
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994 919

High-Radix Division and Square-Root
with Speculation

Jordi Cortadella and Tomis Lang

Abslract- The speed of high-radix digit-recurrence dividers
and square-root units is mainly determined by the complexity of
the result-digit selection. We present a scheme in which a simpler
function speculates the result digit, and, when this speculation
is incorrect, a rollback or a partial advance is performed. This
results in operations with a shorter cycle time and a variable
number of cycles. The scheme can be used in separate division
and square-root units, or in a combined one. Several designs
were d i e d and compared in terms of execution time and area.
The fastest unit considered is a radix-512 divider with a partial
advance of six bits.

Index Terms- Digital arithmetic, digit recurrence, division,
square-mot, variable-time operation

I. INTRODUCTION
OST implementations for the division and square- M root operations involve a recurrence in which one

digit of the result is produced per iteration [ll, [71, [121.
Consequently, to reduce the number of iterations, it is con-
venient to use a higher radix for the result digit. However, as
the radix increases, the added complexity of the result-digit
selection function increases the iteration delay and eliminates
the advantage. Because of this, implementations have used
radix-2 and radix-4 stages and higher radices are obtained
by unfolding these stages [9], [13]. Moreover, reductions
in time have been obtained by overlapping these unfolded
stages [13], [14]. To have higher radix implementations, it
is possible to use an arithmetic function for the result-digit
selection [l l] . Specifically, the result digit is obtained by
multiplying an estimate of the residual by an estimate of the
reciprocal of the divisor (or the square-root of the operand) and
rounding the result. However, the calculation of the reciprocal
approximation and the multiplication and rounding limits the
speedup achieved.

For division, one way that has been proposed to reduce
the complexity of the selection function is to prescale the
divisor (and the dividend) and then perform the quotient-digit
selection by rounding (see [7] for references). However, this
method is not easily extensible to square-roots [lo].

In this paper, we present and evaluate the idea of speculating
the result digit using a function that is simpler (i.e., has smaller
delay) than the result-digit selection function. This speculated

Manuscript received October 19, 1993; revised March 9, 1994. This work
was supported in part by the Ministry of Education of Spain under CICYT,

J. Cortadella is with the Department of Computer Architecture, Polytechnic
University of Catalonia, Barcelona 0807 1 Spain; e-mail: jordic@ac.upc.es.

T. Lang is with the Department of Electrical and Computer Engineering,
University of California, Irvine, CA 92717 USA.
IEEE Log Number 9403089.

TIC 91-1036.

digit is then used to continue with the algorithm. Another
function determines whether the speculation is incorrect, and,
in that case, the algorithm rolls back, the digit is corrected,
and the process continues from there. In a variation of this
scheme, we allow a partial advance of fewer bits than a full
digit when an incorrect speculation is performed.

Because of the possible rollbacks and partial advances, the
execution time is variable. Consequently, a unit of this type
is suitable when the rest of the system can make use of this
variable time. In particular, if the unit forms part of a general
purpose processor with several functional units, it is necessary
to have hardware support for control of dependencies. In the
evaluation, we determine the average execution time assuming
a uniform distribution of operands.

The effectiveness of an implementation depends on a variety
of factors, such as the time and cost of the speculation function,
the probability of correct speculation, the time and cost of error
detection, and the time for correction.

We develop the method and evaluate alternative possi-
bilities. We present some examples of implementations and
compare with the implementation of conventional algorithms
using the same technological consrraints.

For clarity in the exposition, we first consider division and
then extend the results to square-root and to a combined
implementation.

A. Division Algorithm and Notation

We how review very briefly the well-known division al-
gorithm, mainly to establish the notation used. We use the
following standard recurrence:

where w b] is the residual after the jth iteration, T is the radix,
qj+l is the new quotient digit, d is the divisor, and x is the
dividend. We assume that Z, d, and q are normalized fractions.

To have a fast iteration, a redundant adder is used. In
this paper, we use a carry-save adder, although a similar
development could be done for other redundant representations

The quotient digit is a signed digit 1qj+ll 5 a, with
redundancy factor p = u / (T - 1). This requires that w[O] 5 pd,
which is obtained by shifting the dividend. Moreover, for this
case, the convergence of the algorithm requires the residual to
be bounded so that

of wb].

The quotient digit q j + l is determined by a quotient-digit
selection function. This function depends on an estimate of

0018-9340/94$04.00 0 1994 IEEE

920 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

' 4 d^
-ad 0 ad Wbl

selection

digit

WU+l]
Fig. 1 . Iteration step of digit-recurrence division.

TABLE I
NWER OF BITS REQUIRED FOR QUOTIENT-DIGIT SELECTION

rwb!;rw

- n

spec I MUX+CSA I spec I MUX+CSA
I I check I -

cycle bounds
the residual and on an estimate of the divisor; that is,

qj+l = sel(G, 2). (2)
The conceptual implementation of one iteration step is shown
in Fig. 1.

Two ways of implementing the quotient-digit selection have
been proposed. In the most common, a table is constructed
specifying for each value of w and d a quotient-digit value
that satisfies the bound. The estimates are obtained by truncat-
ing the corresponding values. The number of bits of these
estimates required for correct selection increases with the
radix as shown in Table I. This lengthens the delay of the
implementation, so that practical implementations are limited
to radix 2, 4, and 8 stages.

A second and recent approach is practical for higher radices.
In it, the quotient digit is obtained by multiplying an estimate
of the residual by an approximation of the reciprocal of the
divisor and rounding the result [111. That is,

q2+1 = round(i(rw)), (3)
where 2 is an estimate of l /d . Although this can be imple-
mented for very high radices, the delay of the multiplication,
the rounding, and the decoding of the quotient digit in each
iteration may result in a limited speedup with respect to low-
radix designs.

11. SCHEME FOR DIVISION WITH SPECULATION
OF QUOTIENT DIGITS

We now describe the basic scheme (without partial advance)
and then introduce the partial advance.

A. Basic Scheme

The basic scheme is shown in Fig. 2. As mentioned in the
introduction, the quotient digit is speculated (how this is done
is described in the next section) and used in the recurrence to
produce the speculated next residual as follows (speculation
cycle):

w"[j + 11 = rwlj] - qj"+ld.

