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2 Universitat Politècnica de Catalunya, Barcelona, Spain
fatos@cs.upc.edu

3 Oracle, Bangalore, India
arpanroy1994@gmail.com

Abstract. Very often in some censorious healthcare scenario, there may
be a need to have some expert consultancies (especially by doctors)
that are not available in-house to the hospitals. Earlier, this interest-
ing healthcare scenario of hiring the expert consultants (mainly doctors)
from outside of the hospitals had been studied with the robust concepts
of mechanism design with money and mechanism design without money.
In this paper, we explore the more realistic two sided matching market
in our healthcare set-up. In this, the members of the two participating
communities, namely the patients and the doctors are revealing the strict
preference ordering over the members of the opposite community for a
stipulated amount of time. We assume that the patients and doctors are
strategic in nature. With the theoretical analysis, we demonstrate that
the TOMHECs, that results in the stable allocation of doctors to the
patients, satisfies the several economic properties such as strategy-proof-
ness (or truthfulness) and optimality. Further, the analytically based
analysis of our proposed mechanisms i.e. RAMHECs and TOMHECs
are carried out on the ground of the expected distance of the allocation
done by the mechanisms from the top most preference. The proposed
mechanisms are also validated with the help of exhaustive experiments.

Keywords: E-Healthcare, Analytics, Collective Intelligence, Hiring, Mech-
anism Design, Stable Allocation.

1 Introduction

The expert advices or consultancies provided by the expert consultants (ECs)
mainly by doctors, can be thought of as one of the most indispensable events that
occurs in the hospital(s) or medical unit(s) on a regular basis. It is to be noted
that, the expert advices could be either in-house (inter departmental) or from
outside of the hospital. There had been a spate of research work in the direction
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of handling the issues of scheduling the in-house ECs especially doctors [1, 2] and
nurses [3] in an efficient and effective manner. In [1, 2, 4, 5] different techniques
are discussed and presented to schedule the physicians that are in-house to the
hospitals. The work in [6, 7, 8] focuses on the question of: how to effectively and
efficiently plan and schedule the operation theatres (OTs)? In [9, 10, 8] the work
has been done for allocating OTs on time to increase operating room efficiency.
Interesting situation of taking expert consultancy from outside of the in-house
medical unit during some censorious medical scenario (mainly surgical process)
was taken care by [11, 12, 13, 14, 15]. Moreover, the introduction of such a
pragmatic field of study in the healthcare domain by [11, 12, 13, 14, 15] has
given rise to several open questions for the researchers, such as: (a) which ECs
are to be considered as the possible expertise provider in the consultancy arena?
(b) What incentive policies in the form of perks and facilities are to be presented
in-front of the ECs, so as to drag as many ECs as possible in the consultancy
arena?

As opposed to the money involved hiring of ECs as mentioned in [16, 17],
another market of hiring ECs can be thought of where the ECs are providing
their expertise free of cost. Recently, Singh et. al. [18] have addressed this idea
by considering a one sided matching market. In this paper, we have tried to
model the ECs hiring problem as a two sided matching market in healthcare
domain motivated by [19, 20, 21, 22]. In this environment, the members present
in two different communities have the privilege to provide the strict preference
ordering over all or on the subset of the available members of the opposite com-
munity. Now, several questions may arise in ones mind: (1) How the patients
gives strict preference ordering over the doctors? (2) Why the doctors will be
giving preferences over the patients? Is it practical? (3) If yes, how the doctors
will be providing the preferences over the patients? Answering to the issue raised
in point 1, the members of the patient party provides the strict preference or-
dering over the available doctors or the subset of doctors. The preferences over
the doctors maybe provided by aggregating some of the factors such as: quali-
fication of the doctors, organization to which the doctors belong, doctors work
experience, and may be the feedback from the patients.

Considering the issues mentioned in point 2 and 3, in case of reputed and
busy doctors the patients may be strictly ordered based on: the reputation of the
hospital to which the patients are admitted. For e.g. say a patient admitted to
Massachusetts General Hospital, Boston is preferred over a patient admitted to
Johns Hopkins Hospital, Baltimore and is preferred over a patient admitted to
All India Institute of Medical Sciences (AIIMS), New Delhi, India and so on. One
reasoning that could be given is, the doctors providing consultancy to the patient
admitted to reputed hospitals will be projected more to the outside world. In
other words, it will increase their reputation by huge amount as compared to
the consultancy provided to the patients in low rated hospitals. On the other
hand, if the doctors are not bothered about the fame and are more socially
motivated then in that case they may prefer to serve the patients admitted to
low rated hospitals over the patients in reputed hospitals. So, whatever may be



the circumstances, the doctors may give preferences (strict) over the patients. In
our proposed model, in order to generate the preferences from the patient party
and the doctor party, the above discussed criterias are taken into consideration.

Our Contributions

The main contributions of our work are as follows.

– We have tried to model the ECs hiring problem as a two sided matching
problem in healthcare domain.

– We propose two mechanisms: a naive approach i.e. randomized mechanism
for hiring expert consultants (RAMHECs) and a truthful and optimal mech-
anism motivated by [21, 22, 27]; namely truthful optimal mechanism for
hiring expert consultants (TOMHECs).

– We have also proved that for any instance of n patients and m doctors
the allocation done by TOMHECs results in stable, truthful, and optimal
allocation for requesting party.

– TOMHECs establish an upper bound of O(kn2) on the number of iterations
required to determine a stable allocation for any instance of n patients and
n doctors.

– A substantial amount of analysis and simulation are done to validate the
performance of RAMHECs and TOMHECs via optimal allocation measure.

The remainder of the paper is structured as follows. Section 2 describes our pro-
posed model. Some required definitions are discussed in Section 3. Section 4 illus-
trates the proposed mechanisms. Further analytic-based analysis of the mecha-
nisms are carried out in Section 5. A detailed analysis of the experimental results
is carried out in Section 6. Finally, conclusions are drawn and some future di-
rections are depicted in Section 7.

