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I. EXTENDED ABSTRACT

The intricate nature of Tuberculosis (TB) infection requires
further research to better understand the relationship between
the disease mechanisms and the population structure. The
influence of the population structure and the role of the infected
population on the TB incidence is still not clear. In this study,
mathematical modelling techniques are used to elucidate those
questions and contribute to understand TB complexity. The
work examines the complexity of TB dynamics by using SEI
models of different levels of complexity to study the effect
of both structure of population and the role of the infected
population in TB dynamics. It presents a step by step procedure
of how to develop and estimate parameters of complex model
for TB transmission. We performed different experiment on
more than 20 different countries in order to elucidate if the
increase in complexity of the models increases the model
accuracy and provides more information about the disease. Our
results indicate that parameter estimation could be made easy
by the gradual development of simple models. In addition we
showed the importance of more complex model over simple
model and our result indicate that, unlike simple models,
complex model could explain characteristic of the disease such
as diagnosis delay time and reinfection. We illustrate how the
model without population as a limiting factor dramatic change
in behaviour when implemented in high burden incidence. We
also demonstrate how the change in age of infection in the
latent TB could dramatically alter the dynamics of the disease.

A. Introduction

Tuberculosis (TB) is still a major global health concern and
one of the leading causes of death. As reported by WHO, there
were an estimated 10.4 million new incident TB cases and 1.7
million deaths worldwide in 2015[1]. Even though most TB
cases occur in resource-limited countries, it is still a threat
to higher-resource countries. This is due to the nature of the
disease’s strong interaction with HIV dynamics and also the
recently world-wide emergence of drug-resistant TB [2], [3].

The main manifestation and the only infectious form of TB
is the pulmonary form, hence worthy of study. Pulmonary TB
is an infectious disease caused by Mycobacterium tuberculosis
(Mtb) and it is transmitted via air borne droplets of the saliva of
the sick host. When a sick host sneezes, coughs or talks it can
infect susceptible individuals sharing the same environment

who inhale the saliva droplets containing the bacterium. The
inhalation of the bacilli will usually lead to the initiation of an
immune response that can have one of the 3 different clinical
outcomes: (1) Complete clearance of the pathogen (2) Latent
TB infection (LTBI) or (3) Progression to primary active dis-
ease [4], [5]. The objectives of this study are: (i) To understand
how the structure of the population that can shape the dynamics
of the disease.(i) To show the importance of both complex
and simple models depending on each given situation, and
to elucidate how parameter estimation can be easily achieved
when developing gradually more complex models.(iii) To show
the role and importance of the latent infected population and
the age of infection in understanding the dynamics of TB.
The epidemiological evolution of 20 different countries will be
analyzed to exemplify the importance of each type of model
to achieve the aims set above.

B. Methodology

TB dynamics presents several characteristics that greatly
contribute to its complexity. Compartmental models facilitate
obtaining a good understanding of these complexity. Fig. 1
proposed several compartmental models that were used to
described the dynamics of TB with different complexity level.
In each of the model, starting with the most simple form SEI,
population were divided into different compartment, namely
Susceptible S, latent infected (exposed) E, Sick (infectious) I,
and Reinfection R. We formulated five different models (SEI,
SEI2, SE8I, SE8I2, SE8IR), each model was formulated with

two different force of infection Λ =
αIS

N
and Λ∗ = αI to

allow the evaluation of effect of population on the dynamics of
the disease. Model equation for each model were formulated,
and the spectral radius was analyzes.

C. Results

TB epidemiological data from countries all around the
world was analyzed and 20 (10 LBC and 10 HBC) different
countries were selected to test and validate the models.

Comparison of models performance between low and high
incidence burden setting to illustrate the effect of population
on Tb dynamics: To address the long over due question of
how the population can affect the dynamics of TB, we adhere
to our strategy by fitting both set of models with population
as limiting factor and without to both LBC and HBC. Fig. 2
illustrate the difference between the two sets of models when
implemented in low burden and high burden countries.
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Fig. 1. Overview of several proposed compartment models with different
level of complexity. SEI is the classical model of three compartments used
to understand the epidemiological dynamics of TB in a given population.
SEI2 applies to a general context of TB dynamics and has four compartments
(Susceptible S; Exposed E; sick and infectious I1; and sick but not infectious
I2). SE8I refers to a context where the time scale and age of infection
in the latently infected population is considered due to its importance in
understanding TB dynamics. In SE8I2 two main important features were
also added, the diagnosis time delay and the probability of relapse. The
sick population are dived into two sub-population, I1 sick and infectious
(thus, spreading the disease) and I2 sick but under treatment. Finally, in
contexts of high incidence, we introduce the concept of people reinfection
so Ei > 1→ E1

Fig. 2. The effect of population structure on the dynamics of TB
demonstrated in both low and high burden countries. (A): The model
simulation with population as a limiting factor (SE8I model) and model
without population as a limiting factor (SE8I low model) in a low burden
country. (B): The model with population as a limiting factor (SE8I model)
and model without population as a limiting factor (SE8I low model) in a high
burden country.

Model complexity and parameter derivation: Developing
several models of increasing complexity in a gradual manner
allowed the parameters to be derived from the simpler models.
Fig 3 shows the simulation results for Argentina with different
models of various complexity levels and contrast it with the
epidemiological data during 20 years.

D. Conclusion

Our experiment provides a significant evidence that the
structure of population plays a vital role in shaping the dy-
namics of the TB. Although simple models could describe the
dynamics of the disease, we show that it is necessary to design
more complex model in order to understand some of the more
complex structure of the TB dynamics. We also showed that
simple models can provide a significant aid in the estimation of

Fig. 3. Comparison of low incidence models fittings for epidemiological
data in Argentina.

the parameter for more complex models. We finally conclude
that the age of the infection and the structure of the latently
infected population must to be taken into consideration while
designing any TB intervention program
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