(b)
Fig. 2. Basic scheme. (a) Block diagram. (b) Timing diagram.

At the end of this speculation cycle, we decide whether the
speculated digit is correct by determining whether the residual
is inside the allowed bounds (see expression 1). If it is inside
the bounds, then

wb + 11 = w"[j + 11,

and the next iteration is performed. On the other hand, if the
residual is out of bounds, the quotient digit and the residual
have to be corrected. A correction cycle is performed as
follows:

In this case, the digit has the same weight as the digit
obtained in the speculation cycle, and thus the correct digit
is qJ+l = q,S+l + q,C+l. The amount of correction performed,
q;+l, is discussed in the next section. Consequently, when
there is an error (incorrect speculation), more than one cycle
is needed to obtain the correct quotient digit and the correct
next residual. As indicated in Fig. 2(b), the check for the bound
is overlapped with the speculation of the next quotient digit.

In Fig. 3, we show the timing diagram of an example
division, and, in Fig. 4, the quotient digits produced. As can
be seen, the cycle time for the division with digit speculation
is smaller than for the conventional case, because the com-
putation of the speculated digit is faster than the computation
of the correct digit. In the example, the first two speculated
digits are correct; the third digit is incorrect, producing a wg [3],
which is out of bounds. This results in a correction of 43 by
+ 1 and the corresponding correction of w s [3]. This correction
is sufficient, as indicated by the fact that the corrected residual
is inside the bounds. Then the next speculated digit is correct,
and, after that, another error is detected and corrected. In this
case, two cycles are required for the correction, because the

CORTADELLA AND LANG: HIGH-RADIX DIVISION

S I 7 1-2
C

921

-8 0 8
1 -1

Conv. I I I I I
I t i t i t i t '

7 -2 -7 0 6 2

I S 1 S l C l S l S l Spec.

7 -2 - 8 0 0 8 Dm 2

Fig. 3.
quotient-digit speculation (spec). S: Speculation cycle, C: Correction cycle.

Timing diagram for radix-I6 conventional division (conv.) and

7 1 - 2 1 - 7 1 0 1 6 1 2 Conv.

C I-11
Fig. 4.
speculation.

Quotient-digit generation for conventional division and quotient-digit

residual obtained after the first cycle of correction is still out
of bounds.

B. Scheme with Partial Advance

In the basic scheme presented, two situations can occur: Ei-
ther we advance one digit of the quotient (when the speculation
is correct), or we use the next cycle to correct the digit (no
advance). So, at least one complete additional cycle is required
to correct an incorrect speculation, even if the error is very
small. The corresponding delay is reduced by the scheme with
partial advance. In this scheme, when the error is small, a third
situation is allowed, namely, the advance of a number of bits
that is less than a whole digit. We call this partial advance.'

The amount of advance is selected so that the next residual
is bounded. That is, it is possible to advance log,p bits if

IPWS(I v d .

W S L + 11 = pwSL] - q;+&

The partial advance iteration is

where $+1 is the quotient digit speculated for partial advance.
With partial advance, there are three possible situations, as

follows:
Full advance if lwsl 5 pd
Partial advance of 10g2p bits if pd < lwsl 5 f p d . In this
case, as shown in Fig. 6(b), the digit q;+l has an overlap
of log, f bits with the previous digit.
No advance if lwSl > fpd.

In principle, it is possible to advance a variable number of
bits, depending on the amount of the error. However, to limit
the complexity of the implementation, we consider only cases
with a partial advance of a fixed number of bits. A block
diagram for this scheme is shown in Fig. 5. Note that two
different speculations are performed, depending on whether

' A variation on this idea was suggested to us by P. Montuschi.

FA / PA / correction cycle A 1

F A 1 1
PA partial advance

com anson

W S

Fig. 5 . Scheme with partial advance.

t l t i t ' t ' t ' t ' t ' t ++
7 -2 -8 4 i-6: 2

C....

: 9, : 4, i 4, : q4 i 9, : 46 : ; 1-q q=(7,-2,-7,0,6,2)

(b)
C

S: speculation cycle, C: correction cycle, P: partial advance
Fig. 6.
(a) Conventional. (b) Partial advance.

Quotient-digit generation for radix-I6 with partial advance (2 bits).

there is a full advance (log2r bits) or a partial advance
(log, p bits). The timing diagram of Fig. 6(a) and the quotient
digit computations of Fig. 6(b) show an example with partial
advance. The first two digits are correct, whereas the third is
incorrect. Consequently, it is not possible to advance a whole
digit. Two possibilities exist: No advance or partial advance.
In this case, the error is sufficiently small so that a partial
advance can be made. (We consider a partial advance of two
bits, log, p = 2.) The new speculated digit is 4, which overlaps
with the incorrect digit. This new digit is correct. Then a new
speculation (q = 4) is incorrect, and in this case, no advance
is possible, because the error is too large. A correction cycle is
required, and, after that, with the residual still out of bounds,
another partial advance can be performed (q = -6). Finally,
the last digit is correct.

111. SPECULATION OF QUOTIENT DIGIT
As indicated in the previous section, the idea is to reduce

the delay of the quotient-digit selection by using a simpler
function that gives a correct value with high probability. For
our purposes, the complexity of the function is related to
its delay, using a particular design style and technological
constraints. As indicated in Fig. 7, the average execution time
per quotient digit is equal to the product of the delay of
a cycle by the average number of cycles per digit. More-

922

1--.

delay/

--....- ..--.-....---.-.-

m e

cycle

conventional
division

I
complexity
digit sel.

Fig. 7. Delay/digit vs. complexity of q-digit selection.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

over, the first component increases with the complexity of
the quotient-digit speculation function, whereas the second
component decreases, because fewer no-advance and partial
advance cycles are required. The speculation function should
be selected to produce an execution time close to the minimum
of Fig. 7.