2 System model

We consider the scenario, where there are multiple hospitals say n given as ~ =
{~1, ~2, . . . , ~n}. In each hospital ~i ∈ ~, there exists several patients with differ-
ent diseases (signifying categories), belonging to different income groups. The pa-
tients requires somewhat partial or complete expert consultancies from outside of
the admitted hospitals. By partial expert consultancies it is meant that, the part
of expertise from the overall required expert consultancies. C = {c1, c2, . . . , ck}
is the set of k different categories. The set of all the admitted patients in dif-

ferent categories to different hospitals is given as: P =
⋃

~k∈~

⋃
ci∈C

~̊i
k⋃

j=1

p~k

i(j) where,

p~k

i(j) is the patient j belonging to ci category admitted to ~k hospital. The ex-

pression ~̊ik in term p~k

i(̊~i
k)

indicates the total number of patients in hospital ~k
belonging to ci category. On the other hand, there are several doctors having



different expertise (signifies categories) associated with different hospitals say
H = {H1,H2, . . . ,Hn}. The set of all the available doctors in different categories

associated with different hospitals is given as: D =
⋃
Hk∈H

⋃
cj∈C

H̊j
k⋃

i=1

dHk

j(i) where dHk

j(i)

is the doctor i belonging to cj category associated to Hk hospital. The expres-

sion H̊j
k in term dHk

j(H̊j
k)

indicates the total number of doctors associated with

hospital Hk in cj category. Our model captures only a single category say ci but
it works well for the system consisting of multiple categories. In that case, we
have to repeat the process k times as k categories are existing. In more general
setting, one can think of the situation where there are n number of patients and
m number of doctors in a category such that m 6= n (m > n or m < n). The
members of the participating parties may provide the strict preference ordering
over the subset of the members of the opposite party.
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Fig. 1: System model

In Fig. 1 for representation purpose, from a category ci, one doctor is selected
from all the interested doctors from each hospital. But in general one can think of
the situation where, in a particular category ci, multiple doctors can be selected
from the available doctors from a particular hospital. More formally, |Pi| =∑
Hj∈H Ḣi

j ; where 0 ≤ Ḣi
j ≤ n is the number of doctors selected from hospital

Hj in ci category and placed into the consultancy arena. Following the above
discussed criteria, the third party selects n doctors out of all the doctors in
a particular category ci as a possible expert consultant and is given as Di =
{dH1

i(1), d
H2

i(2), . . . , d
Hn

i(n)}. The set of selected patients from ci category is given as

Pi = {p~1

i(1), p
~2

i(2), . . . , p
~n

i(n)}. The strict preference ordering of the patient p
~j

i(k)

over the set of doctors Di is denoted by �i
k. More formally, the significance of



d
Hj

i(`) �i
k d
Hk

i(m) is that the patient p~t

i(k) ranks doctor d
Hj

i(`) above the doctor dHk

i(m).

The preference profile of all the patients for k different categories is denoted as
�= {�1,�2, . . . ,�k}, where �i denotes the preference profile of all the patients
in category ci over the doctors in Di. �i is given as �i= {�i

1,�i
2, . . . ,�i

n}. The
strict preference ordering of the doctor dHk

j(t) over the patients in Pj is denoted

by 3t
j . More formally, the significance of p~k

j(`) 3
t
j p

~i

j(m) is that doctor dHk

j(t) ranks

p~k

j(`) above p~i

j(m). The set of preferences of all the doctors in k different categories

is denoted as 3= {31,32, . . . ,3k}, where 3j contains the strict preference
ordering of all the doctors in cj category over the patients in set Pj . 3j is
given as 3j= {31

j ,3
2
j , . . . ,3

n
j }. It is to be noted that the allocation of the

doctors to the patients for category ci under consideration is captured by the
allocation function Ai: � × 3 → Pi × Di. The resulting allocation vector is

given as A = {A1,A2, . . . ,Ak}; where each ailm ∈ Ai is a pair {p~k

i(l), d
Hj

i(m)}. The

matching between the patients and doctors for any category ci is captured by
the mapping function M : Pi ∪Di →Di ∪Pi.

3 Required definitions

Definition 1. Blocking pair: Fix a category ck. We say that a pair p~t

k(i) and

dH`

k(j) form a blocking pair for matching M, if the following three conditions

holds: (i) M(p~t

k(i)) 6= dH`

k(j), (ii) dH`

k(j) �k
i M(p~t

k(i)), and (iii) p~t

k(i) 3
j
k M(dH`

k(j)).

Definition 2. Stable matching: Fix a category ck. A matching M is stable
if there is no pair p~t

k(i) and dH`

k(j) such that it satisfies the conditions mentioned

in (i)-(iii) in Definition 1.

Definition 3. Perfect matching: Fix a category ck. A matching M is perfect
matching if there exists one-to-one matching between the members of Pk and
Dk.

Definition 4. Patient-optimal stable allocation: Fix a category ck. A match-
ing M is patient optimal, if there exists no stable matching M′ such that
M′(p~t

k(j)) �k
j M(p~t

k(j)) or M′(p~t

k(j)) =k
j M(p~t

k(j)) for at least one p~t

i(j) ∈ Pi.

Similar is the situation for doctor-optimal stable allocation.

Definition 5. Strategy-proof for requesting party: Fix a category ck. Given
the preference profile �k and 3k of the patients and doctors in ck category, a
mechanism M is strategy-proof (truthful) for the requesting party if for each
members of the requesting party Ak is preferred over Âk; where Âk is the allo-
cation when at least one member in requesting party is misreporting.

