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I. METHODOLOGY

There is no doubt that composite materials are widely used
nowadays in almost every engineering areas, mainly because
of their excellent properties such as their high resistance, low
weight and cost. For this reason it is useful to study their
behavior in order to increase their reliability and produce better
designs.

There are two main ways of studying composite materials
structures. The first and the oldest one is to build a real
prototype with the material and to perform experiments, for
example, to measure the prototype resistance with a traction
test. The second way is to create a computational model
applying physical laws and then to predict how it would
behave.

Fig. 1: Representation in two dimensions of a classical com-
posite material structure. In this case the structure is made of
two different materials (fibers inside a matrix).

The experimental method can be very accurate because
we use directly the real material but it has the counterpart of
being expensive because for almost every experiment a new
prototype should be manufactured. This is a very slow process
specially for those cases where an optimal and reliable design
is being searched.

The problem of the cost and speed of the experimental
method can be solved with the computational simulations.
They involve to develop physical models in order to get
accurate solutions, this can be a difficult task depending on the
composite material we are dealing with. The most common
numerical procedure used in this field is the finite element
method (FEM) that is combined with constitutive laws to relate

the physical variables of the problem. These laws relate the
stresses σ and the strains ε that are defined at every point in
the domain ant they are obtained through experiments.

Composite materials are characterized for being composed
of two or more homogeneous materials. In Fig. 1 we represent
an example in two dimensions of a typical arrangement of two
different materials: a micro structure made of fibers inside a
matrix. The distribution and the properties of each material
determine the property of the final arrangement. This is a clear
example of why computational simulations can allow to find
faster an optimal design of a structure because the wide spectra
of design options that exist.

In view of what is represented on Fig. 1 it is clear that using
the FEM method directly to solve the complete problem can
end in a large computational problem that is not feasible to be
solved. This is due to the strong difference between the scales
that are inside the problem: the structural macroscopic scale
and the microscopic scale. A simple explanation of why this
happens can be understand by imagining that if at least one
finite element is set inside each fiber, then, a large number
of finite elements would be needed to discretize the whole
problem. Even for a supercomputer the size of this problem can
be out of the calculation scale for several orders of magnitude.

ε
σ

ε
σ

h h

h

h

h

hh

h

h

h

h

h

h

h h

h

h

h
h

h

h
h

h

h

h

h h

hh

h

h

h

h

h

h

h

h h h h h h h h h h h h h

h

h

h

hhhhhhhhhhhhh

h h h h h h h h h h h h h

h h h h h h h h h h h h h

h h h h h h h h h h h h h

h h h h h h h h h h h h h

h h h h h h h h h h h h h

Fig. 2: Representation of the FE2 multi-scale method process.
In this example the structure is composed of two different
composite materials microstructures (two layers of matrix and
fibers with different orientation angles.

To deal with this, the multi-scale techniques can be used.
The basic idea is to decompose the original problem into two
smaller ones: a macroscopic and a microscopic problem. The
macroscopic problem is solved with a coarse FEM mesh and
the materials that conforms these elements are homogeneous
with constitutive laws obtained using the microscopic model.
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For this work we are going to apply the FE2 multi-scale
method, here the FEM is applied at both scales which means
that in the microscopic scale also the FEM is used to get these
properties needed by the macroscopic model. In Fig. 2 we
outline this process for a macroscopic structure that is build
with two different microscopic structures.

Finally, we should give a briefly idea of the physical
models that we are dealing with. For the macroscopic scale
we consider the set of equations:

div σ = 0
σ = 〈σ〉
u = ud in Γd

σ = σn in Γn

where the first is an equilibrium equation and the second one
is a constitutive law that is obtained using the microscopic
model. This is the main difference between the classical single-
scale and the multi-scale approach. The others equations are
boundary condition equations like in all classical problems.

The macroscopic quantities are calculated with the micro-
scopic model that is defined as:{ divσ = 0

σ = f(ε)
〈ε〉 = ε

here, the first is an equilibrium equation and the second are
the constitutive laws of each of the materials that conform the
microscopic structure, for this problem these laws are known.
The third equation is a supposition and means that the average
of the strain field ε is equal to the macroscopic strain ε. This
crucial assumption determines which boundary conditions can
be imposed in the microscopic model.

The boundary conditions that can be set in the microscopic
model are:

• Periodic

• Uniform strain

• Uniform stress

Each boundary condition produce a different result at
the microscopic level, and consequently, at the macroscopic
one. Their accuracy of the boundary conditions depends on
the problem that is being solved. For example, in the case
of aeronautics composite materials, the periodic boundary
conditions generally give the most accurate results because
the microstructure is near to be periodic and the microscopic
model is subjected to a similar constrain.

In Fig. 3 we outline the results of a microscopic structure
subjected to different boundary conditions.

II. STRATEGY PROPOSED

The strategy for solving this problem is a distributed
memory approach due to the large amount of memory that
should be used specially in non-linear problems. In Fig.4
we show the computational scheme that we are going to
apply in order to deal with the memory problem. This last
consists in applying a domain partition on the macroscopic

(a) Periodic. (b) Uniform strain. (c) Uniform stress.

Fig. 3: Results of a microscopic problem subjected to different
boundary conditions.

problem and solve each problem in a different node of a
cluster. In this case all of the sub domains are communicated
with the others using the MPI protocol, each of them works
jointly with a microscopic code that performs the constitutive
calculations using the FEM. We plan to add another level
of parallelization at the microscopic problem using a shared
memory memory approach, for example, using OpenMP to
parallelize the matrix-vector products for solving the linear
systems or for performing the assembly of the matrices and
RHS.
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Fig. 4: Distributed strategy that we propose to solve the FE2
problem. In this case the macroscopic problem is divided in
four domains and each one is solved in a distributed way
among four nodes of a cluster. In each of these nodes an
independent microscopic problem is also being solved for
retrieving the macroscopic average quantities. The microscopic
problem can be parallelized also in a share memory approach
considering that each node has more than one CPU.
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