The process of finding the simplest (lowest delay) specula-
tion function for a given probability of correct speculation is a
complex problem. It essentially consists of finding a function
that has the same value as a correct quotient-digit selection
function for a given fraction of the argument values, produces
a small error when incorrect, and has minimum complexity.
Since no general strategy exists to obtain the optimal function,
we have explored the following altematives:

1) Use a function with fewer variables, that is, a function
with fewer bits of the residual estimate and of the divisor
estimate.

2) Reduce the number of output values; that is, some
quotient values are not generated. When one of these
nongenerated values is required, an incorrect value is
generated and correction action (no advance or partial
advance) is required.

3) Instead of the general function (2), use an approximation
of the arithmetic function of expression (3).

We now discuss these approaches further.

A. Reducing the Number of Variables
In this case, we use a speculation function described as

where 6" and ds have fewer bits than the & and d of
expression (2), respectively. This reduction in number of
variables should reduce the delay in the implementation.
Moreover, if the least-significant bits of 8 and d are not
included, the probability of correct speculation should be high
and the value of the error should be small. The question is
how to find such a speculation function, combining a low
delay and a reasonable probability of speculating the correct
value. There are many parameters in this choice of function,
including characteristics of the implementation. Therefore, it
is not practical to search for an optimal solution, and we have
to be content with finding one that is satisfactory. To simplify
the process, we perform it in two stages; namely, we first
determine, for various numbers of bits of the estimates, the

*S
W& *

region of correct
I\\\ i speculation

\
1

q-l q (speculated) q+l

Fig. 8. P-D diagram to determine the probability of correct speculation.

functions that give the highest probability of correct selection,
and then we use these functions in implementations.

For a given number of bits of the estimates, the function that
produces the highest probability of correct speculation can be
determined theoretically or empirically. A possible theoretical
approach follows (see Fig. 8).

For a particular value of Gs, determine the range of values
of wk]. This defines a vertical strip in Fig. 8.
For a particular value of is, determine the range of values
of d. This defines a horizontal strip in Fig. 8.
Determine the areas corresponding to the intersection of
the rectangle formed by the two strips above, and the
selection intervals for different values of qj41. Select for
qYfl the value that corresponds to the largest area.

This approach has the disadvantage that it assumes that all
values of the residual are equally likely. To avoid such an
assumption, which might be even less true with speculation
than with conventional division, we determined the speculation
function empirically.

A possible empirical determination of the speculation func-
tion is to perform divisions using a cpnventional algorithm.
Then, for each pair of values (&', d"), select as q,9+1 the
value that occurs most frequently. However, this process is not
accurate, because the residual values obtained when executing
a conventional algorithm are not the same as those produced
when speculation is used. To eliminate the corresponding error,
we determine the speculation function as follows.

Build a speculation table (Table-spec) that for each pair of
values of (3, d s) , has as an entry the speculated quotient
digit. Initialize this table with any value, for example, all
0.

CORTADELLA AND LANG: HIGH-RADIX DIVISION 923

TABLE I1
PROBABILITY OF SUCCESS OF QUOTIENT-DIGIT SPECULATION

bits ziS (s-c) 4-4 5-4 (6 -5)
bits 2' 1 prob. of success I 0.91 I 0.86 I 0.77 11

Perform several iterations of the following process until

Perform simulations of divisions in which the
dividend and the divisor are selected at random.
In these divisions, use as quotient digit the value
obtained from Table-spec.
Build a matrix with a row for each pair (w", &)
and a column for each value of q!+l.
For each residual and divisor obtamed during the
simulation, determine the possible correct values
of the quotient digit and increment the correspond-
ing entries in the matrix.
At the end of the iteration, for each row of the
matrix, select for quotient-digit speculation the
value that has the maximum entry in the row.
Update the speculation table.

For each simulation, lo5 divisions were executed; for each
division, the dividend and divisor were randomly generated,
and a 54-bit quotient was calculated. Only few iterations
(between 3 and 5) were required to obtain a stable speculation
function. The technique of multiple independent repetitions
was used to obtain results with a confidence level higher than
0.98.

Table I1 shows probabilities of success for the best function
for several cases. Since 8" has a carry-save representation,
different number of bits can be used from the sum and from the
carry. When sum and carry bits are expressed in parenthesis,
(s-c), the corresponding bits are first assimilated and then used
by the speculation function. Since the probability of success
is relatively high and the number of bits significantly smaller
than those of Table I, the approach looks promising.

a stable speculation table is obtained.

a)

b)

c)

d)

e)

B. Reduction in Number of Outputs

The quotient-digit selection function can be simplified if not
all output values are allowed. Moreover, if the values that are
generated are selected in a suitable manner, it is possible to
reduce the number of adders required to produce q;+,d and
in this way reduce the iteration delay. Actually, this second
reason motivated us to use this approach (combined with the
other approaches). As an illustration, consider a radix-8 divider
with a = 7. In a conventional algorithm, the generation of
q3+ld requires two adders, because it is possible to decompose
qj+l as qj+l = q l + 92 with q l E {-8, -4,0,4,8} and
q2 E {-2,-1,0,1,2} . To reduce the number of adders to
one, it is possible, for example, to use a = 5 and generate only
the values qJ+l E {-4, -2, -1 ,O , 1,2,4}. In this case, when
the correct quotient-digit value has to be either f 3 or f 5 , an
incorrect value is speculated and a correction is performed.

C. Approximation of Arithmetic Function
Expression (3) gives an arithmetic function for the quotient-

digit selection. As indicated in the previous section, this arith-
metic structure allows the implementation for high radices.
However, the arithmetic function still has a large delay (pro-
duced by the multiplication, the rounding, and the decoding
of the quotient-digit values). Consequently, we can also use
in this case the speculation approach to simplify the function
and reduce the delay. The simplifiFation can be applied to
the various components of the quotient-digit selection, as well
as to its integration into the whole recurrence. We show an
example implementation in Section VI-B.

IV. ERROR DETECTION AND CORRECTION

A. Detection

to detect the error. Two approaches for this seem possible.
Since the speculation is not always correct, it is necessary

1) Compute the correct value of the quotient digit and
compare with the speculation. This scheme is not conve-
nient, because for high radices, the exact quotient-digit
selection is complex and slow, and because there are
cases in which more than one value is correct.