4 Proposed mechanisms

The idea behind proposing randomized mechanism i.e. RAMHECs is to bet-
ter understand the more robust and philosophically strong optimal mechanism



TOMHECs. The further illustration of the mechanisms are done under the con-
sideration that patient party is requesting. Moreover, one can utilize the same
road map of the mechanisms by considering doctors as the requesting party. This
can easily be done by just interchanging their respective roles in the mechanisms.

4.1 RAMHECs

The idea lies behind the construction of initialization phase is to handle the
system consisting of k different categories. The detailed algorithm is depicted in
Algorithm 1.

Algorithm 1 RAMHECs (D, P , C, �, 3)

Output: A = {A1,A2, . . . ,Ak}
1: begin

/* Initialization phase */
2: A← φ
3: for each ci ∈ C do
4: k ← 0, i ← 0, d∗ ← φ, p∗ ← φ, Ai ← φ, P∗ ← φ, D∗ ← φ
5: i ← select(P) . Return the index of patient from patient set.
6: P∗ ← Pi

7: i ← select(D) . Return the index of doctor from doctor set.
8: D∗ ← Di

/* Allocation phase */
9: while |Ai| 6= min{m, n} do . m and n are the no. of doctors and patients.

10: t← rand(P∗) . Return index of randomly selected patient.
11: p∗ ← p

~k
i(t)

12: k ← rand(�i
t, D∗) . Return index of random doctor from patient t list.

13: d∗ ← d
H`
i(k)

14: Ai ← Ai ∪ {(p∗, d∗)}
15: Pi ← Pi \ p∗ . Remove the allocated patient from available patient list.
16: Di ← Di \ d∗ . Remove the allocated doctor from available doctor list.
17: end while
18: A ← A ∪ Ai

19: end for
20: return A
21: end

Upper bound analysis of RAMHECs The overall running time of RAMHECs
is O(1) +O(kn) = O(kn) if m = n.

4.2 TOMHECs

Our main focus is to propose a mechanism that satisfy the two important eco-
nomic properties: truthfulness, and optimality. The proposed mechanism is mo-
tivated by [21, 22, 25, 26]. The detailed algorithm is depicted in Algorithm 2.



Algorithm 2 TOMHECs (D, P , C, �, 3)

Output: A = {A1,A2, . . . ,Ak}
1: begin

/* Initialization phase */
2: i ← 0, A← φ

/* Allocation phase */
3: for each ci ∈ C do
4: Ai ← φ
5: i ← select(P) . Return the index of patient from patient set.
6: P∗ ← Pi

7: i ← select(D) . Return the index of doctor from doctor set.
8: D∗ ← Di

9: for each d
Hk
i(j) ∈ D

∗ do

10: Π(d
Hk
i(j))← φ . Π(d

Hk
i(j)) keeps track of set of p

~k
i(j) ∈ Pi requesting to d

Hk
i(j).

11: end for
12: while |Ai| 6= min{m, n} do . m and n are the no. of doctors and patients.
13: for each free patient p

~k
i(j) ∈ Pi do

14: d∗ ← select most preferred doctor from �i
j not approached till now.

15: Π(d∗)← Π(d∗) ∪ p~ki(j)
16: end for
17: for each engaged doctor d

Hk
i(j) ∈ Di do

18: if |Π(d
Hk
i(j))| > 1 then

19: p∗ ← select best(3j
i , Π(d

Hk
i(j))) . Selecting the best patient among

the multiple requests to the doctor d
Hk
i(j).

20: if (p
~k
i(j), d

Hk
i(j)) ∈ Ai and p∗ 3j

i p
~k
i(j) then

21: Ai ← Ai \ (p
~k
i(j), d

Hk
i(j)) . Removes the already allocated less

preffered patient to d
Hk
i(j) from Ai.

22: Ai ← Ai ∪ (p∗, d
Hk
i(j))

23: Π(d
Hk
i(j)) ← Π(d

Hk
i(j)) \Π(d

Hk
i(j))− {p

∗}
24: else if (p

~k
i(j), d

Hk
i(j)) /∈ Ai then

25: Ai ← Ai ∪ (p∗, d
Hk
i(j))

26: Π(d
Hk
i(j)) ← Π(d

Hk
i(j)) \Π(d

Hk
i(j))− {p

∗}
27: end if
28: else if |Π(d

Hk
i(j))| == 1 then

29: if (Π(d
Hk
i(j)), d

Hk
i(j)) /∈ Ai then

30: Ai ← Ai ∪ (Π(d
Hk
i(j)), d

Hk
i(j))

31: end if
32: end if
33: end for
34: end while
35: A ← A ∪ Ai

36: end for
37: return A
38: end



Running time The total running time of TOMHECs is given as: T (n) =∑k
i=1(O(1) + (

∑n
i=1O(n))) = O(kn2) if m = n.

Correctness of the TOMHECs The correctness of the TOMHECs is proved
with the loop invariant technique [23, 24]. For simplicity, the correctness is
shown for the case with n patients and n doctors. In the similar fashion, one
can interrogate the case with n patients and m doctors such that m 6= n. The
loop invariant : Fix a category ci. At the start of `th iteration of the while loop,
the number of patient-doctor pairs held by Ai is given as: | ∪`−1

j=1 A′j |, where A′j
is the net patient-doctor pairs temporarily maintained in the set A′j at the jth

iteration. So, now n− | ∪`−1
j=1 A′j | number of patients or doctors (whomsoever is

greater) are to be explored in further iterations. From the construction of the
TOMECs after any `th iteration 0 ≤ n−|∪`i=1A′j | ≤ n holds; where 1 ≤ ` ≤ n2.

