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High-Radix Division and Square-Root 
with Speculation 

Jordi Cortadella and Tomis Lang 

Abslract- The speed of high-radix digit-recurrence dividers 
and square-root units is mainly determined by the complexity of 
the result-digit selection. We present a scheme in which a simpler 
function speculates the result digit, and, when this speculation 
is incorrect, a rollback or a partial advance is performed. This 
results in operations with a shorter cycle time and a variable 
number of cycles. The scheme can be used in separate division 
and square-root units, or in a combined one. Several designs 
were d i e d  and compared in terms of execution time and area. 
The fastest unit considered is a radix-512 divider with a partial 
advance of six bits. 

Index Terms- Digital arithmetic, digit recurrence, division, 
square-mot, variable-time operation 

I. INTRODUCTION 
OST implementations for the division and square- M root operations involve a recurrence in which one 

digit of the result is produced per iteration [ll,  [71, [121. 
Consequently, to reduce the number of iterations, it is con- 
venient to use a higher radix for the result digit. However, as 
the radix increases, the added complexity of the result-digit 
selection function increases the iteration delay and eliminates 
the advantage. Because of this, implementations have used 
radix-2 and radix-4 stages and higher radices are obtained 
by unfolding these stages [9], [13]. Moreover, reductions 
in time have been obtained by overlapping these unfolded 
stages [13], [14]. To have higher radix implementations, it 
is possible to use an arithmetic function for the result-digit 
selection [ l l ] .  Specifically, the result digit is obtained by 
multiplying an estimate of the residual by an estimate of the 
reciprocal of the divisor (or the square-root of the operand) and 
rounding the result. However, the calculation of the reciprocal 
approximation and the multiplication and rounding limits the 
speedup achieved. 

For division, one way that has been proposed to reduce 
the complexity of the selection function is to prescale the 
divisor (and the dividend) and then perform the quotient-digit 
selection by rounding (see [7] for references). However, this 
method is not easily extensible to square-roots [lo]. 

In this paper, we present and evaluate the idea of speculating 
the result digit using a function that is simpler (i.e., has smaller 
delay) than the result-digit selection function. This speculated 
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digit is then used to continue with the algorithm. Another 
function determines whether the speculation is incorrect, and, 
in that case, the algorithm rolls back, the digit is corrected, 
and the process continues from there. In a variation of this 
scheme, we allow a partial advance of fewer bits than a full 
digit when an incorrect speculation is performed. 

Because of the possible rollbacks and partial advances, the 
execution time is variable. Consequently, a unit of this type 
is suitable when the rest of the system can make use of this 
variable time. In particular, if the unit forms part of a general 
purpose processor with several functional units, it is necessary 
to have hardware support for control of dependencies. In the 
evaluation, we determine the average execution time assuming 
a uniform distribution of operands. 

The effectiveness of an implementation depends on a variety 
of factors, such as the time and cost of the speculation function, 
the probability of correct speculation, the time and cost of error 
detection, and the time for correction. 

We develop the method and evaluate alternative possi- 
bilities. We present some examples of implementations and 
compare with the implementation of conventional algorithms 
using the same technological consrraints. 

For clarity in the exposition, we first consider division and 
then extend the results to square-root and to a combined 
implementation. 

A. Division Algorithm and Notation 

We how review very briefly the well-known division al- 
gorithm, mainly to establish the notation used. We use the 
following standard recurrence: 

where w b ]  is the residual after the jth iteration, T is the radix, 
qj+l  is the new quotient digit, d is the divisor, and x is the 
dividend. We assume that Z, d, and q are normalized fractions. 

To have a fast iteration, a redundant adder is used. In 
this paper, we use a carry-save adder, although a similar 
development could be done for other redundant representations 

The quotient digit is a signed digit 1qj+ll 5 a, with 
redundancy factor p = u / ( T -  1). This requires that w[O] 5 pd, 
which is obtained by shifting the dividend. Moreover, for this 
case, the convergence of the algorithm requires the residual to 
be bounded so that 

of wb].  

The quotient digit q j + l  is determined by a quotient-digit 
selection function. This function depends on an estimate of 
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Fig. 1 .  Iteration step of digit-recurrence division. 