2) Determine whether the next residual is within the al-
lowed bounds.

We chose this second approach. We need to assure that the

(4)

To have a fast comparison, this determination has to be
performed using a truncation of ws [j + 11 and d. Let us call wc
and dc these truncated values. We now determine the minimum
number of bits that these estimates require. Let us call f the
number of fractional bits of each estimate. Since a carry-save
representation is used for w, 6' is calculated as the sum of
the most significant bits of the two bit vectors representing U I ,

and therefore we have

speculation is accepted only if

Iw"[j + 111 I pd.

w E [w", w c + 2-f+l) .

On the other hand, d is nonredundant, so we have

d E [&, JC + 2-j) .

Consequently, relation (4) is satisfied if

-pdc 5 8" 5 p& - 2-f+1. (5 1
Therefore, these are the comparisons that have to be per-
formed. Since wc is truncated, only the truncated value of
p& is required for the implementation of the comparisons.

In addition, the continuity condition has to be preserved.
That is, for any value of the residual inside the bounds, at
least one choice of quotient-digit value should be valid. This
requires that the difference between the upper and lower bound
of the residual has to be at least equal to d. For our case,

pdc - 2-f+' + p i c 2 d,

and since d < dc + 2-f , it is sufficient that
2&c - 2-f+l - > (jc + 2-f ,

924 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

TABLE III
Nub" OF B m FOR COMPARISON

2 . . . 3 3 m 4...7 4

and we get

(2p - l)& 1 3 x 2-f.

Since i c 1 1/2, it is sufficient that

We now determine the number of integer bits of the esti-
mates. Since intermediate residuals produced by speculative
division might have values larger than pd, additional integer
bits are required. Let us call e the maximum error produced
by a speculation; that is, e is the maximum difference between
- a speculated value and a correct quotient digit. Moreover, call
M , and call M the highest and lowest values of w"b + 11
obtainable when the recurrence is performed with a specula-
tion having the maximum error. Since a correkt residual is
w"b + 11 5 pd, then

M I p d + e d ,
-

and because d < 1,
-
M < p + e

Similarly,

M > - (P + e),

and thus the number of integer bits (i) required to represent
wrongly speculated residuals is as follows:

i = rlogz(p + e)] + I.
For p I 1, this reduces to

The value e is calculated as follows. Given a speculation
function to obtain the quotient digit, for each rectangle R
defined by 8" and ds in the P-D diagram (see Fig. 8), we
perform the following calculation:

where {qR} is the smallest set of quotient digits that cover
the rectangle. Finally, e = maxes. Table III shows several
examples of the minimum number of bits required.

In summary, to determine whether there is an error, it is
necessary to have two comparators that perform the compar-
isons specified in (5). The estimate has i integer bits and
f fractional bits, whereas dc has f fractional bits (the most
significant always being 1).

Since the comparisons are done with truncated versions of
w s b + 11 and d, there are cases in which the speculation
is correct, but the comparison (to be conservative) fails.
Consequently, the probabilities of successful speculation are

somewhat smaller than those presented in Section 111-A. Now
these probabilities depend not only on the number of bits of

and 2" but also on f, and can be increased somewhat by
using a larger value o f f . For example, for T = 16 and a = 12,
using f = 4 produces a probability of success of 0.73, whereas
for f = 8, the probability is 0.77.

Error Detection for Partial Advance: As indicated before,
a partial advance of log&) bits is possible when the specu-
lated residual satisfies

Pw"lj + 11 I TPd,

because this is inside the bounds for the next iteration. Con-
sequently, a partial advance can be performed if

1y.j + 111 I pd.

These comparisons are done in a similar manner as those
previously discussed, that is, using estimates of w" [j+ 11 and d.

B. Correction of Quotient Digit
Since, with the detection scheme presented in the previous

section, when there is an error the correct digit is not known,
it is necessary to perform an incremental correction and to
check again whether a correct digit is obtained. For the scheme
without partial advance, we have chosen to correct the quotient
digit by +1 or -1, depending on the sign of the residual
estimate, to assure that a sequence of correction cycles will
reduce the residual until it is inside the bounds. This method
requires that in some cases, more than one correction cycle be
performed. However, this situation is found to be infrequent,
so that the method is suitable.

On the other hand, for the case with partial advance, it
is only necessary to assure that the bound will be reduced
to lwb]l 5 (r / p) p d . Consequently, it is possible to correct
by a larger value. We have chosen the power of 2 that is
immediately smaller than (r/p)p.

Fig. 9 depicts a block diagram of the circuit required
for digit speculation, error detection, and digit correction. It
consists of a multiplexor that selects between the speculated
digit (q") and the correction (f l or qc) according to the
result of the comparison with the bounds. In the scheme
with partial advance, two speculation tables (for qg and
q p) and two comparisons with the bounds (for full and
partial advance) are required.

V. EVALUATION
To evaluate the speed advantage of the scheme that we

have described, we performed some implementations for 54-
bit dividers. m i s value affects only the area estimates.)
Since there are many parameters that specify a particular
implementation, we have not done a complete analysis of
the solution space, but performed some reasonable designs
to evaluate and compare.

All designs have used the same technology and design tools.
In particular, we have used a 1-pm standard cell CMOS library
[8] (size of a two-input NAND gate is 12.5 x 47.5 pm2, delay
of an inverter is 0.15 ns). Some simple modules have been
designed by hand (multiplexors and CSA's), whereas nislZ[2]
has been used for the synthesis of the quotient-digit selection

CORTADELLA AND LANG HIGH-RADIX DIVISION

1.14
34.2
7.8

6800
2.6
2.2

~

925

3 4 6
1.21 1.17
36.0 43.8
7.2 5.6

8900 10500
2.8 3.6
2.9 3.4

TABLE IV
CHARACTERISTICS OF DESIGNS

conventional s culative n
no part. adv.

radix 11 2 1 4 I 8 14 x 4 1 512 16 I 512

15 6

part. adv. 11 - I - I - I - I - - I -

cycles/digit 11 1 I 1 1 1 1 1 I 2.2 11 1.3 I 1.8
cycle delay 20.4 24.6 30.4 31.0

delay/bit 1 T: 1 7; 1 1; 1 1:; 1 1 1 1"
cellarea 3100 3400 4500 4900 13600 4900 8400

speedup
area factor 1.0 1.1 1.5 1.6 4.4 1.6 2.7

functions and the comparators. MisZZ has always been guided
to optimize delay at the expense of increasing the area. Fan-in
and fan-out capacitances (but no routing) have been considered
for delay calculations. In Table IV, we report the final results.
The main measures we use for comparison are the speedup and
the area factor with respect to the conventional radix-2 case.
These measures are summarized in Fig. 16. We now briefly
comment on these designs; more details can be found in [7]
for the conventional designs, and in [4] for the speculative
cases.