Hence, inequality 0 ≤ n − | ∪`i=1 A′j | ≤ n is always true. We must show three
things for this loop invariant to be true.
Initialization: It is true prior to the first iteration of the while loop. Just before
the first iteration of the while loop, the inequality 0 ≤ n − | ∪`i=1 A′j | ≤ n boils
down to 0 ≤ n− 0 ≤ n ⇒ 0 ≤ n ≤ n i.e. Ai ← φ.
Maintenance: For the loop invariant to be true, if it is true before each iteration
of the while loop, it remains true before the next iteration of the while loop.
In each iteration of the while loop, the cardinality of Ai is either incremented
by some amount or remains similar to previous iteration. Just before the `th

iteration the patient-doctor pairs temporarily added to Ai are ∪`−1
i=1A′j . So, the

number of patient-doctor pairs that are left is given by inequality: 0 ≤ n −
| ∪`−1

i=1 A′j | ≤ n. After the (` − 1)th iteration, the remaining patient-doctor pair

n− | ∪`−1
i=1 A′j | ≥ 0 can be captured by two cases:

Case 1: If |Ai| = n: This case will lead to exhaust all the remaining patient-
doctor pair in the current `th iteration and no patient-doctor pair is left for the
next iteration. The inequality n− (| ∪`−1

i=1 A′i ∪A′`|) = n− (| ∪`i=1A′i|) = n− |Ai|
= 0. Hence, it means that all the remaining patient-doctor is absorbed in this
iteration and no patient-doctor pair is left for processing.
Case 2: If |Ai| < n: This case captures the possibility that there may be the
scenario when few patient-doctor pairs from the remaining patient-doctor pairs
may still left out; leaving behind some of the pairs for further iterations. So, the
inequality n− (| ∪`−1

i=1 A′i ∪A′`|) > 0 ⇒ n > n− (| ∪`i=1A′i|) > 0 is satisfied. From
Case 1 and Case 2, at the end of `th iteration the loop invariant is satisfied.
Termination: In each iteration, the cardinality of Ai is either incremented by
some amount or remains as the previous iteration. This indicates that at some
`th iteration the loop terminates when |Ai| = n. We can say n − | ∪`i=1 A′i| =
0⇒ 0 ≤ n. Thus, this inequality indicates that all the n patient and doctors in
ci category are processed.
If the TOMHECs is true for the ci ∈ C category it will remain true when all
category in C taken simultaneously. Hence, the TOMHECs is correct.



Illustrative example For understanding purpose, let the category be c3 (say
eye surgery). The set of patients is given as: P3 = {p~2

3(1), p
~3

3(2), p
~4

3(3), p
~1

3(4)}. The

set of available doctors is given as: D3 = {dH3

3(1), d
H1

3(2), d
H4

3(3), d
H2

3(4)}. The preference

profile of patient set P3 is given as: p~2

3(1) = [dH2

3(4) �3
1 d
H4

3(3) �3
1 d
H3

3(1) �3
1 d
H1

3(2)], p
~3

3(2)

= [dH4

3(3) �3
2 d
H2

3(4) �3
2 d
H1

3(2) �3
2 d
H3

3(1)], p
~4

3(3) = [dH2

3(4) �3
3 d
H1

3(2) �3
3 d
H3

3(1) �3
3 d
H4

3(3)],

p~1

3(4) = [dH1

3(2) �3
4 dH4

3(3) �3
4 dH2

3(4) �3
4 dH3

3(1)]. Similarly, the preference profile of

doctor set D3 is given as: dH3

3(1) = [p~2

3(1) 31
3 p~3

3(2) 31
3 p~1

3(4) 31
3 p~4

3(3)], d
H1

3(2) =

[p~3

3(2) 3
2
3 p

~1

3(4) 3
2
3 p

~2

3(1) 3
2
3 p

~4

3(3)], d
H4

3(3) = [p~4

3(3) 3
3
3 p

~2

3(1) 3
3
3 p

~3

3(2) 3
3
3 p

~1

3(4)], d
H2

3(4)

= [p~1

3(4) 34
3 p

~4

3(3) 34
3 p

~2

3(1) 34
3 p

~3

3(2)]. Each of the patients p~2

3(1), p
~3

3(2), p
~4

3(3), and

p~1

3(4) are requesting to the most preferred doctor from their respective preference

list i.e. dH2

3(4), d
H4

3(3), d
H2

3(4), and dH1

3(2) respectively. In the next step, we will check

if any requested doctor among dH3

3(1), d
H1

3(2), d
H4

3(3), and dH2

3(4) has got the multiple

request from the patients in P3. The competitive environment between patient
p~2

3(1), and p~4

3(3) can be resolved by considering the strict preference ordering of

doctor dH2

3(4) over the available patients in P3. From the strict preference ordering

of doctor dH2

3(4) it is clear that patient p~4

3(3) is preferred over patient p~2

3(1). Hence,

patient p~2

3(1) is rejected. So, for the meanwhile p~3

3(2) gets a doctor dH4

3(3), p
~4

3(3) gets

a doctor dH2

3(4), and p~1

3(4) gets a doctor dH1

3(2). Now, as the patient p~2

3(1) do not

get his/her (henceforth his) most preferred doctor i.e. dH2

3(4) from his preference

list. So, he will request the second best doctor i.e. dH4

3(3) from his preference

list. In the similar fashion, the remaining allocation is done. The final allocation
is:{(p~2

3(1), d
H4

3(3)), (p
~3

3(2), d
H3

3(1)), (p
~4

3(3), d
H2

3(4)), (p
~1

3(4), d
H1

3(2))}.

4.3 Several properties

The proposed TOMHECs has several compelling properties. These properties
are discussed next.

Proposition 1. The matching computed by the Gale-Shapley mechanism [21,
22, 27] results in a stable matching.

Proposition 2. A stable matching computed by Gale-Shapley mechanism [21,
22, 27] is requesting party optimal.

Proposition 3. Gale-Shapley mechanism [21, 22, 27] is truthful for the re-
questing party.

