop,

thus allowing the vectorization of variable trip-count loops. It also
helps preventing faults due to uninitialized data or accesses to out-
of-bound addresses. Other remarkable features of SVE include: (i)
serialized reductions that allow SVE to ensure the same rounding
behavior as scalar codes and (ii) vector partitioning, that enables
speculative vector loads, among other uses.

3 STRATEGIES TO OPTIMIZE STENCIL
CODES WITH SVE

Stencil optimization via SIMD instructions has been widely re-
searched in the past [5, 19, 29]. From the many strategies available
in the literature, we have cherry-picked those that are most used
and that could potentially be challenging for the ISA. Selected strate-
gies are thoroughly described in this section in the Armv8-A ISA
context. To the best of our knowledge this is the first study that
leverages specific SVE properties to optimize stencil computations.
Figure 1 shows the pseudo-code of a 3D Jacobi method, which uses
a 7-point stencil scheme to update the values of the elements com-
posing the 3D array A. Since the Jacobi method uses the values
computed during iteration (i − 1, j,k ) to obtain the values of itera-
tion (i, j,k ), it is not possible in general to override the elements
of A as they may be used in subsequent computations. This is the
reason why the algorithm displayed in Figure 1 contains two main
loops within each time-step t : the computational loop where we
store the results to array B, and the copy loop where we copy back
the previous results to the original array A. We are aware of the
alternative solutions that prevent having a copy loop, and cover it
in detail in Section 3.3.

We adhere to the following conventions:
• The memory layout of arrays is row-major order.
• Vectorization is applied on the k axis unless otherwise stated
• A[i][j][k] represents the tuple of elements, consecutive along the
k axis, < A[i][j][k], . . . ,A[i][j][k +VL − 1] >, that fit in a vector.
• We overload the meaning of i , j and k to both the index variable
of the for-loops, as well as the value of the index during a given
iteration. k+ denotes the value of the index for the next iteration.
• We use the notation (i, j,k ) to denote the iteration in which the
index variables of the loops, from outermost to innermost, are i ,
j and k .
• We assume there is memory allocation for the halo of the stencil,
that it is initialized and never updated.
• Stencils are iterative algorithms that compute until a certain
convergence criteria is matched. As such, they allow a certain de-
gree of error in the computations. We can take advantage of that
property and allow associativity of floating point computations.
The stencils employ double precision floating point elements,

therefore we can operate on 2, 4, 8, 16 and 32 elements using vector
lengths from 128 to 2048 bits.

3.1 Baseline Codes
The simplest way to vectorize a stencil code is to apply vector
instructions to the innermost loop. Vector instructions compute
’vector-length (VL)’ data elements simultaneously, so the inner-
most loop index variable will now be incremented in VL time-steps.
Starting from the scalar code, each instruction is replaced by their
equivalent vector version. In addition, we typically need to operate
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mov x1 , #1 / / k : = 1
loop :
cmp x1 , z _ s i z e
b.eq end
ldr d4 , [A , x1 , l s l #3 ] / /A[ i ] [ j ] [ k ]
add x2 , x1 , o f f s _ n o r t h
ldr d8 , [A , x2 , l s l #3 ] / /A[ i ] [ j ] [ k +1]
fadd d4 , d4 , d8
sub x2 , x1 , o f f s _ n o r t h
ldr d8 , [A , x2 , l s l #3 ] / /A[ i ] [ j ] [ k−1]
fadd d4 , d4 , d8
add x2 , x1 , o f f s _ f r o n t
ldr d8 , [A , x2 , l s l #3 ] / /A[ i ] [ j +1 ] [ k ]
fadd d4 , d4 , d8
sub x2 , x1 , o f f s _ f r o n t
ldr d8 , [A , x2 , l s l #3 ] / /A[ i ] [ j −1][ k ]
fadd d4 , d4 , d8
add x2 , x1 , o f f s _ e a s t
ldr d8 , [A , x2 , l s l #3 ] / /A[ i +1 ] [ j ] [ k ]
fadd d4 , d4 , d8
sub x2 , x1 , o f f s _ e a s t
ldr d8 , [A , x2 , l s l #3 ] / /A[ i −1][ j ] [ k ]
fadd d4 , d4 , d8
fmul d4 , d4 , c on s t a n t
s t r d4 , [B , x1 , l s l #3 ] / /B[ i ] [ j ] [ k ]
add x1 , x1 , #1
b loop
end :