A. Conventional Designs
The designs for radix 2,4, and 8 use a table specification of

the quotient-digit selection and a multilevel implementation
with MisZZ. We were surprised by the good performance
obtained for the radix-8 case. This is achieved by guiding MisZZ
to provide a different delay for each of the two components
forming the radix-8 digit. Going to higher radices with the
table approach does not improve the speed, because of the
increase in complexity of the quotient-digit function. The
radix-16 design uses two overlapped radix-4 stages (called
4 x 4 in Table IV).

On the other hand, the radix-512 design uses an arithmetic
function for the quotient-digit selection, based on expression
(3). As can be seen, this does not produce a significant
improvement in speed; probably an even higher radix would
result in a faster implementation, but at the expense of an
even higher area factor.

B. Speculation Without Partial Advance

The average execution time per quotient bit is given by

x t c ,
Cd

log, T
T = -

where Cd is the average number of cycles per quotient digit
(this includes the speculation cycles and the correction cycles),
and t, is the delay of one cycle.

Dart. adv. 11
32 1 64 I 512

detection speculation/ cycle
correction

(a)

'ti1 s--, full-advance
digit speculation

qj+1

bounds
$+t i l c~coInpa l i son I I

t
(b)

Fig. 9.
advance. (qJ+l denotes

Units for digit speculation. (a) Basic scheme. (b) With partial
$+1, or q;+l depending on the type of cycle.)

The results shown are cases in which increasing the radix
produces a faster execution. The radix-16 design uses a
speculation table approach, whereas the radix-5 12 one uses
an arithmetic approach.

We conclude that without partial advance, no improvement
is obtained with respect to the fastest conventional design
(radix- 16 with two overlapped radix-4 stages).

C. Speculation with Partial Advance
To calculate the average number of cycles per quotient digit,

we perform simulations that are similar to those discussed in

926

error detection
MUX for aid

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

12.6 (for q,)
210 10.6

2 x 310 1.4*

TABLE V
, SPECULATIVE DIVISION WITH PARTIAL ADVANCE

b i t 10 9 8 7 6 5 4 3 2 1 0 -1 -2

- 1 9 . 6 T qE11.47* w* .I

digit 2- h s culation

buffer
-....e criticalpath

ws

Fig. 10. Block diagram for a speculative radix-16 divider.

TABLE VI
AREA AND DELAY FOR THE SPECULATIVE RADIX-16 DIVIDER

r Module I(Area I Delay (T) I
I digit speculation 11 270 I 9.6' (for q h)

MUX for ql
CSA (56 bits)

Buffer
Registers
Conversion & Rounding (see [7])

I Total 11 4900 I 28.8
(* indicate delays in the critical path)

Section 111-A. Now three types of cycles exist, namely, full
cycles (with probability p f) , partial cycles (with probability
p p) , and no-advance cycles (with probability p n) . The average
number of cycles per digit is

(6)

Expression (6) holds when the number of quotient digits is
very large. However, for the case of n-bit dividers (being n
small), the value of Cd varies slightly because more than n bits
may be generated when different types of cycles are executed
during the division. Table V shows the number of cycles for
several radices, several values of p, and n = 54.

We have performed several designs, selecting from Table
V the values of p that produce the lowest average number

log2 7-

Pf log, 7- + P, log2 P .
c, =

23 Y

ZZY

x x x x x x x x x x s
x x x x x x x x x x c
x x x x x x x x x x s
x x x x x x x x x x c
x x x x x x x x x x s
x x x x x x x x x x c Pz

- 91 X
s x x 92

Pz

2 1 Y
P3

- 42

93

P2

21 Y
20 Y
P4

- 93
44

x x x x x
x x x x x
x x x x x
x x x x
x x x x
x x

S
C

S
C

s x x x x

x x x x x x x s
x x x x x x x c
x x x x x x x
x x x x x x x
x x x x x x S
x x x x x x C
x x
s x x x x

Fig. 1 1 . Multiplication of zy and generation of q.

of cycles per digit. Table IV shows the characteristics for
implementations that are faster than those described in Section

We observe a progressive speedup when the radix is in-
creased. The radix-512 design achieves a speedup of 1.4 with
respect to the fastest conventional.

V-B .

VI. DESIGN EXAMPLES
We now present the implementation details of two designs.

The first is a radix-16 without partial advance and is presented
because of its simplicity. The second is a radix-512 with partial
advance and corresponds to the fastest of the designs we
performed.

A. Radix-16 Without Partial Advance
The block diagram is shown in Fig. 10, and the characteris-

tics are shown in Table IV. The quotient-digit generated by the
speculation function is IJh + QZ, where yh E { -8, -4,0,4, S}
and ql E {-2, - l , O , 1,2}. Therefore, the values {-12? -11,
11,12} are always obtained after corrections of the initially
speculated digit. Although this increases somewhat the number
of correction cycles, the use of a = 12 results in a larger
overlap than u = 10, which makes the implementation of
the speculation function simpler and faster. Moreover, the
limited precision of the comparisons (error detection) reduces
the range of "accepted" residuals and consequently diminishes
the probability of requiring quotient digits near fa. Exploring
several designs, we found u = 12 to be the best trade-off
for radix-16.

CORTADELLA AND LANG: HIGH-RADIX DIVISION 927

Table VI reports area and delay characteristics of this design.
Because Qh is the highest-weight component of the quotient
digit, the speculation function is simpler and faster than for ql.
When synthesizing the speculation function, misll has been
guided to reducing the delay of qh , which, in this case, is in
the critical path.