Following the above mentioned propositions and motivated by [21, 22, 27] we
are proving that the TOMHECs results in stable, optimal, and truthful allocation
for ci category. Our proof holds when all the k different categories are taken
simultaneously.



Lemma 1. TOMHECs results in a stable allocation for the requesting party
(patient party or doctor party).

Proof. Fix a category ci ∈ C. Let us suppose for the sake of contradiction there
exists a blocking pair (p~k

i(j), d
Hl

i(j)) that results in an unstable matching M for

the requesting party. As their exists a blocking pair (p~k

i(j), d
Hl

i(j)) it may be due

to the case that (p~k

i(j), d
Hj

i(k)) and (p
~j

i(k), d
Hl

i(j)) are their in the resultant matching

M. This situation will arise only when dHl

i(j) �i
j d
Hj

i(k) i.e. in the strict preference

ordering of patient p~k

i(j) doctor dHl

i(j) is preferred over doctor d
Hj

i(k). From the

matching result M obtained, it can be seen that in-spite the fact that dHl

i(j) �i
j

d
Hj

i(k); d
Hl

i(j) is not matched with p~k

i(j) by the TOMHECs. So, this upset may

happen only when doctor dHl

i(j) received a proposal from a patient p
~j

i(k) to whom

dHl

i(j) prefers over p~k

i(j) i.e. p
~j

i(k) 3
j
i p

~k

i(j). Hence, this contradicts the fact that the

(p~k

i(j), d
Hl

i(j)) is a blocking pair. As their exists no blocking pair, it can be said that

the resultant matching by TOMHECs is stable.

Lemma 2. A stable allocation resulted by TOMHECs is requesting party (patient
or doctor) optimal.

Proof. Fix a category ci. Let us suppose for the sake of contradiction that the
allocation set M obtained using TOMHECs is not an optimal allocation for
requesting party (say patient party). Then, from Lemma 1 there exists a stable
allocation M′ such that M′(p~k

i(j)) �i
j M(p~k

i(j)) or M′(p~k

i(j)) =i
j M(p~k

i(j)) for

at least one patient p~k

i(j) ∈ Pi. Therefore, it must be the case that, some patient

p~k

i(j) proposes to M′(p~k

i(j)) before M(p~k

i(j)) since M′(p~k

i(j)) �
j
i M(p~k

i(j)) and is

rejected by M′(p~k

i(j)). Since doctor M′(p~k

i(j)) rejects patient p~k

i(j), the doctor

M′(p~k

i(j)) must have received a better proposal from a patient p
~j

i(k) to whom

doctor M′(p~k

i(j)) prefers over p~k

i(j) i.e. p
~j

i(k) 3j
i p~k

i(j). Since, this is the first

iteration at which a doctor rejects a patient under M′. It follows that the
allocation M is preferred over allocation M′ for the patient p~k

i(j). Hence, this

contradicts the fact that the allocation set M obtained using TOMHECs is not
an optimal allocation. As their exists an optimal allocation M.

Lemma 3. A stable allocation resulted by TOMHECs is requesting party (patient
or doctor) truthful.

Proof. Fix a category ci. Let us suppose for the sake of contradiction that the
matching set M obtained using TOMHECs is not a truthful allocation for re-
questing party (say patient party). The TOMHECs results in stable matching
M when all the members of the proposing party reports their true preferences.
Now, let’s say a patient p~k

i(j) misreport his preference list �i
j and getting better

off in the resultant matching M′. Let P ′i be the set of patients who are getting



better off in M′ as against M. Let D′i be the set of doctors matched to patients
in P ′i in matching M′. Let dH`

i(k) be the doctor that p~k

i(j) gets in M′. Since M is

stable, we know that dH`

i(k) cannot prefer p~k

i(j) to the patient got in M, because

this would make (p~k

i(j), d
H`

i(k)) a blocking pair in M (see Lemma 1). In other

words, doctor M(dH`

i(k)) 3k
i p

~k

i(j). Now, if M(dH`

i(k)) patient would not improve

in M′ then M(dH`

i(k)) 3k
i p

~k

i(j). Hence, dH`

i(k) can not be matched with p~k

i(j) in

M′, a contradiction. Therefore, patient in M also improves in M′. That is, D′i
is not the only set of doctors in M′ of those patient who are getting better off
in M; but also the set of doctors where patient in M improve in M′. In other
words, each doctor in Di is matched to two different patient from Pi in match
M and M′, being better off in M than in M′. It can also be proved using
Lemma 1 that M′ is not stable; a contradiction that terminates the proof.

5 Further analytics-based analysis

In order to provide sufficient reasoning to our simulation results presented in
section 6, the two proposed mechanisms are in general analyzed on the ground
of the expected distance of allocation done by the mechanisms from the top
most preference. As a warm up, first the the analysis is done for any patient
j, to estimate the expected distance of allocation from the top most preference.
After that the analysis is extended to more general setting where all the patients
present in the system are considered. It is to be noted that the results revealed
by the simulations can easily be verified by the lemmas below.

Lemma 4. The allocation resulted by RAMHECs for any patient (or doctor) j
being considered first is on an average n

2 distance away from its most preferred
doctor (or patient) i.e. E[Z] ' n

2 ; where Z is the random variable measuring the
distance from the top most preference.

Proof. Fix a category ci ∈ C, and an arbitrary patient j being considered first.
In RAMHECs, for any arbitrary patient (AP) being considered first are allotted
a random doctor from his preference list. The index position of the doctor in
the preference list is decided by k, where k = 1, 2, . . . , n. Now, when a doctor
is selected randomly from the preference list any of these k (1 ≤ k ≤ n) may
be selected. So any index k could be the outcome of the experiment (allocation
of a doctor) and it is to be noted that selection of any such k is equally likely.
Therefore, for each k such that 1 ≤ k ≤ n any kth doctor can be selected with
probability 1

n . For k = 1, 2, . . . , n, we define indicator random variable Xk where
Xk = I{kth doctor selected from patients′ preference list}. Here, Xk = 1 if
kth doctor is selected and 0 otherwise.