(a) Scalar version

mov x1 , #1
sub x7 , z _ s i z e , z _ s i z e mod 2
loop :
cmp x1 , x7
b.eq s c a l a r
ld1 v4 , [A , x1 , l s l , # 3 ]
add x2 , x1 , o f f s _ n o r t h
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
sub x2 , x1 , o f f s _ n o r t h
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
add x2 , x1 , o f f s _ f r o n t
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
sub x2 , x1 , o f f s _ f r o n t
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
add x2 , x1 , o f f s _ e a s t
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
sub x2 , x1 , o f f s _ e a s t
ld1 v8 , [A , x2 , l s l , # 3 ]
fadd v4 .2d , v4 . 2d , v 8 . 2 d
fmul v4 .2d , v4 . 2d , c on s t a n t
s t r v4 , [B , x1 , l s l , # 3 ]
add x1 , x1 , #2
b loop
s c a l a r : / / L a s t i t e r a t i o n

(b) NEON version (128-bit SIMD)

mov x1 , #1
loop :
while l t p0 .d , x1 , z _ s i z e
b.eq end
ld1d z4 . d , p0 / z , [A , x1 , l s l #3 ]
add x2 , x1 , o f f s _ n o r t h
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
sub x2 , x1 , o f f s _ n o r t h
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
add x2 , x1 , o f f s _ f r o n t
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
sub x2 , x1 , o f f s _ f r o n t
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
add x2 , x1 , o f f s _ e a s t
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
sub x2 , x1 , o f f s _ e a s t
ld1d z8 . d , p0 / z , [A , x2 , l s l #3 ]
fadd z4 . d , z 4 . d , z 8 . d
fmul z4 . d , p0 /m, z4 . d , c on s t a n t
st1d z4 . d , p0 , [B , x1 , l s l #3 ]
incp x1 , p 0 . d
b loop
end :

(c) SVE version (VLA)

Figure 2: Code fragment of the 7-point stencil computation loop - only showing the innermost loop (k).

on the prologue or epilogue aside of the main loop to compute the
remaining values, that is, the initial/final values that do not com-
pletely fill in the vector register. SVE’s per-lane predication enables
treating prologues and epilogues within the main loop. Figure 2a
shows the scalar baseline code of the innermost loop of a 7-point
stencil. Its NEON and SVE counterparts are shown in Figure 2b and
2c, respectively. As a reminder, for data manipulation instructions
(i.e., additions) Arm assembly syntax places the destination operand
immediately after the mnemonic (similarly to Intel and opposite to
AT&T assembly syntax).

In the scalar code, the for-loop (cmp–b.eq–b structure) checks x1
and z_size to continue execution (elements in k axis, without the
halo). If true, the memory addresses of the 6 neighboring elements
are computed and data is loaded into registers. Then, the average
of the 6 neighbors is computed and stored to array B.

On the other hand, NEON code needs to check if the number
of iterations is a multiple of the number of elements it can fit into
the vector register. In this example NEON can store 128 bits, since
we use double precision floating point it can fit 2 elements. If it is
not multiple of 2, we need to do one iteration less of the vectorized
loop, and then jump to the scalar label to compute the last element
- the scalar code would be identical to the body loop in Figure 2a.

Finally, SVE uses the whilelt instruction to iterate over the for-
loop. This instruction allows operating over the loop independently
of the VL and the number of iterations. whilelt constructs the pred-
icate register, p0, by evaluating the condition lt (less than) on the
content of registers x1 and z_size. p0 can be seen as a mask that tells

the architecture if an specific vector lane is enabled (’1’), or disabled
(’0’). Instructions ld1d, st1d, fadd and fmul are the vector equivalent
of the scalar instructions ldr, str, fadd and fmul, respectively. These
new instructions operate on vector registers (z4.d and z8.d), which
contain a set of double precision floating point elements. The incp
instruction increments the content of register x1 by the number
of active elements in p0. SVE executes the code inside the loop
z_size/VL times, with an additional predicated iteration if (z_size
mod VL), 0.

We want to outline that although mask operations exist in other
current SIMD architectures (such as Intel AVX-512 [3]), SVE’s per-
lane predication is already integrated into the control flow. Predi-
cate registers drive loop control flow, reducing loop management
overhead and controlling both vector and scalar instructions.

3.2 Loop Unrolling
One way to improve performance is to unroll the outer loops, as the
innermost loop is vectorized. By doing so, we reuse loaded data for
more than one iteration, thus reducing the pressure on the memory
subsystem.