The CSA has been designed as a radix-2 full adder. Its
delay (4.47) is determined by two cascaded XOR gates (2.27
each). However, the outputs of the qzd multiplexors have been
connected to the last gate in order to reduce the critical path.
(The same optimization has been used for the conventional
designs.) This approach cannot be used with the residual,
because the redundant representation requires two signals.

B. Radix51 2 Divider with Partial Advance

This unit uses as speculation function an approximation
of expression (3). This approximation is obtained by the
following method.

1) Reducing the accuracy of the approximation z M l/d.
This reduces the delay of the calculation of this ap-
proximation, so that no additional cycle is required for
it, and it reduces the number of bits of z so that the
multiplication zw is simplified. The resulting z has four
components:

z = z3 + ~ ~ 2 - ~ + ~ ~ 2 - ~ + ~ ~ 2 - ~ ,

where z3 E {1,2}, and the others have values {-1, 0,

2) Only four components of the radix-512 digit are gener-
ated, so that qs = q1 + q2 + 43 + q4, with values q1 E

q3 E (-64, -32, -16,8,0,8,16,32,64}, and q4 E
{-8, -4, -2, - l , O , 1,2,4,8}. This reduces the com-
plexity of the generation of the speculated digit and
reduces the delay of the iteration, because only four CSA
are used (see Fig. 12) instead of the six that would be
required in a standard radix4 recoding of the quotient
digit. This decomposition of the radix-512 digit does not
permit the generation of all values; consequently, several
values are speculated incorrectly, and a partial advance
cycle has to be used. Note that the components overlap
to allow the generation of a larger subset of values.

3) Use a left-to-right multiplier [6] to compute zw. More-
over, the components of the speculated quotient digit are
extracted at different levels of the multiplier. As shown
in Fig. 11, this corresponds to the following expressions:

1, 2).

{ -256, -128,0,128,256}, q 2 E { -64, -32,0,32,64},

p 2 = z 3 y + z 2 y
q2 = sel(trunc(p2 - q l))
p 3 = p 2 + z I y
q3 = se l (t runc(p3 - (41 + q2)))
p4 = p2 + 21 y + 20 y
q4 = sel(trunc(p4 - (91 + q2 + q3))),

where y = rw, the t runc function truncates to a
suitable number of bits and the se1 function encodes
the value on the corresponding digit set. This extraction

at different levels matches the delays in the residual
generation part, and reduces the overall delay. However,
this might not produce the correct quotient-digit compo-
nents, because carries from the least-significant portion
of the multiplication are not included. These errors
are partially compensated by actually computing the
remainder obtained by subtracting the more significant
components of the quotient digit.

The corresponding digit-speculation implementation is shown
in Fig. 13. Note that to adapt to the delays of the z’s, some
precomputation on y is performed before the MUX, either by
calculating the p and g of each bit to reduce the delay of the
4-2 CSA, or by assimilating the required number of bits, to
reduce the number of summands.

The delay of a cycle is obtained from the delays shown in
Figs. 12 and 13. The resulting critical path is q4-DRIVER-
MUX-CSA-REG and results in 43.87.

The number of cycles per digit is obtained by simulating the
actual implementation. The value p = 6 in the partial advance
is selected to achieve the minimum number of cycles.

The area is computed for the components of Figs. 12 and
13 plus the comparators and the quotient conversion and
rounding. Note that two quotient-digit speculation modules
are required: one for full advance and one for partial advance.
They are identical, but use different bits of w b] . The total area
is equivalent to about 10500 two-input NAND gates.

VII. EXTENSION TO SQUARE ROOT
The scheme we have described can be used also for a digit-

recurrence square-root algorithm [3], [7], [12]. The recurrence
is

w b + 11 = rw[j] - 2slj]sj+l - s;+lr-(j+l)

where Sb] is the result after the jth iteration, and sI+l is the
(j + 1)th result digit.

The result-digit selection function,

is determined so that the residual is bounded by

-2ps[j] + p2T-J < W L] < 2ps[j] + p 2 T - I .

The same two approaches used for the result-digit selection
are also possible, namely a table that has as inputs an estimate
of the residual and of the result (instead of the divisor),
and an arithmetic procedure that computes the result digit by
multiplying an estimate of the residual by an approximation
of the reciprocal of the result. With respect to division, the
following complications arise.

1) For the implementation of the residual, the additional
term S ; + ~ T - (~ + ~) has to be generated and subtracted.
This increases the delay, because this term requires the
value of s > + ~ .

2) Sb] , which is generated in signed-digit form, has to be
converted to a form suitable for the recurrence. This
conversion can be done by the on-the-fly algorithm as
described in [5].

928 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

rw[i]=rw uwS ws

4
FA/ PA

1 I CSA 1
I 1

i64132lOd
I

CSA2
FA/ PA I

I
qf3

9p3

qf4
9p4 '4

FA/ PA I
I

- - - I

v
I CSA4 I

FA/PA/NA I

I Register
I

I

2 '3-4- ompariso FA/ PA/ NA

Longest paths

bounds cmp + 27.6

ql + 27.6

q2 + 23.4

q3 + 20.0

q4 + 16.2 (critical path)

FA: full advance
PA: partial advance
NA: no advance
qf q speculation for full advance
qp: q speculation for partial advance

Fig. 12. Block diagram of the CSA's used for radix-512 division.

c i
91 Y2 93

(8.27) (16.67) (22.47)
Y4

(27.47)

Y = TW (FA) or pw (PA) truncated to the required precision.
YPg is Y represented by pair (p,g) instead of (c,s)

Fig. 13. Block diagram of the digit-speculation circuit for radix-5 12 division.

