
Detailed Tuning and Validation of Hardware
Simulators through Microbenchmarks

Rommel Sánchez Verdejo∗†, Petar Radojković∗
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: {rommel.sanchez, petar.radojkovic}@bsc.es

Keywords—Simulation, Memory simulation, CPU Simulation,
DRAM, DRAM Simulation, x86

I. EXTENDED ABSTRACT

Hardware simulators are used by the academia and industry
to prototype, explore and evaluate novel microarchitectural
features. Because of its importance, it is imperative to pay
special attention to their validation. Unfortunately, this pro-
cess is not standardized. In this work, we describe a set of
microbenchmarks for the validation of the CPU execution
units and the memory subsystem, including on-chip caches
and main memory. Also, we present a case study in which the
microbenchmarks are used to validate a simulation infrastruc-
ture based on the ZSim [1] and DRAMSim2 [2] vs. an actual
Sandy Bridge server. The presented case study shows how the
microbenchmarks can be used to isolate the resource behavior
of the target architecture and pinpoint the specific differences
between the simulator and the target hardware.

A. Microbenchmarks: CPU execution units
All the microbenchmarks are designed using the principle

that is presented in Table I. Each benchmark consist of four
parts: (1) The register used as a loop iteration counter (ecx)
is set for 10,000 times of execution; (2) The main section of
the benchmark is a sequence of single repetitive instruction
of the target ISA; (3) The sequence of target instructions
is followed with the decrement of the loop counter register;
(4) Finally, the counter value is compared with zero followed
by the conditional branch to the beginning of the loop.

B. Microbenchmarks: Caches and main memory

The benchmarks that stress the caches and memory are
implemented using the concept of pointer chasing. In the
benchmark prologue, we allocate a contiguous section of
memory and initialize it to a given array element that contains
the address of the next element to fetch. The benchmarks are
initialized to (1) Traverse the whole array; (2) Access different
cache lines in each memory access; (3) Memory accesses have
a random pattern, preventing data prefetchers to bring data to
any level of cache.

Table II shows the code for memory latency microbench-
marks, which behavior are explain as follows (1) The register
used as a loop iteration counter (ecx) is initialized; (2) The
initial address of the array is passed to the assembly code as
an input parameter; (2) The main part of the benchmark is a
sequence of indirect load instructions (mov(%rax), %rax)

Line Source code Explanation
00001 mov $10000, %ecx Initialize loop counter ecx to 10,000
00002 start_loop: beginning of the loop
00003 ADC %eax, %ebx target instruction
00004 ADC %eax, %ebx target instruction
.
10002 ADC %eax, %ebx target instruction
10003 dec %ecx decrement loop counter
10004 jnz start_loop if (counter 6= 0) jump to start loop

TABLE I. STRUCTURE OF MICROBENCHMARK ASM CORE.

Line Source code Explanation

0001 register struct line
*next asm("rax");

strcut line owns pointer to
the next accesss

0002
register int

i asm("ecx");
ecx is the loop counter

0003 i = 1000000; C initialization of the loop counter
0004 next = ptr->next; First memory access in C form
0005 start_loop: beginning of the loop
0006 mov (%rax), %rax load instruction (pointer chasing)
0007 mov (%rax), %rax load instruction (pointer chasing)
.
1007 mov (%rax), %rax load instruction (pointer chasing)
1008 dec %ecx decrement loop counter
1009 jnz start_loop if (counter 6= 0) jump to start loop

TABLE II. STRUCTURE OF MEMORY LATENCY MICROBENCHMARK.

that traverse the memory access pattern; (3) The sequence of
target instructions is finalized with the decrement of the loop
counter register and an exit condition or jump to the beginning
of the iteration. The assembly loop is wrapped-up by the C
program which reads a previously generated file containing
information about the array size and the random access pattern.

C. Case study: ZSim and DRAMSim2 vs. Intel Xeon E5-2670
SandyBridge-EP

We performed a case study in which the microbenchmarks
are used to compare the simulation infrastructure integrated
with ZSim and DRAMSim2 simulators. ZSim is an execution-
driven CPU simulator widely used in the computer architecture
research, developed to mimic the Westmere architecture and
validated against real hardware using the SPEC CPU 2006
benchmark suite. DRAMSim2 is a cycle accurate model of a
DRAM memory controller, DIMMs, and buses by which they
communicate. It is validated against DRAM manufacturer’s
Verilog models.

We validate the simulators vs. a dual-socket platform. Each
socket with an Intel Xeon E5-2670 SandyBridge-EP proces-
sor [3] operating at 3.0GHz. The main memory is 16GB
and is connected to the processors using four DDR3-1600
channels. Each processor runs eight cores, the hyper-threading

5th BSC Severo Ochoa Doctoral Symposium

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZSim

E5-2670 SandyBridge

Fig. 1. Memory access latency: L1, L2, L3 cache and main memory.

feature has been disabled like in most HPC systems [4].