For instance, each computation on the 7-point stencil requires 7
load/element , or 7Vload/VLelements in vectorized code. Unrolling
one iteration on the j dimension increases the number of required
neighbors to 12, but two elements would be computed in the process,
so the ratio goes down to 12/2 = 6 load/element . Table 1 shows
the ratio variation for several configurations as we unroll the outer
loops i and j, N and M times, respectively. The right-most column



Stencil Codes on a Vector Length Agnostic Architecture PACT ’18, November 1–4, 2018, Limassol, Cyprus

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 10  20  30  40  50  60

V
lo

a
d

/V
L 

e
le

m
e
n
ts

Unrolled iterations on i

7 point stencil, No unroll on j
7 point stencil, Unroll 2 on j
7 point stencil, Unroll 3 on j
7 point stencil, Unroll 4 on j

 3

 6

 9

 12

 15

 18

 21

 24

 27

 10  20  30  40  50  60

V
lo

a
d

/V
L 

e
le

m
e
n
ts

Unrolled iterations on i

27 point stencil, No unroll on j
27 point stencil, Unroll 2 on j
27 point stencil, Unroll 3 on j
27 point stencil, Unroll 4 on j
27 point stencil, Unroll 8 on j

27 point stencil, Unroll 16 on j

Figure 3: Vector loads-per-VL elements ratio when unrolling i and j for a 7-point (left) and a 27-point (right) stencil.

Table 1: Vector loads-per-VL elements ratio.

Unroll factor Vloads
Iteration

VLelements
Iteration

Vload
VLelements

7-
po

in
t

Baseline 7 1 7
j by 2 12 2 6
j by 3 17 3 5.67

i by 2 & j by 3 28 6 4.67
i by N & j by M 2M + 2N + 3NM NM 2

N +
2
M + 3

27
-p
oi
nt

Baseline 27 1 27
j by 2 36 2 18
j by 3 45 3 15

i by 2 & j by 3 60 6 10
i by N & j by M 3(2 +M ) (2 + N ) NM 6

N +
6
M +

12
NM + 3

of this Table (Vload/VLelements) is computed as the division of
the left-most column (Vload/Iteration) and the middle column
(VLelements/Iteration).

The progress of this ratio between neighborhood shapes follows
a curve with an asymptotic behavior (Figure 3), becoming almost
flat after few unrolled iterations (< 10) on both of the outer di-
mensions i and j. The studied 27-point stencil is more sensitive to
unrolling, specially in the first unrolled iterations, explained by
the multiplicative factor (12/NM , Table 1). For higher degrees of
unrolling on both dimensions there is little variation on the number
of loads, which matches the number of dimensions we are operating
on, in this case 3. As a general conclusion, unrolling on both i and j
dimensions at the same time provides the largest gains.

On the practical side, unrolling is limited by the amount of ar-
chitectural resources. There are different ways of implementing an
unrolled code, nevertheless, to update the value for more than one
element on the same iteration, we need at least one register per
element to accumulate the result. Therefore, on a 3D space for both
a 7 and a 27-point stencil unrolling N andM iterations on the i and j
dimensions, respectively, we need at least N ×M registers. Also, we
need at least one additional register to operate on the data before
accumulating it. In addition, we should save some registers to build
optimizations on top of the unrolling. SVE supports up to 32 vector

registers. As an example, if we chose to unroll symmetrically a
27-point stencil to a level of N = M = 5 iterations, 25 registers are
required to live through the iteration to store the result.

As loop unrolling is based on a replication of the loop body and
a non-unitary advance of the innermost loop index, the same SVE
benefits as the baseline code apply to this version. Control flow is
done identically given that unrolling is done to dimensions other
than the vectorized one (k), thus, VLA is naturally maintained.

3.3 Loop Fusion
Stencil codes have cyclic data dependencies between elements in
sequential time-steps. An element needs the former value of its
neighbors to compute its new value. In turn, neighbors need the
element value to calculate their new value. Implementations of
Jacobi usually avoid this problem by writing the elements of the
next time-step to a temporal array B, and once the calculation is
complete, copy back to the original array A (Figure 1). Another
possible implementation is using two arrays which, alternatively
behave as previous and current by switching the pointer values every
time-step. Both implementations require the use of an auxiliary
array of the same size as the original.