3) The bound is now a function of j , so that the result-
digit selection might be different in different iterations.
Because the term depending on j is p 2 r - j , this has
an effect only in the first iterations. In a conventional
algorithm, this is solved by obtaining the initial bits of

the result directly from the argument. In the case with
speculation, it would be possible to use the same result-
digit selection for all iterations and handle*the anomaly
of the initial ones by correction. Because this produces
too many correction cycles, in the implementation we

CORTADELLA AND LANG: HIGH-RADIX DIVISION 929

Fig. 14. Implementation of 43 logic block.

performed, we used a hybrid approach in which one
digit of the result is obtained directly from the operand,
and for the rest a single selection function is used.
Moreover, to simplify the bound comparisons (to avoid
the multiplication of S[j] by p and the addition of
p 2 r - j) , we compare with kS[j], where k is a constant
that makes the product easy to compute and the bound
satisfied for any j (has to absorb the effect of p2r-Jfor
the negative bound).

A. Combined Division and Square Root

It is interesting to combine division and square-root in a
single unit. Such units have been reported in [9]. The result-
digit selection function is the same for both operations, with
the exception of the beginning; this is due to the effect of the
term of the bound of square-root dependent on j. The solution
for this is discussed above.

We have developed such a combined implementation for
the scheme with speculation. This implementation has two
objectives:

1) To share as much as possible the hardware among both
operations, and

2) Not to increase the execution time for division, which
we assume is much more frequent than square-root.

Division is done using the recurrence and quotient-digit
selection discussed before. For square-root, as is usually done
to combine it with division, a new residual v[j] is defined,
such that

v[j] = 2-lw[j]

Moreover, to account for the full advance, partial advance, and
no advance, we define a sliding 1 by

R[j + 11 = m-%[j],

with the initial condition R[O] = 1, where m = T for full
advance, m = p for partial advance, and m = 1 for no
advance. The square-root recurrence becomes

v[j + 11 = mv[j] - Slj]Sj+l - 2-ls3+1Rlj]m-l

s[j + 11 = Sb] + m-lRlj]sj+l,

-pS[j] + 2-lp2R[j] < v[j] < pSb] + 2-lp2R[j].

and the bound

u6:2
0000 -
0001 -
0010-
00110
00111
010--
01100
01101
0111 -

16 10101 -32
16 1011- -32
32 1100- -32
32 11010 -32

64 1110- -16
6 1 1 1111- 1 -8

32 11011 -16

As indicated, we want to maintain the delay of a cycle
the same as that obtained for division alone. To achieve
this, we retime the square-root recurrence by postponing the
subtraction of 2-'~;+,Rlj]m-~ until the next cycle. That is,

(7)

(calling this residual w to conform with the division case),
which has the same delay as for division, because the term
2-ls;R[j] does not depend on s3+1. This implementation is
shown in Fig. 15, together with the controls for division and
square-root.

wb + 11 = m(wb] - 2-ls,2R[j]) - S[j]S,+l,

We want to perform the result-digit speculation by

Spec(C[j], S[j]),
using the same function as for division. Moreover, the bound
comparisons should also use GC. However, in addition to the
problem at the beginning discussed before, another complica-
tion arises because of the retiming, since the value of w[j]
is not the correct residual of square-root, because the term
2- '~ ;+~R[j]m-~ has not been subtracted. On the other hand,
this term has an effect on 8 only in the first iterations.

The effect on the speculation function can be taken care of
by the nature of the speculation process that allows errors in
the speculation and corrects them by partial advance and/or by
correction cycles. However, if the speculation produces large
errors, this might increase by too much the number of cycles.

On the other hand, the error in the comparisons is more
severe, because these comparisons determine the correctness
of the algorithm. Consequently, it is necessary to have a
sufficiently accurate 8" to assure correct comparisons. For
this, in the first iterations, we perform one cycle to update the
value of w before doing the comparison (and the result-digit
selection). That is, for the first few iterations we perform an
iteration in two cycles, as indicated below.

Cycle 1:

v[j] = w[j] - 2-1+2[j].

SJ+1 = Spec(q9.1, &I)
Cycle 2:

and comparison

"[j + 11 = mv[j] - s[j]sj+l.

930

W n
Sd

W
A

Sd
W

A
Sd

W

I I
sr

(initial-, Z-
or W-cycle)

additional hardware
for square root

Fig. 15. Unit for division and square-root.

Consequently, in Cycle 1, no shift'is performed (this con-
nection is required anyhow for the correction cycles), and a
result-digit equal to zero is used. In Cycle 2, the result digit
is speculated (and the comparison performed), the subtraction
of the term s; is inhibited, and the shift is performed.

The number of double-cycle iterations required has to be
sufficient to make the term on si not affect 8". Since s2 5 a2,
if we call b, the number of fractional bits of Gc, double-cycle
iterations have to be performed while the following condition
exists:

After these iterations, the retimed iteration can be used. The
algorithm for square-root then consists of the following steps:

1) An initial iteration that obtains the first digit of the result
directly from the operand,

2) Several double-iterations as discussed above, and
3) Retimed iterations given by expression (7).

B. Radix-512 didsqrt Unit

We made an implementation for radix-512 using the design
for division with speculation and partial advance described in
Section VI-B. The resulting circuit is shown in Fig. 15.

Signal sr/div controls whether a division or square-root
has to be executed. Register Sd stores either the divisor (for
division) or the result (for square-root). The following are the
additional hardware introduced for square-root.

A speculation circuit for the initial iteration. For the radix-
512 implementation, 8 bits of the operand are taken to
produce an 8-bit estimation of the result. This circuit is
not in the critical path.
A unit to subtract 2-ls2R[j] from the shifted residual.
This unit is disabled when division is executed.

W[j+11

BEST - COPY AVAILABLE ~ -~

A unit to calculate the result for iteration j by adding
sjRlj] to S[j - 11. This unit is also disabled for division
in such a way that register Sd always contains de divisor.
As indicated before, the comparisons are done using
kSlj], where k is a simple constant. As in our case
p = 320/511, we can use k = 0.625, because we have
the following condition:

2-l' < p - 0.625 < 2-',

which is sufficient to absorb the term p2rP1, which
appears in the negative bound.

In this case, double-cycle iterations must be executed until 9
bits of the result are obtained. Because of the possibility of
partial advance, the number of cycles required for this phase
of the algorithm varies.