TABLE I 
NWER OF BITS REQUIRED FOR QUOTIENT-DIGIT SELECTION 

rwb!;rw 

- n 

spec I MUX+CSA I spec I MUX+CSA 
I I check I - 

cycle bounds 
the residual and on an estimate of the divisor; that is, 

qj+l = sel(G, 2). (2) 
The conceptual implementation of one iteration step is shown 
in Fig. 1. 

Two ways of implementing the quotient-digit selection have 
been proposed. In the most common, a table is constructed 
specifying for each value of w and d a quotient-digit value 
that satisfies the bound. The estimates are obtained by truncat- 
ing the corresponding values. The number of bits of these 
estimates required for correct selection increases with the 
radix as shown in Table I. This lengthens the delay of the 
implementation, so that practical implementations are limited 
to radix 2, 4, and 8 stages. 

A second and recent approach is practical for higher radices. 
In it, the quotient digit is obtained by multiplying an estimate 
of the residual by an approximation of the reciprocal of the 
divisor and rounding the result [ 111. That is, 

q2+1 = round(i(rw)), (3) 
where 2 is an estimate of l /d .  Although this can be imple- 
mented for very high radices, the delay of the multiplication, 
the rounding, and the decoding of the quotient digit in each 
iteration may result in a limited speedup with respect to low- 
radix designs. 

11. SCHEME FOR DIVISION WITH SPECULATION 
OF QUOTIENT DIGITS 

We now describe the basic scheme (without partial advance) 
and then introduce the partial advance. 

A. Basic Scheme 

The basic scheme is shown in Fig. 2. As mentioned in the 
introduction, the quotient digit is speculated (how this is done 
is described in the next section) and used in the recurrence to 
produce the speculated next residual as follows (speculation 
cycle): 

w"[j + 11 = rwlj] - qj"+ld. 

(b) 
Fig. 2. Basic scheme. (a) Block diagram. (b) Timing diagram. 

At the end of this speculation cycle, we decide whether the 
speculated digit is correct by determining whether the residual 
is inside the allowed bounds (see expression 1). If it is inside 
the bounds, then 

wb + 11 = w"[j + 11, 

and the next iteration is performed. On the other hand, if the 
residual is out of bounds, the quotient digit and the residual 
have to be corrected. A correction cycle is performed as 
follows: 

In this case, the digit has the same weight as the digit 
obtained in the speculation cycle, and thus the correct digit 
is qJ+l = q,S+l + q,C+l. The amount of correction performed, 
q;+l, is discussed in the next section. Consequently, when 
there is an error (incorrect speculation), more than one cycle 
is needed to obtain the correct quotient digit and the correct 
next residual. As indicated in Fig. 2(b), the check for the bound 
is overlapped with the speculation of the next quotient digit. 

In Fig. 3, we show the timing diagram of an example 
division, and, in Fig. 4, the quotient digits produced. As can 
be seen, the cycle time for the division with digit speculation 
is smaller than for the conventional case, because the com- 
putation of the speculated digit is faster than the computation 
of the correct digit. In the example, the first two speculated 
digits are correct; the third digit is incorrect, producing a wg [3], 
which is out of bounds. This results in a correction of 43 by 
+ 1 and the corresponding correction of w s  [3]. This correction 
is sufficient, as indicated by the fact that the corrected residual 
is inside the bounds. Then the next speculated digit is correct, 
and, after that, another error is detected and corrected. In this 
case, two cycles are required for the correction, because the 
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Quotient-digit generation for conventional division and quotient-digit 

residual obtained after the first cycle of correction is still out 
of bounds. 

B. Scheme with Partial Advance 

In the basic scheme presented, two situations can occur: Ei- 
ther we advance one digit of the quotient (when the speculation 
is correct), or we use the next cycle to correct the digit (no 
advance). So, at least one complete additional cycle is required 
to correct an incorrect speculation, even if the error is very 
small. The corresponding delay is reduced by the scheme with 
partial advance. In this scheme, when the error is small, a third 
situation is allowed, namely, the advance of a number of bits 
that is less than a whole digit. We call this partial advance.' 

The amount of advance is selected so that the next residual 
is bounded. That is, it is possible to advance log,p bits if 

IPWS( I v d .  

W S L  + 11 = pwSL] - q;+& 

The partial advance iteration is 

where $+1 is the quotient digit speculated for partial advance. 
With partial advance, there are three possible situations, as 

follows: 
Full advance if lwsl 5 pd 
Partial advance of 10g2p bits if pd < lwsl 5 f p d .  In this 
case, as shown in Fig. 6(b), the digit q;+l has an overlap 
of log, f bits with the previous digit. 
No advance if lwSl > fpd.  