Exploiting parallelism without using multiple copies of the data
requires a detailed study of the dependencies between elements.
Figure 4-top shows a representation of the elements used in a single
iteration of a 7-point stencil in memory, row major order. Note that
Figure 4 shows the accesses for the scalar case and that in a vector-
ized code we would have the same accesses with their consecutive
right VL − 1 neighbors. In each iteration, and for this linear mem-
ory layout, the elements required for the current computations will
be their consecutive right neighbors. Since we are working with
stencils of order 1, that is, only use their closest neighbors for their
computations, the last element that requires of element A[i][j][k]
isA[i + 1][j][k]. A solution to overcome this dependency is to store
temporarily the values required for the next iteration of the outer-
most loop, i + 1, until we reach its last consumer. Then, we update
this value in the original array A[i][j][k]. A pseudo-code of this
optimization is shown in Figure 5, where tmp is the 2-D temporary
array where we store the elements between dependencies. Note
that the computation is first stored to an SVE register (zi .d) before
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Figure 4: Linear representation of the accessed (loaded) elements in iteration (i, j,k ) on array A[I ][J ][K] in the computation
loop on a 7-point (top) and a 27-point (bottom) stencils.

f o r ( t←1; t ≤T; ++ t )
f o r ( i←1; i ≤ I ; ++ i )

f o r ( j←1; j ≤ J ; ++ j )
f o r ( k←1; k≤K; k+=VL )

zi .d← (A[ i ] [ j ] [ k ] +
A[ i ] [ j ] [ k +1] + A[ i ] [ j ] [ k−1] +
A[ i ] [ j +1 ] [ k ] + A[ i ] [ j −1] [ k ] +
A[ i +1 ] [ j ] [ k ] + A[ i −1] [ j ] [ k ] ) / 7

A[ i −1] [ j ] [ k ] ← tmp [ j ] [ k ]
tmp [ j ] [ k ] ← zi .d

Figure 5: Pseudo-code of loop fusion (computation and copy)
on a 3D Jacobian method, T time-steps.

we update the value of its last dependency A[i − 1][j][k] to the
original array and then store it to the temporal array (tmp[j][k]).
This solution only requires a 2-dimensional array in addition to
the original 3D array. In general, this implementation requires a
d − 1-dimension array. This represents a K times reduction in stor-
age compared to naive implementations, where K is the size of the
last dimension. In case of a 27-point stencil, the last consumer for
element A[i][j][k] is element A[i + 1][j + 1][k + 1], as shown in
Figure 4-bottom. That requires storing JxK + K + 1 elements to
honor the dependencies.

In both neighborhood shapes, we are reducing the memory foot-
print of the stencil computation. In the case of the 7-point stencil,
we are only using one d dimensional array and one d − 1 dimen-
sional array, compared to the original code: two d-dimensional
arrays. As a side effect, this optimization also improves the locality
of the memory accesses.

This optimization is mainly a re-organization of the code that
results in a single 3D loop control. As opposed to the previous opti-
mization, now with a single loop management (whilelt–b.eq–incp–b
structure) we are able to control all vector and scalar instructions.
Moreover, if the loop body grows to support further optimizations,
loop control overhead will be even less significant.

3.4 Load Trading
Performance of stencil codes is typically limited by memory band-
width and latency. Thus, trading memory instructions for register-
level computationsmay improve performance. In the 7-point stencil,
there is an inter-iteration reuse of blocks when using the current
memory layout, depicted in Figure 4-top. For iteration (i, j,k ), the
elements of vector A[i][j][k] are stored in consecutive memory
locations. As a consequence, given a tuple of elements starting at
addressA[i][j][k − 1], we can build tuples starting atA[i][j][k] (and
A[i][j][k + 1]) by removing the first (and second) elements from the
tuple, and then concatenating with the first (and second) elements
from the tuple starting at A[i][j][k − 1 + VL]. The 27-point stencil
(Figure 4-bottom) brings even more opportunity for improvement.
With a layout of nine blocks of three adjacent neighbors in memory,
loads can be reduced by 2

3 .
The approach we use to minimize memory instructions in the 7-

point stencil is loading contiguous non-overlapping blocks of data,
that is, the tuples that start at memory locations: A[i][j][k − 1]
and A[i][j][k − 1 + VL]. Then we combine them properly to obtain
A[i][j][k] and A[i][j][k + 1]. It is worth pointing out that in the
next iteration, k+ will equal k +VL. Therefore, A[i][j][k+ − 1] is
the same as A[i][j][k − 1 + VL]. Storing the vector in a register and
carrying it over one iteration reduces load instructions from 7 to 5.