E[Xk] = E[I{kth doctor selected from patients′ preference list}]
As always with the indicator random variable, the expectation is just the prob-
ability of the corresponding event [23]:

E[Xk] = 1 · Pr{Xk = 1}+ 0 · Pr{Xk = 0} = 1 · Pr{Xk = 1} =
1

n



For a given call to RAMHECs, the indicator random variable Xk has the value
1 for exactly one value of k, and it is 0 for all other k. For Xk = 1, we can
measure the distance of kth allocated doctor from the most preferred doctor in
the patient j ’s preference list. So, let dk be the distance of kth allocation from
the best preference. More formally, it can be represented in the case analytic
form as:

Z =


d0 : If 1st agent is selected from the preference list (k = 1)

d1 : If 2nd agent is selected from the preference list (k = 2)
...

...

dn−1 : If nth agent is selected from the preference list (k = n)

Where Z is the random variable measuring the distance of the allocation from the
patient’s top most preference. Here, d0 = 0, d1 = 1, d2 = 2, . . ., dn−1 = n − 1.
It is to be observed that, once the doctor k is selected from the patient j ’s
preference list, the value calculation of dk is no way dependent on k. Now, observe
that the random variable Z that we really care about can be formulated as:
Z =

∑n
k=1Xk · dk−1.

E[Z] = E

[
n∑

k=1

Xk · dk−1

]
=

n∑
k=1

E[Xk · dk−1] =

n∑
k=1

E[Xk] · E[dk−1]

=

n∑
k=1

1

n
·E[dk−1] =

1

n

n∑
k=1

E[dk−1] =
1

n

n∑
k=1

dk−1 =
1

n
· (n− 1)(n)

2
=

(n− 1)

2
' n

2

as claimed.

Lemma 5. In RAMHECs, E[D] ' n2

16 ; where D is the total distance of all the
patients in the system from the top most preference.

Proof. Fix a category ci ∈ C. We are analysing, the expected distance of the
allocations done to the patients by RAMHECs from the top most preferences. For
this purpose, as there are n patients, the index of these patients are captured by
i such that i = 1, 2, . . . , n. Without loss of generality, the patients are considered
in some order. The index position of the doctor in any patient j ’s preference list
is decided by k, where k = 1, 2, . . . , n. For any patient i (1 ≤ i ≤ n) selected
first, when a doctor is selected randomly from the preference list any of the
available k (1 ≤ k ≤ n) doctors can be selected. So, any index k could be the
outcome of the experiment (allocation of doctor) and any such k is equally likely.
But what could the case, if instead of considering the patient in the first place,
say a patient is selected in ith iteration. In that case, from the construction of
RAMHECs the length of the preference list of the patient under consideration
would be n− i+ 1. So, when a doctor is selected randomly from the preference
list, any of the (n − i + 1) doctors may be selected. It is to be noted that the
selection of any of the (n−i+1) doctors is equally likely. Therefore, for a patient
under consideration in ith iteration, for each k such that 1 ≤ k ≤ n−i+1 any kth



doctor can be selected with probability 1
n−i+1 . Here, we are assuming that each

agent’s top preferences are still remaining when that agent is considered by the
RAMHECs. To get the lower bound this is the best possible setting. If an agent
is not provided that list, he will be further away from his top most preference.
For each patient i and for k = 1, 2, . . . , n, we define indicator random variable
Xik where Xik = I{kth doctor selected from patient i′s preference list}. Here,
Xik = 1 if kth doctor is selected from patient i’s preference list and 0 otherwise.

E[Xik] = E[I{kth doctor selected from patient i preference list}]

As always with the indicator random variable, the expectation is just the prob-
ability of the corresponding event:

E[Xik] = 1 · Pr{Xik = 1}+ 0 · Pr{Xik = 0} = 1 · Pr{Xik = 1} =
1

n− i+ 1

For a given call to RAMHECs, the indicator random variable Xik has the value
1 for exactly one value of k, and it is 0 for all other k. For Xik = 1, we can
measure the distance of kth allocated doctor from the most preferred doctor in
the patient j ’s preference list. So, let dik be the distance of kth allocation from
the best preference. More formally, it can be represented in the case analytic
form as:

D =


di0 : If 1st agent is selected from the preference list (k = 1)

di1 : If 2nd agent is selected from the preference list (k = 2)
...

...

di(n−1) : If nth agent is selected from the preference list (k=n)

Where D is the total distance of all the patients in the system from the top
most preference. It is to be observed that, once the doctor k is selected from the
patient j ’s preference list, the value calculation of dk is no way dependent on k.
Now, observe that the random variable D that we really care about is given as:
D ≥∑n

i=1

∑n−i+1
k=1 Xik · dik.

= E[D] ≥ E[

n∑
i=1

n−i+1∑
k=1

Xik·dik] =

n∑
i=1

n−i+1∑
k=1

E[Xik·dik] =

n∑
i=1

n−i+1∑
k=1

E[Xik]·E[dik]

=

n∑
i=1

n−i+1∑
k=1

1

n− i+ 1
· dik ≥

n∑
i=1

n−i+1∑
k=1

1

n
· dik =

1

n

n∑
i=1

n−i+1∑
k=1

dik

=
1

n

[ n
2∑

i=1

n−i+1∑
k=1

dik +

n∑
i= n

2

n−i+1∑
k=1

dik

]
≥ 1

n

[ n
2∑

i=1

n−i+1∑
k=1

dik

]
+

[
n∑

i= n
2

n−i+1∑
k=1

0

]

≥ 1

n

[ n
2∑

i=1

n−i+1∑
k= n

2

dik

]
≥ 1

n

[ n
2∑

i=1

n−i+1∑
k= n

2

din
2

]
=

1

n

[ n
2∑

i=1

n−i+1∑
k= n

2

n

2

]
=

1

2

[ n
2∑

i=1

n−i+1∑
k= n

2

1

]



≥
(

1

2

n
2∑

j=1

j

)
− 1 =

1

2

[
n
2 (n

2 + 1)

2

]
− 1 =

n2 + 2n− 16

16
' n2

16

as claimed. It is to be observed that for each agent, the expected distance of
allocation done by RAMHECs from the top preference in an amortized sense is
n
16 .