In principle, it is possible to advance a variable number of 
bits, depending on the amount of the error. However, to limit 
the complexity of the implementation, we consider only cases 
with a partial advance of a fixed number of bits. A block 
diagram for this scheme is shown in Fig. 5.  Note that two 
different speculations are performed, depending on whether 

' A variation on this idea was suggested to us by P. Montuschi. 
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Fig. 5 .  Scheme with partial advance. 
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Fig. 6. 
(a) Conventional. (b) Partial advance. 

Quotient-digit generation for radix-I6 with partial advance (2 bits). 

there is a full advance (log2r bits) or a partial advance 
(log, p bits). The timing diagram of Fig. 6(a) and the quotient 
digit computations of Fig. 6(b) show an example with partial 
advance. The first two digits are correct, whereas the third is 
incorrect. Consequently, it is not possible to advance a whole 
digit. Two possibilities exist: No advance or partial advance. 
In this case, the error is sufficiently small so that a partial 
advance can be made. (We consider a partial advance of two 
bits, log, p = 2.) The new speculated digit is 4, which overlaps 
with the incorrect digit. This new digit is correct. Then a new 
speculation (q = 4) is incorrect, and in this case, no advance 
is possible, because the error is too large. A correction cycle is 
required, and, after that, with the residual still out of bounds, 
another partial advance can be performed ( q  = -6). Finally, 
the last digit is correct. 

111. SPECULATION OF QUOTIENT DIGIT 
As indicated in the previous section, the idea is to reduce 

the delay of the quotient-digit selection by using a simpler 
function that gives a correct value with high probability. For 
our purposes, the complexity of the function is related to 
its delay, using a particular design style and technological 
constraints. As indicated in Fig. 7, the average execution time 
per quotient digit is equal to the product of the delay of 
a cycle by the average number of cycles per digit. More- 
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over, the first component increases with the complexity of 
the quotient-digit speculation function, whereas the second 
component decreases, because fewer no-advance and partial 
advance cycles are required. The speculation function should 
be selected to produce an execution time close to the minimum 
of Fig. 7. 

The process of finding the simplest (lowest delay) specula- 
tion function for a given probability of correct speculation is a 
complex problem. It essentially consists of finding a function 
that has the same value as a correct quotient-digit selection 
function for a given fraction of the argument values, produces 
a small error when incorrect, and has minimum complexity. 
Since no general strategy exists to obtain the optimal function, 
we have explored the following altematives: 

1) Use a function with fewer variables, that is, a function 
with fewer bits of the residual estimate and of the divisor 
estimate. 

2) Reduce the number of output values; that is, some 
quotient values are not generated. When one of these 
nongenerated values is required, an incorrect value is 
generated and correction action (no advance or partial 
advance) is required. 

3) Instead of the general function (2), use an approximation 
of the arithmetic function of expression (3). 

We now discuss these approaches further. 

A. Reducing the Number of Variables 
In this case, we use a speculation function described as 

where 6" and ds have fewer bits than the & and d of 
expression (2), respectively. This reduction in number of 
variables should reduce the delay in the implementation. 
Moreover, if the least-significant bits of 8 and d are not 
included, the probability of correct speculation should be high 
and the value of the error should be small. The question is 
how to find such a speculation function, combining a low 
delay and a reasonable probability of speculating the correct 
value. There are many parameters in this choice of function, 
including characteristics of the implementation. Therefore, it 
is not practical to search for an optimal solution, and we have 
to be content with finding one that is satisfactory. To simplify 
the process, we perform it in two stages; namely, we first 
determine, for various numbers of bits of the estimates, the 

*S 
W& * 

region of correct 
I\\\ i speculation 

\ 
1 

q-l q (speculated) q+l 

Fig. 8. P-D diagram to determine the probability of correct speculation. 

functions that give the highest probability of correct selection, 
and then we use these functions in implementations. 

For a given number of bits of the estimates, the function that 
produces the highest probability of correct speculation can be 
determined theoretically or empirically. A possible theoretical 
approach follows (see Fig. 8). 