SVE provides several instructions that enable the reconstruction
of a block given its contiguous neighbors. After considering the
different options, we constructed our solution using the instruction
splice. This instruction takes two vector registers and a predicate
register. It constructs the destination register taking from the first
source vector register the first to last active elements in the predicate
register, and then filling the remaining with the lower elements
of the second source. Note that the predicate register is constant
through the execution of the stencil, thus, it can be constructed
only once, at the beginning of the execution. The predicates used
to reconstruct A[i][j][k] and A[i][j][k + 1] have the form of pk =
(1..110) and pk+1 = (1..100), respectively, being the right-most the
least significant bit. The process to obtain the predicates consists
of two instructions: ptrue, which activates as many elements as
indicated, starting from the least significant bit (1 for pk and 2 for
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Figure 6: Elements (and partial results r<iter .>) used in three
consecutive iterations of the 27-point stencil, each cube rep-
resenting a VL array of elements in the k dimension.

pk+1) and not inverts each of the predicate bits. Note that these
predicates would work for any architectural VL.

Other architectures offer similar instructions. As an example,
AVX-512 [3] offers valignq which accepts also two SIMD 512-bit
registers and a scalar value that indicates howmany 64-bit elements
to shift after concatenating the source vectors. Although Intel’s
instruction does not enforce the building of any mask register, it
offers less flexibility in terms of functionality. For this special case
SVE’s predicate registers were only performing 64-bit element shift
movements. Nevertheless, more complex movements could be made
by constructing the predicates differently using splice.

3.5 Data Reuse
Given the symmetry of the neighborhood elements, we can reuse
loaded data and partial computations across different iterations.
The proposed optimization is only tested for the 27-point stencil.
This optimization is implemented on top of the baseline, without
any interaction with any other previous optimization.

Figure 6 shows the data usage in three contiguous iterations
(i, j, k − 2VL), (i, j, k − VL) and (i, j, k). In each iteration, we only
need to load 9×VL new elements to 9 SVE registers and add them in
a SIMD manner to obtain a partial result, stored to an SVE register.
This last partial result for element A[i][j][k] is defined as rk+V L .
By adding up rk+V L to rk and rk−V L , obtained similarly in the two
previous iterations, we compute the final result for this iteration.
Finally, we move rk to the register storing rk−V L (and rk+V L to rk )
to reuse the two newest partial results and get rid of the oldest.

This optimization allows to reduce the body of the loop signif-
icantly, replacing memory accesses and arithmetic operations by
register movements. Additionally, only 4 SVE registers need to be
alive simultaneously. This allows to apply optimizations on top of
data reuse since it barely affects the architectural registers limi-
tation. Data reuse could be done in any of the three dimensions,
applying it to the vectorized dimension (k) is enabled by the use of
incp that predicates the loading of the 9×VL new elements. This is
clearly interesting in the case of having sizes of dimension k not
multiple of VL, resulting in a classical loop tail for other ISAs. Addi-
tionally, in irregular grids where the borders in the k dimension are
a function of the other dimensions, i and j, could benefit from VLA.
In that case, the border condition can be dynamically computed to
produce predicated registers for each i and j coordinates.

Table 2: Parameters for full-system simulations.

Processor size 4 cores.

Cores
out-of-order: 3-wide issue/retire, 40-entry instruction queue,

128-entry ROB, 32 LDQ + 32 STQ, 2GHz
in-order: 2-wide issue, 5-entry store buffer, 2GHz

L1 I/D
Caches

out-of-order: L1I: 48KB, 3-way, 2 cycle, 2 ports, 8MSHRs
LID: 32KB, 2-way, 2 cycle, 2 ports, 16MSHRs

in-order: L1I: 32KB, 2-way, 2 cycle, 1 port, 8MSHRs
LID: same as out-of-order but with 1 port

Last-level
Cache

4MB, 16-way, 64B lines, 8 banks, 64MSHRs
Data bank access latency of 9 cycles.

NoC Coherent crossbar, 128-bit wide, 2 cycles

Main
Memory

4 DDR4-2400 channels, 2 ranks/channel, 16 banks/rank, 8KB row-buffer
128-entry write and 64-entry read buffers per channel
75GB/s peak bandwidth. Bank conflicts and queuing delays modeled

4 METHODOLOGY
We implemented the SVE baseline and subsequent optimizations
over a well-known stencil code found in the Mantevo miniapps
suite - miniAMR. This miniapp offers both Von Neumann and a
Moore neighborhood shapes with a radius of 1 on a 3D space. The
computation over the stencil is an average of all the neighbors. Re-
ported performance and statistics in our evaluation are obtained
measuring the entire region of interest, which includes the main
stencil computation routine called stencil_calc and an additional
routine that performs refinement. We focused our vectorization
efforts only on the stencil_calc routine. The first step was to man-
ually write an Armv8-A assembly version of the original scalar
code of stencil_calc, both for 7-point and 27-point stencils. Using a
manually written scalar baseline ensures fairness when comparing
code versions and prevents the compiler from affecting the results.
The base SVE-vectorized versions and subsequent optimizations
(i.e.,loop unrolling, loop fusion, load trading and data reuse) are also
manually written in assembly.

