
Inception: We need to go wider
Rajiv Nishtala

Barcelona Supercomputing Center
rajiv.nishtala@bsc.es

Paul Carpenter
Barcelona Supercomputing Center

paul.carpenter@bsc.es

Xavier Martorell
Universitat Politécnica de Catalunya &

Barcelona Supercomputing Center
xavier.martorell@bsc.es

I. INTRODUCTION

Modern HPC systems are typically built with multiple racks
of several multi-core chips put together as a single system.
Each such chip has a local DRAM, and they are collectively
called as a node. Each node is connected using a high-
speed interconnect. This enables the programmer the benefit
of transparently issuing a memory request either to local or
remote at relative costs.

However, traditional HPC workloads have been shown to
have a large variation in their memory footprint, depending
on the application domain, the number of processes and
whether it is strong or weak scaling. In such circumstances,
the programmer is bound to use either the large memory nodes
available on commonly deployed HPC systems or suffer large
latency delays in disk accesses. For instance, MareNostrum-4
has 128 large memory nodes with 128GB, as opposed to the
typical 32GB nodes.

On this end, we aim to 1 develop a model to compute the
performance overhead of NUMA access latency and applica-
tion load balancing; 2 reduce the need for large memory
nodes by providing HPC resource manager (for example,
SLURM) support for memory capacity sharing among nodes
using the UNIMEM architecture.

The rest of the paper is organized as follows: Section II
provides a background on the related programming models and
the UNIMEM architecture. Section III introduces the method-
ology for validating Inception. Finally, Section IV validates
Inceptionusing two different simulators: TaskSim and ZSim .

II. BACKGROUND

[OmpSs programming model]: The OmpSs programming
model is a task-based programming model that provides an
abstraction to the implementation of parallel applications. In
OmpSs , the task construct enables the annotation of function
declaration with the task directive. Every invocation of this
function generates a task that is executed concurrently with
other tasks or parallel loops. The OmpSs environment is built
on top of the a Mercurium compiler and b the Nanos++
environment which serves as a runtime platform. Mercurium
is a source-to-source compiler to translate OmpSs annotation
clauses to source code. The Nanos++ is responsible for the
internal creating and execution of tasks.

[UNIMEM]: State-of-the-art HPC infrastructures have
computing cores in the order of millions, if not billions,
working and communicating in tandem to solve a problem.
There are two sources for this problem: 1 Big-data

applications require large and fast memory subsystems for
computations, else suffering from a high disk access latency.

2 These chips spend a lot of energy communicating amongst
each other, rather than the actual computation. A large portion
of the energy is spent on transferring the communicated
data from the remote node buffer to the local nodes’ buffer.
This, in large, translates to magnitudes of wasted energy and
computational overhead.

In contrast to such architectures, the Unified Memory
(UNIMEM) architecture, offers the ability to access areas of
memory located in the remote nodes at a relatively “low”
latency and communication cost. UNIMEM achieves this by
communicating using the Remote Direct Memory Access
(RDMA) operation through its Global Address Space, which
delivers data in-place and avoid receiver-side copying. The
“low” latency and communication cost is achieved using the
Input/Output Memory Management Unit (IOMMU) and DMA
Engine Virtualization, which allows user-level initialization of
RDMA operations. This allows the UNIMEM architecture to
facilitate sharing of large memory nodes.

III. METHODOLOGY

[Benchmarks]: We use four scientific workloads imple-
mented in the OmpSs programming model: Blackscholes,
dedup, freqmine and fluidanimate. These benchmarks are reg-
ularly executed on hundreds of thousands of processing cores.
These benchmarks are available as a part of the PARSECSs
benchmark suite [5]. For all PARSECSs benchmarks, we use
medium and native input datasets [1].

[Hardware resource]: We perform evaluation on two sim-
ulators: ZSim and TaskSim . The parameters used in TaskSim
and ZSim are presented in Table I.

Nord-III. We collect the traces for the applications running
on ZSim on the Nord III cluster [3]. Nord-III contains 84
compute nodes. Each node contains two Intel SandyBridge-
EP E5-2670 sockets that comprise of eight cores operating at
2.6GHz. Hyperthreading was disabled as in most HPC sys-
tems. SandyBridge processors are connected to main memory
through four channel and each channel is connected to a single
4GB DDR3-1600 DIMM. Applications running on Nord III
were compiled using gcc version 6.2.0, ompss, nanos-0.15a
and mercurium-2.1.0.

ZSim. We simulate the multi-core processor and a DRAM
using ZSim [13] and DRAMSim2 [12], respectively. ZSim
deploys three techniques to achieve accuracy, speed, and scal-
ability. ZSim ensures the accurate x86 code instrumentation

5th BSC Severo Ochoa Doctoral Symposium

44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TaskSim/MUSA ZSim

Platform MareNostrum-4 Nord-III
System Configuration

Core Frequency 3.0GHz 3.0GHz
Number of Cores 8 8
Core Model 4-issue, out-of-order 4-issue, out-of-order
Architecture Simpled CPU model Intel® Sandy Bridge

Memory Subsystem
Cacheline Size 64 64
Private L1 I Cache 32 kB 8-way set associative 32 kB 8-way set associative
Private L1 D Cache 32 kB 8-way set associative 32 kB 8-way set associative
Private L2 Cache 256 kB 8-way set associative 256 kB 8-way set associative
Shared L3 Cache 20MB 20-way set associative 20MB 20-way set associative

DRAM
Simulator Ramulator DRAMSim2
Standard DDR3-1600 DDR3-1600
Capacity 8GB 8GB
Organization 2 ranks, 8 banks, DDR3 512MB 2 ranks, 8 banks, DDR3 512MB

Instrumentation Tool DynamoRio Pin

TABLE I: System parameters for TaskSim and ZSim

through dynamic binary translation tool called pin [10]. It
speeds up simulation by categorizing memory requests into
two-phases: bound and weave phase. Furthermore, it scales
well using a user-level OS virtualization layer. The integration
of ZSim and DRAMSim2 enables a cycle-accurate simulation
for memory requests by creating precise timing events for the
weave phase of the ZSim simulator. The simulated multi-core
processor is similar to SandyBridge architecture [14].