For a particular value of Gs, determine the range of values 
of wk].  This defines a vertical strip in Fig. 8. 
For a particular value of is, determine the range of values 
of d. This defines a horizontal strip in Fig. 8. 
Determine the areas corresponding to the intersection of 
the rectangle formed by the two strips above, and the 
selection intervals for different values of qj41. Select for 
qYfl the value that corresponds to the largest area. 

This approach has the disadvantage that it assumes that all 
values of the residual are equally likely. To avoid such an 
assumption, which might be even less true with speculation 
than with conventional division, we determined the speculation 
function empirically. 

A possible empirical determination of the speculation func- 
tion is to perform divisions using a cpnventional algorithm. 
Then, for each pair of values (&', d"), select as q,9+1 the 
value that occurs most frequently. However, this process is not 
accurate, because the residual values obtained when executing 
a conventional algorithm are not the same as those produced 
when speculation is used. To eliminate the corresponding error, 
we determine the speculation function as follows. 

Build a speculation table (Table-spec) that for each pair of 
values of (3, d s ) ,  has as an entry the speculated quotient 
digit. Initialize this table with any value, for example, all 
0. 
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TABLE I1 
PROBABILITY OF SUCCESS OF QUOTIENT-DIGIT SPECULATION 

# bits ziS (s-c) 4-4 5-4 (6 -5 )  
# bits 2' 1 prob. of success I 0.91 I 0.86 I 0.77 11 

Perform several iterations of the following process until 

Perform simulations of divisions in which the 
dividend and the divisor are selected at random. 
In these divisions, use as quotient digit the value 
obtained from Table-spec. 
Build a matrix with a row for each pair (w", &) 
and a column for each value of q!+l. 
For each residual and divisor obtamed during the 
simulation, determine the possible correct values 
of the quotient digit and increment the correspond- 
ing entries in the matrix. 
At the end of the iteration, for each row of the 
matrix, select for quotient-digit speculation the 
value that has the maximum entry in the row. 
Update the speculation table. 

For each simulation, lo5 divisions were executed; for each 
division, the dividend and divisor were randomly generated, 
and a 54-bit quotient was calculated. Only few iterations 
(between 3 and 5) were required to obtain a stable speculation 
function. The technique of multiple independent repetitions 
was used to obtain results with a confidence level higher than 
0.98. 

Table I1 shows probabilities of success for the best function 
for several cases. Since 8" has a carry-save representation, 
different number of bits can be used from the sum and from the 
carry. When sum and carry bits are expressed in parenthesis, 
(s-c), the corresponding bits are first assimilated and then used 
by the speculation function. Since the probability of success 
is relatively high and the number of bits significantly smaller 
than those of Table I, the approach looks promising. 

a stable speculation table is obtained. 

a) 

b) 

c) 

d) 

e) 

B. Reduction in Number of Outputs 

The quotient-digit selection function can be simplified if not 
all output values are allowed. Moreover, if the values that are 
generated are selected in a suitable manner, it is possible to 
reduce the number of adders required to produce q;+,d and 
in this way reduce the iteration delay. Actually, this second 
reason motivated us to use this approach (combined with the 
other approaches). As an illustration, consider a radix-8 divider 
with a = 7. In a conventional algorithm, the generation of 
q3+ld requires two adders, because it is possible to decompose 
qj+l  as qj+l = q l  + 92 with q l  E {-8, -4,0,4,8} and 
q2 E {-2,-1,0,1,2} .  To reduce the number of adders to 
one, it is possible, for example, to use a = 5 and generate only 
the values qJ+l E {-4, -2, -1 ,O ,  1,2,4}. In this case, when 
the correct quotient-digit value has to be either f 3  or f 5 ,  an 
incorrect value is speculated and a correction is performed. 

C. Approximation of Arithmetic Function 
Expression (3) gives an arithmetic function for the quotient- 

digit selection. As indicated in the previous section, this arith- 
metic structure allows the implementation for high radices. 
However, the arithmetic function still has a large delay (pro- 
duced by the multiplication, the rounding, and the decoding 
of the quotient-digit values). Consequently, we can also use 
in this case the speculation approach to simplify the function 
and reduce the delay. The simplifiFation can be applied to 
the various components of the quotient-digit selection, as well 
as to its integration into the whole recurrence. We show an 
example implementation in Section VI-B. 

IV. ERROR DETECTION AND CORRECTION 

A. Detection 

to detect the error. Two approaches for this seem possible. 
Since the speculation is not always correct, it is necessary 

1) Compute the correct value of the quotient digit and 
compare with the speculation. This scheme is not conve- 
nient, because for high radices, the exact quotient-digit 
selection is complex and slow, and because there are 
cases in which more than one value is correct. 