The input parameters used in the experiments are as follows:
stencil type of 7 or 27 points, a single object (sphere) with no bounce
(’0’), initiallywith its center at a position (x ,y, z) of (−1.1,−1.1,−1.1),
a radius of 1.5 and a speed (−→x ,−→y ,−→z ) of (0.03, 0.03, 0.03). This ob-
ject has a null change rate of size: (0.0, 0.0, 0.0). We simulate with
10 time-steps and 10 stages per time-step. The 3D space has dimen-
sions (X ,Y ,Z ) = (70, 70, 70) (does not account for halo) and a single
block per each dimension x , y and z. There are 2 mesh refinement
levels and a maximum of 18 blocks per core. We only simulate one
variable per object, since the algorithm does not change.

We use gem5 [1] for cycle-accurate full-system simulations.
Gem5 is an open-source simulator that has received significant
contributions from the industry (i.e., both Arm and AMD) in recent
years. The simulator faithfully models microarchitectural details
of the out-of-order core (including all SVE-related architectural
details), the cache hierarchy and the memory subsystem (including
the on-chip interconnect), contention for shared resources, off-chip
memory channels, DRAM bank conflicts, etc. The simulator mod-
els the Armv8-A ISA and boots a recent linux kernel v4.15 that
has support for SVE. Out-of-order cores are modeled after an Arm
Cortex-A72, while in-order cores resemble an Arm Cortex-A53.
All results are obtained using out-of-order cores unless otherwise
stated. Table 2 details simulated architectural parameters.
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Figure 7: Performance, arithmetic intensity, instruction reduction and LLC MPKI for the 7-point stencil.
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Figure 8: Instruction reduction and speed-up for a 7-point
stencil - base SVE implementation.

5 EVALUATION
This section presents the main experimental results for the two
studied stencil types. We start with a straightforward SVE imple-
mentation and apply the strategies presented in Section 3. For the
7-point stencil we apply multiple levels of loop unrolling as well as
loop fusion; whereas for the 27-point stencil we apply one level of
unrolling, data reuse and load trading.

5.1 7-point stencil
SVE Baseline: Ideally, developers would expect an initial instruc-
tion reduction and a speedup close to 2×when using a vector length
of 128 bits compared to scalar code. However, scalar instructions
such as loop index computations and control operations hinder
these expectations, as they remain constant regardless of the vector
length employed. Amdahl’s Law is emphasized as scalar instruc-
tions translate into a bigger percentage of the total instruction
count. Figure 8 shows instruction reduction and speed-up normal-
ized to the scalar version. For 128 bits instruction reduction reaches
1.87×, indicating that the number of non-vectorized loop instruc-
tions executed is significant. As vector length increases, instruction
reduction obtains diminishing returns due to scalar instructions
becoming more relevant. In terms of speed-up, gains are significant
for 128 bit and 256 bit vector lengths, but performance improve-
ments stagnate at 512 bits. Performance scaling is hindered due
to low arithmetic intensity (AI), calculated as AI = flops

bytes read DRAM
and shown at the top of the figure. An AI of 0.21 floating point
operations per byte of data read from DRAM quickly limits per-
formance, especially in configurations with more than 512 bits, as
multiple cachelines (memory operations) are necessary to satisfy
vectorized loads.

Loop Unrolling:We implement three configurations, namely,
unrolling two and three iterations along the j axis (unrollj2 and
unrollj3, respectively), and unrolling two along the i and three iter-
ations along the j axis (unrolli2j3). Figure 7 shows performance and
instruction reduction normalized to the base SVE implementation
using 128 bits, as well as arithmetic intensity (AI) and last-level
cache (LLC) misses per kilo-instruction (MPKI). As can be seen,
for unrollj2 and unrollj3, performance degrades marginally. Even
though instructions are reduced due to unrolling, the LLC MPKI
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for 128 and 256 bit vector lengths slightly increases, leading to a
reduction in AI that impacts performance. For all vector lengths,
unrolling also leads to a higher percentage of memory operations
within the loop body, and we find that the L1D cache performance is
negatively impacted due to the additional contention, especially for
vector lengths above 512 bits, as loading data into vector registers
requires more than one memory access.