MareNostrum-4. We collect the traces for the applica-
tions running on TaskSim on the MareNostrum-4 supercom-
puter [2]. MareNostrum-4 contains 3456 compute nodes. Each
node contains two Intel Xeon Platinum 8160 sockets that com-
prise of 48 cores operating at 2.10GHz. Hyperthreading was
disabled as in most HPC systems. Xeon Platnium processors
are connected to main memory through six channel and each
channel is connected to a single 48GB DDR4-2666 DIMM.
Applications running on MareNostrum-4 were compiled using
gcc version 7.1.0, ompss, nanos-0.11a and mercurium-2.1.0.

TaskSim. We simulate the multi-core processor and a
DRAM using TaskSim simulator [11] and Ramulator [9]. The
simulated multi-core processor is similar to simple CPU model
that issues and commits instructions faster. The TaskSim
infrastructure uses Nanos++ scheduling delays that happen at
the rate of 1 CPU run, and add delays on thread migration
and therefore, new task assignment might behave better/worse
in some extreme cases. Additionally, TaskSim does not imple-
ment a cache coherence protocol, and thereby does not conflict
between CPUs. The instrumentation tool used for TaskSim is
DynamoRio [7].

[Why Simulator?]: State-of-the-art architectures like Cav-
ium ThunderX [4] provide a dual-socket configuration with
large shared memory and high memory bandwidth. In a shared
memory system, all processes share a global memory and each
processor accesses memory through a shared bus and have a
local cache. There is a fixed latency for a memory requests
from either socket. The two main concerns with a shared mem-
ory system are: contention and coherence. The performance
degradation when multiple processors are trying to access
the shared memory simultaneously results in contention for
memory bandwidth; whereas, having stale data across different
cache might result lead to a coherence problem.

Current architectures do not natively provide the possibility

to modify the memory access latency or bandwidth from
different sockets - as in UNIMEM architectures - and
therefore it is hard to emulate multiple memory islands at
different latencies.1

We emulate the UNIMEM architecture using the aforemen-
tioned simulators. These simulators define the core, caches,
DRAM, etc., as modules. Every module is connected to one
another using “ports”. The simulator parameters are configured
in the simulators’ configuration file. We instantiate a fixed
number of DRAM modules at runtime, which are connected
to the memory controller. A read or write request from the
memory controller is directed to a specified DRAM, at fixed
latency, based on the first touch policy [8], which is the default
policy in Linux. In the first touch policy, memory is allocated
to the same node as the thread that accesses the memory page
- this allows to maximize local accesses over remote accesses.
However, this is not guaranteed because the data can be shared
by threads on multiple nodes.

IV. EVALUATION

The aim of this work is two-fold a Cross-validating the
results obtained from TaskSim (a trace based simulator) and
ZSim (an execution driven simulator) with a real-machine. b
Introduce a simulated contention to the local DRAM from an
application from a remote node.

At the time of writing this paper, we are generating the
results required.

V. AUTHOR BIOGRAPHY

Rajiv Nishtala is a Post-doc at the Barcelona
Supercomputing Center. His research interests
include dynamic resource allocations, energy
efficient computing and thread scheduling. For
more details: nishtala.github.io

REFERENCES

[1] C. Bienia and et al. The PARSEC benchmark suite. In PACT 2008.
[2] BSC, MareNostrum IV System Architecture.
[3] BSC, Nord III System Architecture.
[4] Cavium. Cavium ThunderX ARM Processor, 2018.
[5] D. Chasapis and et al. PARSECSs. ACM TACO, 2015.
[6] H. David and et al. Memory power management via dynamic volt-

age/frequency scaling. ICAC ’11.
[7] DynamoRio: Dynamic Instrumentation tool Platform.
[8] F. Gaud and et al. Challenges of memory management on modern

NUMA systems. Communications of the ACM, 2015.
[9] Y. Kim and et al. Ramulator: A fast and extensible dram simulator.

IEEE CAL, Jan 2016.
[10] S. Naftaly. Pin: A Dynamic Binary Instrumentation Tool.
[11] A. Rico and et al. On the simulation of large-scale architectures using

multiple application abstraction levels. ACM TACO, 8(4):1–20, 1 2012.
[12] P. Rosenfeld and et al. DRAMSim2: A Cycle Accurate Memory System

Simulator. IEEE CAL, 2011.
[13] D. Sanchez and et al. ZSim. ACM Press, 2013.
[14] R. S. Verdejo and et al. Microbenchmarks for Detailed Validation and

Tuning of Hardware Simulators. In HPCS 2017, 2017.

1Natively implies without any modifications to the RAS-to-CAS delay and
back-to-back CAS delay [6]

5th BSC Severo Ochoa Doctoral Symposium

45