2) Determine whether the next residual is within the al- 
lowed bounds. 

We chose this second approach. We need to assure that the 

(4) 

To have a fast comparison, this determination has to be 
performed using a truncation of ws [j + 11 and d. Let us call wc 
and dc these truncated values. We now determine the minimum 
number of bits that these estimates require. Let us call f the 
number of fractional bits of each estimate. Since a carry-save 
representation is used for w, 6' is calculated as the sum of 
the most significant bits of the two bit vectors representing U I ,  

and therefore we have 

speculation is accepted only if 

Iw"[j + 111 I pd. 

w E [w", w c  + 2-f+l) .  

On the other hand, d is nonredundant, so we have 

d E [&, JC + 2-j) .  

Consequently, relation (4) is satisfied if 

-pdc  5 8" 5 p& - 2-f+1. (5 1 
Therefore, these are the comparisons that have to be per- 
formed. Since wc is truncated, only the truncated value of 
p& is required for the implementation of the comparisons. 

In addition, the continuity condition has to be preserved. 
That is, for any value of the residual inside the bounds, at 
least one choice of quotient-digit value should be valid. This 
requires that the difference between the upper and lower bound 
of the residual has to be at least equal to d. For our case, 

pdc  - 2-f+' + p i c  2 d, 

and since d < dc + 2-f ,  it is sufficient that 
2&c - 2-f+l - > (jc + 2-f ,  
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TABLE III 
Nub" OF B m  FOR COMPARISON 

2 . . . 3  3 m 4...7 4 

and we get 

(2p - l )& 1 3 x 2-f. 

Since i c  1 1/2, it is sufficient that 

We now determine the number of integer bits of the esti- 
mates. Since intermediate residuals produced by speculative 
division might have values larger than pd, additional integer 
bits are required. Let us call e the maximum error produced 
by a speculation; that is, e is the maximum difference between 
- a speculated value and a correct quotient digit. Moreover, call 
M ,  and call M the highest and lowest values of w"b  + 11 
obtainable when the recurrence is performed with a specula- 
tion having the maximum error. Since a correkt residual is 
w"b + 11 5 pd, then 

M I p d + e d ,  
- 

and because d < 1, 
- 
M < p + e  

Similarly, 

M > - ( P  + e), 

and thus the number of integer bits (i) required to represent 
wrongly speculated residuals is as follows: 

i = rlogz(p + e)] + I. 
For p I 1, this reduces to 

The value e is calculated as follows. Given a speculation 
function to obtain the quotient digit, for each rectangle R 
defined by 8" and ds in the P-D diagram (see Fig. 8), we 
perform the following calculation: 

where {qR} is the smallest set of quotient digits that cover 
the rectangle. Finally, e = maxes.  Table III shows several 
examples of the minimum number of bits required. 

In summary, to determine whether there is an error, it is 
necessary to have two comparators that perform the compar- 
isons specified in (5). The estimate has i integer bits and 
f fractional bits, whereas dc has f fractional bits (the most 
significant always being 1). 

Since the comparisons are done with truncated versions of 
w s b  + 11 and d,  there are cases in which the speculation 
is correct, but the comparison (to be conservative) fails. 
Consequently, the probabilities of successful speculation are 

somewhat smaller than those presented in Section 111-A. Now 
these probabilities depend not only on the number of bits of 

and 2" but also on f, and can be increased somewhat by 
using a larger value o f f .  For example, for T = 16 and a = 12, 
using f = 4 produces a probability of success of 0.73, whereas 
for f = 8, the probability is 0.77. 

Error Detection for Partial Advance: As indicated before, 
a partial advance of log&) bits is possible when the specu- 
lated residual satisfies 

Pw"lj + 11 I TPd,  

because this is inside the bounds for the next iteration. Con- 
sequently, a partial advance can be performed if 

1y.j + 111 I pd. 

These comparisons are done in a similar manner as those 
previously discussed, that is, using estimates of w" [j+ 11 and d. 