On the other hand, for unrolli2j3 we observe performance im-
provements that are significant with vector lengths of 512 bits and
above, reaching 12.1% with 2048 bits. This unroll optimization intro-
duces reuse of loaded elements when unrolling in the i dimension,
as opposed to the previous two unrolling optimizations. This time
the observed instruction reduction is not only on scalar and control
instructions, but also some memory operations are reduced, for
example, there is a 28.2% reduction in load instructions when com-
paring the base SVE implementation with unrolli2j3 using 2048 bits.
This reduction in the number of memory operations significantly
improves the LLC MPKI as can be seen in Figure 7.

Loop Fusion: This optimization, denoted unrolli2j3+LF, is built
on top of unrolli2j3. Merging the computation and the copy loop
further reduces the total amount of control instructions as can be
seen in Figure 7. In addition, fusing the loops significantly increases
spatial locality of the memory accesses, which translates into a
lot less LLC MPKI and, consequently, a boost in terms of AI. We
can observe notable performance improvements with respect to
the base SVE implementation and previous optimizations across all
vector lengths. For example, for 128 bits it is over 50% better than
base, and for 2048 bits it is 56.6% and 39.7% better than base and
unrolli2j3 respectively.

5.2 27-point stencil
SVE Baseline: For the studied 27-point stencil, the instruction re-
duction factor is closer to the theoretical optimal point (Figure 9)
than for the 7-point stencil, with reductions of 1.95× for 128 bits and
15.9× for 2048 bits. In addition, performance improvements from
vectorization are also higher than in the 7-point stencil, showing
good vectorization speed-ups of 4.86× at 512 bits. At larger vec-
tor lengths vectorization loses efficiency due to increased memory
contention to service vector memory operations, as they need addi-
tional memory accesses. For each iteration, the amount of loaded
elements and computations is higher now, as we are computing
with 27 elements instead of just 7. This reduces the importance
of scalar index computations and other scalar instructions. These
larger performance improvements are possible due to higher AI
(shown at the top of the figure).

Loop Unrolling: As can be seen in Figure 10, the unrollj2 op-
timization presents a different behaviour than the one observed
for the 7-point stencil, with significant performance improvements
(28.7% for 128 bits) that diminishing as vector length increases (1.4%
for 2048 bits). This is due to a higher AI that still offers enough
computation with respect to memory operations despite the reduc-
tion of control and index calculation instructions that occurs with
unrolling. Therefore, loop unrolling needs to be carefully applied
depending on the characteristics of the loop body, as seen before
in the 7-point stencil, it can lead to performance degradation. We
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Figure 9: Instruction reduction and speed-up for a 27-point
stencil - base SVE implementation.

limit our study to unrolling twice on j due to the complexity of
manually unrolling the 27-point loop body.

Data Reuse: Data reuse, termed reuse, aims at reusing loaded
data and partial computations across different iterations. As a con-
sequence the number of instructions is reduced significantly as can
be seen in Figure 10. However, this has a negative effect on AI, since
many arithmetic operations are replaced by register movements. In
addition, the memory access pattern presents poor spatial locality
which increases LLC MPKI significantly, leading to performance
degradation with respect to the base SVE implementation. We ob-
serve that applying optimizations that reduce instruction count
is not always beneficial. Optimizations that a priori appear to be
good candidates not always lead to performance improvements due
to poor memory behaviour, i.e., worse locality or an increase in
memory contention.

Load Trading: Load trading is implemented on top of the previ-
ous optimization, therefore it is termed reuse+LT. This optimization
also fails to provide the expected improvement in performance. The
main reason is the significant increase in instruction count when
compared to reuse, needed to support the merging of operations
that reconstruct the vector blocks. Several additional moves are
required, some to preserve the content of vector registers that must
be used both as a source and destination of the splice instruction,
others used to reuse data on the next iteration.

In addition, to preserve vector length agnosticism, we need
to recompute the address of A[i][j][k − 1 + VL] to be able to re-
construct elements A[i][j][k] and A[i][j][k + 1]. This optimization
could probably benefit from additional fine-tunning to squeeze a
bit more performance, by reordering operations and refining some
of the movements, but the additional effort to undertake these
modifications manually was too steep for the potential gains.
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Figure 10: Performance, arithmetic intensity, instruction reduction and LLC MPKI for the 27-point stencil.
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Figure 11: Out-of-order versus in-order cores on base SVE
implementation.

5.3 Comparison using in-order cores
All the presented results so far used out-of-order cores. Figure 11
shows a performance comparison of out-of-order and in-order cores
normalized to in-order using 128 bits. As can be seen in the fig-
ures, the increase in performance when employing out-of-order
cores is significant. For the 7-point stencil, the out-of-order core
is 2.89× more performant on 128 bits, while in the 27pt is 2.13×
better. The 7-point stencil has a higher percentage of memory oper-
ations, therefore, out-of-order capabilities are able to extract more
performance.