Lemma 6. The expected number of rejections for any arbitrary patient (or doc-
tor) j resulted by TOMHECs is constant. If the probability of any k length re-
jection is considered as 1

2 i.e. Pr{Yk = 1} = 1
2 then E[Y ] = 2; where Y is the

random variable measuring the total number of rejections made to the patient
(or doctor) under consideration.

Proof. Fix a category ci ∈ C, and an arbitrary patient j. To analyze the ex-
pected number of rejections suffered by the patient under consideration in case
of TOMHECs, we capture the total number of rejections done to any patient j
by a random variable Y . So, the expected number of rejections suffered by any
patient j is given as E[Y ]. It is considered that the rejection by any member
k = 0, . . . , n− 1, present on the patients’ j preference list is an independent ex-
periment. It means that, the m length rejections suffered by an arbitrary patient
j is no way dependent on any of the previous m−1 rejections. Let us suppose for
each 0 ≤ k ≤ n − 1, the probability of rejection by any kth doctor be 1

2 (it can
be any value between 0 and 1 depending on the scenario). For k = 0, . . . , n− 1,
we define indicator random variable Yk where Yk = I{k length rejection}. Here,
Yk is if k length rejection and 0 otherwise.

E[Yk] = E[I{k length rejection}]

As always with the indicator random variable, the expectation is just the prob-
ability of the corresponding event:

E[Yk] = 1 · Pr{Yk = 1}+ 0 · Pr{Yk = 0} = 1 · Pr{Yk = 1} =

(
1

2

)k

Observe that the random variable Y that we really care about is given by
Y =

∑n−1
k=0 Yk.

E[Y ] = E

[
n−1∑
k=0

Yk

]
=

n−1∑
k=0

E[Yk] =

n−1∑
k=0

(
1

2

)k

<

∞∑
k=0

(
1

2

)k

=
1

1− ( 1
2 )

= 2

as claimed. Moreover, if we consider the probability of kth rejection as 2
3 then,

the expected number of rejections will be given as 3 i.e E[Y ] = 3. Similarly,
E[Y ] = 10 if the probability of kth rejection is taken as 9

10 . It means that, even
with the high probability of rejection to any arbitrary patient j by the members
of the proposed party, there is a chance that after constant number of rejections
patient j will be allocated a good doctor according to his choice. Hence, we can
say that each agent’s allocation is not far away from his top most preference.



Lemma 7. In TOMHECs, E[R] = 2n, where R is the random variable measur-
ing the total number of rejections made to all the patients.

Proof. Fix a category ci ∈ C. We are analysing the total number of rejections
suffered by all the patients in expectation. For this purpose, as there are n
patients, the index of these patients are captured by i such that i = 1, 2, . . . , n.
The index position of the doctor in any patient j′s preference list is decided
by k, where k = 1, 2, . . . , n. We capture the total number of rejections done
to all patients by a random variable R. So, the expected number of rejections
suffered by all the patients is given as E[R]. It is considered that the rejection
by any member k = 1, . . . , n− 1, present on the patients’ i preference list is an
independent experiment. It means that, the m length rejections suffered by an
arbitrary patient i is no way dependent on any of the previous m− 1 rejections.
Let us suppose for each patient i and for each 1 ≤ k ≤ n− 1, the probability of
rejection by any kth doctor be 1

2 (it can be any value between 0 and 1 depending
on the scenario). For k = 1, . . . , n− 1, we define indicator random variable Rik

where Rik = I{k length rejection ofith patient}. Here, Rik = 1 if k length
rejection of ith patient and 0 otherwise.

E[Rik] = E[I{k length rejection of ith patient}]
As always with the indicator random variable, the expectation is just the prob-
ability of the corresponding event:

E[Rik] = 1 · Pr{Rik = 1}+ 0 · Pr{Rik = 0} = 1 · Pr{Rik = 1} =

(
1

2

)k

Observe that the random variable R that we really care about is given as
R =

∑n
i=1

∑n−i
k=1Rik.

E[R] = E

[
n∑

i=1

n−i∑
k=1

Rik

]
=

n∑
i=1

n−i∑
k=1

E[Rik] =

n∑
i=1

n−i∑
k=1

(
1

2

)k

<

n∑
i=1

∞∑
k=0

(
1

2

)k

=

n−1∑
k=0

1

1− ( 1
2 )

= 2n

as claimed.

Corollary 1. It is to be observed that for each patient, the expected number
of rejections in case of TOMHECs in an amortized sense is O(1). As we have
shown that for all n agents, the expected number of rejection are O(n).

6 Experimental findings

The experiments are carried out in this section to compare the efficacy of the
TOMHECs based on the preference lists of the doctors and patients generated
randomly using Random library in Python. RAMHECs is considered as the
benchmark mechanism.



6.1 Simulation setup

For creating a real world healthcare scenario we have considered 10 different cat-
egories of patients and doctors for our simulation purpose. One of the scenarios
that is taken into consideration is, say there are equal number of patients and
doctors present in each of the categories. Each of the members of participating
communities are providing strict preference over all the members of the opposite
community. In second scenario with m = n case, each of the members in the
respective parties are providing the strict preference ordering over the subset of
the members of the opposite community.