B. Correction of Quotient Digit 
Since, with the detection scheme presented in the previous 

section, when there is an error the correct digit is not known, 
it is necessary to perform an incremental correction and to 
check again whether a correct digit is obtained. For the scheme 
without partial advance, we have chosen to correct the quotient 
digit by +1 or -1, depending on the sign of the residual 
estimate, to assure that a sequence of correction cycles will 
reduce the residual until it is inside the bounds. This method 
requires that in some cases, more than one correction cycle be 
performed. However, this situation is found to be infrequent, 
so that the method is suitable. 

On the other hand, for the case with partial advance, it 
is only necessary to assure that the bound will be reduced 
to lwb]l 5 ( r / p ) p d .  Consequently, it is possible to correct 
by a larger value. We have chosen the power of 2 that is 
immediately smaller than (r/p)p. 

Fig. 9 depicts a block diagram of the circuit required 
for digit speculation, error detection, and digit correction. It 
consists of a multiplexor that selects between the speculated 
digit (q") and the correction ( f l  or qc) according to the 
result of the comparison with the bounds. In the scheme 
with partial advance, two speculation tables (for qg and 
q p )  and two comparisons with the bounds (for full and 
partial advance) are required. 

V. EVALUATION 
To evaluate the speed advantage of the scheme that we 

have described, we performed some implementations for 54- 
bit dividers. m i s  value affects only the area estimates.) 
Since there are many parameters that specify a particular 
implementation, we have not done a complete analysis of 
the solution space, but performed some reasonable designs 
to evaluate and compare. 

All designs have used the same technology and design tools. 
In particular, we have used a 1-pm standard cell CMOS library 
[8] (size of a two-input NAND gate is 12.5 x 47.5 pm2, delay 
of an inverter is 0.15 ns). Some simple modules have been 
designed by hand (multiplexors and CSA's), whereas nislZ[2] 
has been used for the synthesis of the quotient-digit selection 
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TABLE IV 
CHARACTERISTICS OF DESIGNS 

conventional s culative n 
no part. adv. 

radix 11 2 1 4 I 8 14 x 4 1 512 16 I 512 

15 6 

part. adv. 11 - I - I - I - I - - I - 

cycles/digit 11 1 I 1 1 1 1  1 I 2.2 11 1.3 I 1.8 
cycle delay 20.4 24.6 30.4 31.0 

delay/bit 1 T: 1 7; 1 1; 1 1:; 1 1 1 1" 
cellarea 3100 3400 4500 4900 13600 4900 8400 

speedup 
area factor 1.0 1.1 1.5 1.6 4.4 1.6 2.7 

functions and the comparators. MisZZ has always been guided 
to optimize delay at the expense of increasing the area. Fan-in 
and fan-out capacitances (but no routing) have been considered 
for delay calculations. In Table IV, we report the final results. 
The main measures we use for comparison are the speedup and 
the area factor with respect to the conventional radix-2 case. 
These measures are summarized in Fig. 16. We now briefly 
comment on these designs; more details can be found in [7] 
for the conventional designs, and in [4] for the speculative 
cases. 

A. Conventional Designs 
The designs for radix 2,4, and 8 use a table specification of 

the quotient-digit selection and a multilevel implementation 
with MisZZ. We were surprised by the good performance 
obtained for the radix-8 case. This is achieved by guiding MisZZ 
to provide a different delay for each of the two components 
forming the radix-8 digit. Going to higher radices with the 
table approach does not improve the speed, because of the 
increase in complexity of the quotient-digit function. The 
radix-16 design uses two overlapped radix-4 stages (called 
4 x 4 in Table IV). 

On the other hand, the radix-512 design uses an arithmetic 
function for the quotient-digit selection, based on expression 
(3). As can be seen, this does not produce a significant 
improvement in speed; probably an even higher radix would 
result in a faster implementation, but at the expense of an 
even higher area factor. 

B. Speculation Without Partial Advance 

The average execution time per quotient bit is given by 

x t c ,  
Cd 

log, T 
T = -  

where Cd is the average number of cycles per quotient digit 
(this includes the speculation cycles and the correction cycles), 
and t, is the delay of one cycle. 

Dart. adv. 11 
32 1 64 I 512 

detection speculation/ cycle 
correction 

(a) 

'ti1 s--, full-advance 
digit speculation 

qj+1 

bounds 
$+t i l c~coInpa l i son  I I 

t 
(b) 

Fig. 9. 
advance. (qJ+l denotes 

Units for digit speculation. (a) Basic scheme. (b) With partial 
$+1, or q;+l depending on the type of cycle.) 