In the 7-point stencil, performance for the out-of-order configu-
ration does not improve significantly after 512 bits. This is due to a
smaller number of instructions in the loop body and the additional
memory accesses needed for each vectorized load, which quickly in-
creases memory contention and the percentage of memory accesses

within the loop. On the other hand, the 27-point stencil can achieve
significant improvements using out-of-order cores when compared
to in-order at long vector lengths. Nonetheless, our results show
that out-of-order capabilities on vectorized codes are necessary,
as the amount of time spent executing arithmetic instructions is
lowered due to vectorization, increasing memory contention and
stalls suffered by in-order cores.

5.4 Summary of the SVE Experience
SVE enables operating on different iteration counts with a single
control-flow structure. In addition to having neat programming
codes, loop-tail free algorithms allow to keep operating in a SIMD
manner even if the vector does not have all the elements active. To
the contrary, other architectures enforce us to have scalar loops
that complete the remaining iterations. For example, a 2048-bit
vector that operates on 8-bit integers can hold 256 elements; even if
only half of them are active, it can avoid doing 128 iterations using
scalar instructions.

The control flow structure (whilelt–b.cond–incp–b) integrates the
functionality of building and reading the predicates to be used as
masks in the inner loop body instructions. This is a clear reflection
of the symbiosis between VLA and per-lane predication in SVE’s
model. Our use case benefited from per-lane predication by deacti-
vating off-border elements in a regular grid, among others. Stencil
codes on irregular grids would be also a good target for SVE, for
example, recalculating a more complex condition each iteration to
re-construct the predicates could be flexibly implemented by the
predicate modifying a set of instructions.

The one optimization that is vector/SIMD aware is load trading,
that is, it relies on having a vector code that loads repetitive data.
As a consequence, the direct translation between scalar and vector
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instructions does not exist. This is a second use case of per-lane
predication. The two neighborhoods used (Moore and Von Neu-
mann, radius 1) just require to create a constant predicate for the
whole execution in order to re-construct a new vector by combin-
ing two other vectors. For other neighborhood shapes that have
different inter-vector reconstruction opportunities, we could use
other predicate modifying instructions.

Finally, our analysis shows that for loops that have low AI like
the 7-point stencil, going beyond 512 bit vector lengths is not bene-
ficial. This is due to the additional memory accesses needed to load
data into the vectors, which further increases memory contention,
leading to small returns in terms of performance. Applying loop
unrolling on the j dimension did not provide benefits, however, un-
rolling on the i dimension and loop fusion increased performance
significantly due to better spatial locality and higher AI. In the
27-point stencil, all long vector lengths were able to deliver addi-
tional performance due to higher AI of the loop body. However,
only unrolling provided further performance benefits and both
data reuse and load trading hurt performance due to poor cache
behaviour and overheads in terms of additional instructions. This
results highlight the difficulties in applying optimizations. Both
programmers and compiler writers need to carefully select when
and what optimizations to apply to maximize performance, taking
into account things like AI and data locality.

6 CONCLUSIONS
Through vector lane agnosticism and per-lane predication, SVE
enables programmers to write and compile applications only once,
but execute the binary on any vector length, greatly improving
code portability. In addition, per-lane predication simplifies codes
by treating loop prologues and epilogues within the main loop. As
a result, SVE’s VLA adds value to the process of vectorizing an
application and, in our experience, enables good productivity for
developers.

This paper describes the ability of SVE to map stencil applica-
tions. We have implemented the scalar baseline and all the SVE-
enabled optimizations, i.e., loop unrolling, loop fusion, data reuse
and load trading, on 7-point and 27-point stencils using Armv8-A
hand-coded assembly. Our performance evaluation using vector
lengths ranging from 128 to 2048 bits shows that certain optimiza-
tions can boost performance significantly, i.e., loop unrolling com-
bined with loop fusion boost performance of the 7-point stencil by
more than 50% on 128 bits and by 56.6% on 2048 bits. On the other
hand, certain optimizations can hurt performance due to worse
data locality. Finally, we report our experiences vectorizing and
optimizing stencil codes using SVE, highlighting when VLA and
per-lane predication is useful and providing guidelines on what
are the vector lengths that should be used depending on workload
characteristics. We expect our findings to serve as a recipe for both
programmers and compiler writers that would like to port and
optimize stencil codes to SVE.
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