D. Case study: CPU Execution units

We automated the creation of 346 microbenchmarks cov-
ering a wide range of logic for integer and floating point
instructions. Then, we executed the benchmarks in actual
hardware and the simulator. Out of 346 tested instructions, the
simulator matches around 55% the actual system latency while
in 28% the simulation error is moderate or high meaning that
exceeds 50% of the CPI. Since each of the microbenchmarks
stresses one resource at a time, finding the sources of the
simulation error is relativeley simple. The enhanced version
of the simulator show much better accuracy 74% of all the
instructions correctly match the actual system while less than
9% of them show a simulation error of above 50% of the
CPI. Moderate or high simulation error come mainly from the
complicated instructions or CPI dependency on the operand
values. Detailed analysis of these cases is an ongoing work.

E. Case study: Caches and main memory
To compare the caches and main memory access time

between the selected simulators and the actual hardware, we
used the same strategy described in Section I-B. Table III
summarizes information about array sizes used in this study to
stress the memory hierarchy. Results from such comparison are
shown in Figure 1. The horizontal axis of the figure represents
the size of the traversed array, while the vertical axis displays
the memory access latency in CPU cycles. From the figure, we
can distinguish four steps of the latency corresponding to the
L1, L2, L3 cache and main memory. For the cache levels, the
lines overlap: ZSim cache contention accurately represents the
actual system. However, for the main memory accesses, we
detect a significant gap between the simulators and the real
system.

These results motivated us to further explore the sources
of this error. Because ZSim is a user-level simulator, it does
not take into account virtual-to-physical address translation. In
the real system to mitigate the address translation overheads,
we used huge memory pages (1GB per page in our study)
and contiguous memory space. Simple integration of ZSim
and DRAMSim2 may lead to an underestimation of the main
memory access latency. ZSim simulates memory access up
to the last level of cache, while DRAMSim2 is focused on
the detailed timing simulation of the memory device. This
implies that a direct merge of ZSim and DRAMSim2 does
not consider the delay contributed by all the circuitry between
the last level cache and main memory device, including the
memory controller and the memory channel.

Memory Level,
Size and Scope

Number of
Measurements

Array sizes
(range, stride)

L1 cache 32 kB, Private 8 4 kB to 32 kB , 4 kB
L2 cache 256 kB, Private 16 46 kB to 256 kB, 14 kB
L3 cache 20MB, Shared 32 888 kB to 20MB, 632 kB
Main memory, 16GB/socket 64 83.69MB to 4GB, 63.7MB

TABLE III. SIZE AND ORGANIZATION OF THE CACHES AND MAIN
MEMORY OF THE E5-2670 SANDYBRIDGE-EP USED IN THE STUDY.

The memory latency experiments confirm that the mi-
crobenchmarks can be resourceful to detect specific errors in
the simulation configurations that might be overlooked. To
this date, there exist no guidelines provided by CPU simulator
developers that emphasize the importance of the proper inte-
gration with the memory simulators while considering latency
of the memory controller and the memory channel.

II. CONCLUSIONS

Our study provides first steps in a systematic methodology
to validate computer architecture simulators. By comparing the
execution of the proposed microbenchmark on both systems,
we can check whether a simulator reproduces the system
behavior for that particular resource. We presented a case
study in which the microbenchmarks are used to validate a
simulation infrastructure based on the ZSim and DRAMSim2
simulators vs. a real SandyBridge server. This study opens
a discussion about the validation of the state-of-the-art-
simulators used in the computer architecture community.

III. ACKNOWLEDGMENT

This work has been published in the International Confer-
ence on High Performance Computing & Simulation (HPCS)
2017, and supported by the Collaboration Agreement between
Samsung Electronics Co., Ltd. and BSC, Spanish Govern-
ment through Severo Ochoa programme (SEV-2015-0493),
by the Spanish Ministry of Science and Technology through
TIN2015-65316-P project, and by the Generalitat de Catalunya
(contracts 2014-SGR-1051 and 2014-SGR-1272).

REFERENCES

[1] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” in ISCA, June 2013.

[2] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE CAL, 2011.

[3] Intel product specification site. [Online]. Available: https://ark.intel.com/
[4] Top 500 supercomputer sites. [Online]. Available:

https://www.top500.org/

Rommel Sánchez Verdejo received his M.Eng. in
Computer Science from Univ. Nac. Autónoma de
México, Mexico (2019). He worked for Intel Corp.
in Jalisco, Mexico as a UEFI BIOS Engineer and
Software Security Validation Engineer. He is pursu-
ing a Ph.D. at Univeristat Politcnica de Catalunya
jointly with the Barcelona Supercomputing Center,
Spain (2106).

5th BSC Severo Ochoa Doctoral Symposium

58