The results shown are cases in which increasing the radix 
produces a faster execution. The radix-16 design uses a 
speculation table approach, whereas the radix-5 12 one uses 
an arithmetic approach. 

We conclude that without partial advance, no improvement 
is obtained with respect to the fastest conventional design 
(radix- 16 with two overlapped radix-4 stages). 

C. Speculation with Partial Advance 
To calculate the average number of cycles per quotient digit, 

we perform simulations that are similar to those discussed in 
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12.6 (for q,) 
210 10.6 

2 x 310 1.4* 

TABLE V 
, SPECULATIVE DIVISION WITH PARTIAL ADVANCE 

b i t  10 9 8 7 6 5 4 3 2 1 0  -1 -2 

- 1 9 . 6 T  qE11.47* ............ ......... .......... w* .I 

digit 2- h s culation 

buffer 
-....e criticalpath 

ws 

Fig. 10. Block diagram for a speculative radix-16 divider. 

TABLE VI 
AREA AND DELAY FOR THE SPECULATIVE RADIX-16 DIVIDER 

r Module I( Area I Delay ( T )  I 
I digit speculation 11 270 I 9.6' (for q h )  

MUX for ql 
CSA (56 bits) 

Buffer 
Registers 
Conversion & Rounding (see [7]) 

I Total 11 4900 I 28.8 
(* indicate delays in the critical path) 

Section 111-A. Now three types of cycles exist, namely, full 
cycles (with probability p f ) ,  partial cycles (with probability 
p p ) ,  and no-advance cycles (with probability p n ) .  The average 
number of cycles per digit is 

(6) 

Expression (6) holds when the number of quotient digits is 
very large. However, for the case of n-bit dividers (being n 
small), the value of Cd varies slightly because more than n bits 
may be generated when different types of cycles are executed 
during the division. Table V shows the number of cycles for 
several radices, several values of p, and n = 54. 

We have performed several designs, selecting from Table 
V the values of p that produce the lowest average number 

log2 7- 

Pf log, 7- + P, log2 P . 
c, = 

23 Y 

ZZY 

x x x x x x x x x x  s 
x x x x x x x x x x  c 
x x x x x x x x x x  s 
x x x x x x x x x x  c 
x x x x x x x x x x  s 
x x x x x x x x x x  c Pz 

- 91 X 
s x x  92 

Pz 

2 1  Y 
P3 

- 42  

93 

P2 

21 Y 
20 Y 
P4 

- 93 
44 

x x x x x  
x x x x x  
x x x x x  
x x x x  
x x x x  
x x  

S 
C 

S 
C 

s x x x x  

x x x x x x x  s 
x x x x x x x  c 
x x x x x x  x 
x x x x x x  x 
x x x x x x  S 
x x x x x x  C 
x x  
s x x x x  

Fig. 1 1 .  Multiplication of zy and generation of q. 

of cycles per digit. Table IV shows the characteristics for 
implementations that are faster than those described in Section 

We observe a progressive speedup when the radix is in- 
creased. The radix-512 design achieves a speedup of 1.4 with 
respect to the fastest conventional. 

V-B . 

VI. DESIGN EXAMPLES 
We now present the implementation details of two designs. 

The first is a radix-16 without partial advance and is presented 
because of its simplicity. The second is a radix-512 with partial 
advance and corresponds to the fastest of the designs we 
performed. 

A. Radix-16 Without Partial Advance 
The block diagram is shown in Fig. 10, and the characteris- 

tics are shown in Table IV. The quotient-digit generated by the 
speculation function is IJh + QZ, where yh E { -8, -4,0,4, S} 
and ql E {-2, - l , O ,  1,2}. Therefore, the values {-12? -11, 
11,12} are always obtained after corrections of the initially 
speculated digit. Although this increases somewhat the number 
of correction cycles, the use of a = 12 results in a larger 
overlap than u = 10, which makes the implementation of 
the speculation function simpler and faster. Moreover, the 
limited precision of the comparisons (error detection) reduces 
the range of "accepted" residuals and consequently diminishes 
the probability of requiring quotient digits near fa. Exploring 
several designs, we found u = 12 to be the best trade-off 
for radix-16. 
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Table VI reports area and delay characteristics of this design. 
Because Qh is the highest-weight component of the quotient 
digit, the speculation function is simpler and faster than for ql. 
When synthesizing the speculation function, misll has been 
guided to reducing the delay of qh ,  which, in this case, is in 
the critical path. 