6.2 Performance metrics

The efficacy of TOMHECs is measured under the banner of two important pa-
rameters: (a) Satisfaction level (η`): It is defined as the sum over the difference
between the index of the doctor (patient) allocated from the patient’s (doctor’s)
preference list to the index of the most preferred doctor (patient) by the patient

(doctor) from his/her preference list. Considering the requesting party, the ηj
`

for cj category is defined as: ηj
` =

∑n
i=1

(
ξi − ξi

)
; where, ξi is the index of

the doctor (patient) allocated from the initially provided preference list of the
patients (doctors) i, and ξi is the index of the most preferred doctor (patient)
in the initially provided preference list of patient (doctor) i. For k categories,

η` =
∑k

j=1

∑n
i=1

(
ξi − ξi

)
. It is to be noted that lesser the value of satisfac-

tion level higher will be the satisfaction of patients or doctors. (b) Number
of preferable allocation (ζ): The term ”preferable allocation” refers to the
allocation of most preferred doctor or patient from the revealed preference lists
by the patients or the doctors respectively. For a particular patient or doctor the
preferable allocation is captured by the function f : Pi → {0, 1}. For the cate-
gory ci, the number of preferable allocation (NPA) is defined as the number of
patients (doctors) getting their first choice from the initially provided preference

list. So, ζi =
∑n

j=1 f(p~`

i(j)). For k categories ζ =
∑k

i=1

∑n
j=1 f(p~`

i(j)).

6.3 Simulation directions

The three directions are seen for measuring the performance of TOMHECs,
they are: (1) All the patients and doctors are reporting their true preference
list. (2) When fraction of total available members of the requesting party are
misreporting their preference lists. (3) When fraction of total available members
of the requested party are misreporting their preference lists.

6.4 Result analysis

In this section, the result is simulated for the above mentioned three directions
and discussed. Our result analysis is broadly classified into two categories:



Expected amount of patients/doctors deviating The following analysis
motivated by [23] justifies the idea of choosing the parameters of variation. Let
χj be the random variable associated with the event in which jth patient in ci
category varies its true preference ordering.

Table 1: Abbreviations used in simulation

Abbreviation Description

RAMHECs-P Patients allocation using RAMHECs without variation.

TOMHECs-P Patients allocation using TOMHECs without variation.

RAMHECs-D Doctors allocation using RAMHECs without variation.

TOMHECs-D Doctors allocation using TOMHECs without variation.

TOMHECs-PS Patients allocation using TOMHECs with small variation.

TOMHECs-DS Doctors allocation using TOMHECs with small variation.

TOMHECs-PM Patients allocation using TOMHECs with medium variation.

TOMHECs-DM Doctors allocation using TOMHECs with medium variation.

TOMHECs-PL Patients allocation using TOMHECs with large variation.

TOMHECs-DL Doctors allocation using TOMHECs with large variation.

Thus, χj = {jth patient varies preference ordering}. χ =
∑n

j=1 χj . We can write

E[χ] =
∑n

j=1E[χj ] =
∑n

j=1 1/8 = n/8. Here, Pr{jth patient varies preference
ordering} is the probability that given a patient whether he will vary his true
preference ordering. The probability of that is taken as 1/8 (small variation).
• Case 1: Requesting party with full preference (FP) and partial pref-
erence (PP) In Fig. 2a, Fig. 2b and Fig. 3a, Fig.3b, the η` and ζ of the
requesting party respectively are more for TOMHECs. Further, it is seen that
higher the manipulation lower will be the η` and ζ for the requesting party in
case of TOMHECs.
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Fig. 2: η` of requesting party with FP (m == n)



 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500

N
u

m
b

e
r 

o
f 

p
re

fe
ra

b
le

 a
llo

c
a

ti
o

n

Number of Agents

RAMHECs-P

TOMHECs-P

TOMHECs-PS

TOMHECs-PM

TOMHECs-PL

(a) ζ of patients

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500

N
u

m
b

e
r 

o
f 

p
re

fe
ra

b
le

 a
llo

c
a

ti
o

n

Number of Agents

RAMHECs-D

TOMHECs-D

TOMHECs-DS

TOMHECs-DM

TOMHECs-DL

(b) ζ of doctors

Fig. 3: ζ of requesting party with FP (m == n)
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(b) η` of doctors

Fig. 4: η` of requesting party with PP ( m == n)
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Fig. 5: ζ of requesting party with PP (m == n)



Similar argument can be given for the partial preference case shown in Fig. 4a,
Fig. 4b and Fig. 5a, Fig. 5b.
• Case 2: Requested party with full preference (FP) and partial pref-
erence (PP) In Fig. 6a, Fig. 6b and Fig. 7a, Fig. 7b, the η` and ζ of the
requesting party respectively are more for TOMHECs. Further, it is seen that
higher the manipulation lower will be the η` and ζ for the requesting party in
case of TOMHECs.
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Fig. 6: η` of requested party with FP (m == n)
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Fig. 7: ζ of requested party with FP (m == n)

Similar argument can be given for the partial preference case shown in Fig.
8a, Fig. 8b and Fig. 9a, Fig. 9b.
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Fig. 8: η` of requested party with PP (m == n)
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Fig. 9: ζ of requested party with PP (m == n)

7 Conclusions and future works

We have tried to model the ECs hiring problem as a two sided matching problem
in healthcare domain. This paper proposed an optimal and truthful mechanism,
namely TOMHECs to allocate the ECs to the patients. The immediate future
work could be the more general setting with n patients and m doctors (m 6= n or
m == n). In this, the additional constraint is that, the members of the patient
party and doctor party can provide the preference ordering (not necessarily strict)
over the subset of the members of the opposite party.
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