
Improving trimAl ability to cope with heterogeneous
multiple sequence alignments.

Víctor Fernández-Rodríguez#1,,, Toni Gabaldón#3,4,5, Salvador Capella-Gutierrez#2
#1,2 Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.

1victor.fernandez@bsc.es, 2salvador.capella@bsc.es
#3Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain

#4 Universitat Pompeu Fabra (UPF), Barcelona, Spain
#5Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain

3toni.gabaldon@crg.eu

Keywords - Multiple Sequence Alignment, Alignment filtering, Phylogenetic analysis

EXTENDED ABSTRACT
Alignments of biological sequences, called Multiple

Sequence Alignments (MSA), are the entrypoint for many
biological applications including evolutionary studies.
However, the current algorithms used to reconstruct them tend
to minimize (or maximize) mathematical functions rather than
truly representing biological events. This is especially relevant
for highly variable sequences regions where the positional
homology is difficult to infer. This often tends to produce
MSAs with a high noise-to-signal ratio, which will be
eventually amplificated on downstream analyses that rely on
them.

Thus, MSAs refinement has become a common practice in
many biological domains. However, MSAs refinement
algorithms are not except of errors so further investigation is
needed making this area a very active research field.

Here we present a revisited version of trimAl, a popular
resource aiming to improve MSAs using manual and/or
automated methods. We will explain why is important to
refactor trimAl’s source code including issues found and
solutions applied. Finally we will introduce a set of new
functionality only achieved after improving the existing
source code.

A. Introduction
trimAl was born as a internal laboratory script, that grew
fast in functionality and code length. The original code
was written in C, and later moved to C++ to exploit the
Object Oriented Programming Paradigm (OOP).
The fast growth of the code, due to addition of new
functionality and lack of a project pre-production phase
led to a fully functional and almost bug-free but coupled
code with some evident issues.
For this reason, in the present document we explain
some relevant aspects of the refactoring step performed
and the results obtained through the process.

B. Format Machine State
We have implemented a machine state to load and save
MSAs in different formats, which allows to isolate the
format handling code from the rest of the program.
This new paradigm allows to remove and/or implement
new format handlers with ease, and also, allows the
community to provide their own format handlers.

C. Memory Improvement
The original implementation loaded into memory a copy
of the complete MSA each time any operation was
applied. This leads to have a high degree of redundancies
among loaded copies e.g. sequences names, metadata, etc.
Indeed, up to three MSAs containing subsets of the same
information are allocated at the same time in memory:
original alignment, so we can compare the result obtained
with the original; current alignment, the one that is being
processed at the current step, and the resulting alignment.
In the new implementation, we followed a different
memory management strategy, at a potential cost of
performance.
We have the data on memory once, and all copies would
point to that information and contain a pair of vectors
indicating if we would reject or keep specific columns
and/or sequences

D. Speed Improvement
One of the effects that highly coupled code had on the
original implementation was that some statistics were
computed more than once, increasing the time needed to
perform an analysis.
The new approach allowed us to detect and avoid
repeating calculations, and thus, reduce the time needed to
perform the same analysis, with the same results.

Fig.1. Time needed by the original and new implementations of trimAl using
the strict algorithm (the most consuming of the program).

E. Reporting Improvement
Reporting has been improved in several ways: Statistics

5th BSC Severo Ochoa Doctoral Symposium

28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

report has been eased visually, using the correct tabulation
and adding a header specifying the statistic being reported
and the original filename of the alignment which it is
extracted from.
More relevant is the new format for trimming reporting:
The original implementation outputted an HTML file with
a graphic visualization of the results of the trimming steps
and the statistics used to perform these steps.
This allows the user to have an insight of what was
removed and why.
The new format, SVG, allows faster load, and better
representation of the statistics, using a graph
approximation, where the original used categories.
This lead to a more informative reporting, and also, more
useful, as the report can be treated as a vectorial image,
allowing to cut and scale it as much as needed.

Fig.2. HTML version of the trimming report.

Fig.3. SVG version of the trimming report.

F. Error Reporter
Centralization and standardization of the errors and
warnings that we provide to the users was required, as
some problems had arisen from the lack of them.
These problems include reporting the same error with
different messages, which would lead to confusion to the
final user or having to do code scraping to find all the calls
to an error message that we would like to change.
An Error Reporter has been created, isolating the code of
error reporting from the rest of the code.
This allowed us to create a numbered list of errors, that
allows to a better understanding of the situations that may
arise from the use of the program.
It also allowed us to add a verbose option, allowing for
better reporting control to the end user.

G. Time Tracker
To have a better understanding of the flow performed by
the program, an auxiliary class has been implemented: the
Time Tracker.

This class tracks the calls to most of the methods in the
program, and outputs a tree where we can easily
understand which methods calls to others in a specific
execution, and calculate the time each method lasts,
including and excluding calls to other tracked methods.
This allows us to see if the program behaves exactly as
expected, and to pinpoint which methods are candidates to
optimization.
This functionality has been enhanced by adding the ability
to track memory before and after each method call. This
allows to have a better understanding of the memory
management on each method and globally.

H. Conclusion and Future Enhancement
Short-term future foresight includes containerization of the
binaries, a complete revamp of the suite website and the
extension to support Next Generation Sequencing (NGS)
data. In the long run, we will deeply analyse the existing
trimming algorithms to propose new ones, which can cope
with MSAs made up to ten of thousands of sequences. Any
newly developed method will be extensively benchmark to
ensure their scientific and technical relevance for current
and future end-users.

References
[1] Capella-Gutiérrez, S. & Gabaldón, T. Measuring

guide-tree dependency of inferred gaps in progressive
aligners. Bioinformatics 29, 1011–1017 (2013).

[2] Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón,
T. trimAl: a tool for automated alignment trimming in
large-scale phylogenetic analyses. Bioinforma. Appl.
NOTE 25, 1972–197310 (2009).

[3] Dessimoz, C. & Gil, M. Phylogenetic assessment of
alignments reveals neglected tree signal in gaps. Genome
Biol. 11, R37 (2010).

Author biography

Víctor Fernández was born in Valencia,
Spain, in 1992. He studied Biology in
Universitat de València, Burjassot, where
he developed an strong interest in genetics.
After his degree, he worked on a startup
developing video games, with the intention
of improving his programming abilities to

be able to obtain the maximum possible of his master’s degree
in bioinformatics.
Since November 2016 he has been enrolled in the
Bioinformatics and Biological Computation Master degree at
the Escuela Nacional de Sanidad (Madrid), and since July, he
is part of the team developing the new version of trimAl at the
BSC.

5th BSC Severo Ochoa Doctoral Symposium

29