It is important to notice that the critical path for the division
is not lengthened by the additional units introduced in the
circuit. The calculation of 2T1s;R[j] and sjR[j] and the
subtraction and addition with w[j] and S [j - 11, respectively,
are executed in parallel with the speculation of the result
digit. Furthermore, these additional units are not in the critical
path of the circuit. Therefore, division and square-root can
be executed with the same clock cycle without increasing
the original delay required for division only. This is possible
because of the retiming performed by (7).

Simulations performed with this div/sqrt unit show that
the average number of cycles/digit for square-root is 1.6
(division is executed with 1.17 cycleddigit). If a square-root
unit would have been designed without the retimed recurrence,
and therefore with a significantly longer cycle time, the cycle
count would have decreased to 1.3 cycleddigit. However, this
would increase the delay for division. Consequently, for the
case in which frequency of division is much larger than that

CORTADELLA AND LANG: HIGH-RADIX DIVISION

4.0-

3.5--

3.0-

2.5-

2.0-.

A ,

64
4;4 g 0

5A2 2
x

4 8

x conventional
A speculative w/o p.a,
0 speculative w. p.a.

93 1

division. The square-root operation would be about 1.4 times
slower than division, because of the double-cycles and a
somewhat higher error rate.

ACKNOWLEDGMENT

We thank P. Montuschi for his valuable discussions and
comments.

512
X

1.0 2 0 1:5 2:O 2:5 3:O 3:5 4:O 4:5 5:O * area factor

Fig. 16. Summary of implementations for different dividers.

of square-root, the approach based on retiming the square-root
recurrence is superior.

VIII. SUMMARY AND CONCLUSION

The division and square-root method that we have presented
is based on the speculation of the result digit and on a rollback
when the speculation is incorrect. Because of the reduction in
complexity of the result-digit selection, this can result in faster
implementations with higher radices than for the conventional
approach. Moreover, a reduction in the number of adders
required is possible by speculating only a reduced set of
result-digit values.

We have discussed approaches to determine a suitable spec-
ulation function. Moreover, we detect whether the speculation
is correct by determining whether the next residual is inside
the required bound.

The approach is extended to the partial-advance case. In
this scheme, when an error occurs in the speculation, it is
not always necessary to correct the previous digit; but it is
possible, if the error is small enough, to advance a number
of bits that is smaller than a radix-r digit. In this way, the
penalization of errors is significantly reduced. We determined
the condition required for partial advance and described an
implementation that replicates the result-digit selection.

We extended the scheme to square-root and described
a combined division/square-root implementation. We have
developed this design so that the more frequent division
operation is not slowed down by the added complications of
the implementation of square-root.

We performed several designs using the same technology
and determined the relative speed and area. The results for
division are summarized in Fig. 16. Without partial advance,
no improvement is obtained with respect to the fastest conven-
tional (radix-16 composed of two overlapped radix-4 stages).
On the other hand, the scheme with partial advance produces
a speedup of up to 1.4 (again with respect to the fastest
conventional).

We performed a design of a radix-512 combined division/
square-root unit. This produces no speed degradation for

REFERENCES

[I] D. E. Atkins, “Higher-radix division using estimates of the divisor and
partial remainder,” IEEE Trans. Comput., vol. C-17, pp. 925-934, Oct.
1968.

[2] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system,” IEEE Trans.
Comput-Aided Design, vol. CAD-6, pp. 1062-1081, Nov. 1987.

[3] L. Ciminiera and P. Montuschi, “Higher radix square-rooting,’’ IEEE
Trans. Comput., vol. 39, pp. 1220-1231, Oct. 1990.

[4] J. Cortadella and T. Lang, “Division with speculation of quotient digits,”
UPClDAC Tech. Rep., 1993.

[SI M. Ercegovac and T. Lang “On-the-fly conversion of redundant into con-
ventional representations,” IEEE Trans. Comput., vol. 36, pp. 895-897,
July 1987.

[6] -, “Fast multiplication without carry propagation,” IEEE Trans.

[7] M. Ercegovac and T. Lang, Division and Square-Root: Digit-Recurrence
Algorithms and Implementations.

[SI European Silicon Structures, ES2 ECPDIO Library Databook, Apr.
1991.

[9] J. Fandrianto, “Algorithm for high speed shared radix 4 division and
radix-4 square-root,” Proc. 8th IEEE Symp. Comput, Arithmetic, 1987,

[lo] T. Lang and P. Montuschi, “Higher radix square-root with prescaling,”
IEEE Trans. Comput., vol. 41, pp. 996-1009, Aug. 1992.

[l l] D. W. Matula, “Design of a highly parallel floating point arithmetic
unit,” Symp. Combinatorial Optimization Sci. and Technol. (COST), ARr.
1991.

[I21 P. Montuschi and L. Ciminiera, “On the efficient implementation of
higher M i x square-root algorithms,” Proc. 9th Symp. Comput. Arith-
metic, 1989, pp. 154-161.

[I31 G. S. Taylor, “Radix-I6 SRT dividers with overlapped quotient selection
stages,” Pmc. 7th IEEE Symp. Comput. Arithmetic, 1985, pp. 64-71.

[14] T.E. Williams and M.A. Horowitz, “A 160 ns 54 bit CMOS division
implementation using self-timing and symmetrically overlapped SRT
stages,” Proc. 10th Symp. Comput. Arithmetic, 1991, pp. 210-217.

Comput., VOI. 39, pp. 1385-1390, NOV. 1990.

Boston: Kluwer Academic, 1994.

pp. 73-79.

J. Cortadella received a degree in computer sci-
ence from the Polytechnic University of Catalonia,
Barcelona, Spain, in 1985, and the Ph.D. degree
from the same university in 1987.

He is a Professor at the Department of Computer
Architecture, Polytechnic University of Catalonia.
In 1988, he was a Visiting Scholar at the University
of California, Berkeley. His research interests in-
clude computer arithmetic, computer-aided design
of very large scale integration (VLSI) systems, with
emphasis on synthesis and verification of asyn-

Dr. Cortadella has coauthored more than 30 research papers in technical
chronous circuits, and parallel architectures.

journals and conferences.

T. Lang for photograph and biography please seep. 918 of this TRANSACTIONS.