The CSA has been designed as a radix-2 full adder. Its 
delay (4.47) is determined by two cascaded XOR gates (2.27 
each). However, the outputs of the qzd multiplexors have been 
connected to the last gate in order to reduce the critical path. 
(The same optimization has been used for the conventional 
designs.) This approach cannot be used with the residual, 
because the redundant representation requires two signals. 

B. Radix51 2 Divider with Partial Advance 

This unit uses as speculation function an approximation 
of expression (3). This approximation is obtained by the 
following method. 

1 )  Reducing the accuracy of the approximation z M l/d. 
This reduces the delay of the calculation of this ap- 
proximation, so that no additional cycle is required for 
it, and it reduces the number of bits of z so that the 
multiplication zw is simplified. The resulting z has four 
components: 

z = z3 + ~ ~ 2 - ~  + ~ ~ 2 - ~  + ~ ~ 2 - ~ ,  

where z3 E {1,2}, and the others have values {-1, 0, 

2) Only four components of the radix-512 digit are gener- 
ated, so that qs = q1 + q2  + 43 + q4, with values q1 E 

q3  E (-64, -32, -16,8,0,8,16,32,64}, and q4 E 
{-8, -4, -2, - l , O ,  1,2,4,8}. This reduces the com- 
plexity of the generation of the speculated digit and 
reduces the delay of the iteration, because only four CSA 
are used (see Fig. 12) instead of the six that would be 
required in a standard radix4 recoding of the quotient 
digit. This decomposition of the radix-512 digit does not 
permit the generation of all values; consequently, several 
values are speculated incorrectly, and a partial advance 
cycle has to be used. Note that the components overlap 
to allow the generation of a larger subset of values. 

3) Use a left-to-right multiplier [6] to compute zw. More- 
over, the components of the speculated quotient digit are 
extracted at different levels of the multiplier. As shown 
in Fig. 11, this corresponds to the following expressions: 

1, 2). 

{ -256, -128,0,128,256}, q 2  E { -64, -32,0,32,64}, 

p 2 = z 3  y + z 2  y 
q2 = sel(trunc(p2 - q l ) )  
p 3 = p 2 + z I  y 
q3 = se l ( t runc(p3  - (41 + q2))) 
p4 = p2 + 21 y + 20 y 
q4 = sel(trunc(p4 - (91 + q2 + q3))), 

where y = rw, the t runc  function truncates to a 
suitable number of bits and the se1  function encodes 
the value on the corresponding digit set. This extraction 

at different levels matches the delays in the residual 
generation part, and reduces the overall delay. However, 
this might not produce the correct quotient-digit compo- 
nents, because carries from the least-significant portion 
of the multiplication are not included. These errors 
are partially compensated by actually computing the 
remainder obtained by subtracting the more significant 
components of the quotient digit. 

The corresponding digit-speculation implementation is shown 
in Fig. 13. Note that to adapt to the delays of the z’s, some 
precomputation on y is performed before the MUX, either by 
calculating the p and g of each bit to reduce the delay of the 
4-2 CSA, or by assimilating the required number of bits, to 
reduce the number of summands. 

The delay of a cycle is obtained from the delays shown in 
Figs. 12 and 13. The resulting critical path is q4-DRIVER- 
MUX-CSA-REG and results in 43.87. 

The number of cycles per digit is obtained by simulating the 
actual implementation. The value p = 6 in the partial advance 
is selected to achieve the minimum number of cycles. 

The area is computed for the components of Figs. 12 and 
13 plus the comparators and the quotient conversion and 
rounding. Note that two quotient-digit speculation modules 
are required: one for full advance and one for partial advance. 
They are identical, but use different bits of w b ] .  The total area 
is equivalent to about 10500 two-input NAND gates. 

VII. EXTENSION TO SQUARE ROOT 
The scheme we have described can be used also for a digit- 

recurrence square-root algorithm [3], [7], [12]. The recurrence 
is 

w b  + 11 = rw[j] - 2slj]sj+l - s;+lr-(j+l) 

where Sb] is the result after the jth iteration, and sI+l is the 
( j  + 1)th result digit. 

The result-digit selection function, 

is determined so that the residual is bounded by 

-2ps[j] + p2T-J < W L ]  < 2ps[j] + p 2 T - I .  

The same two approaches used for the result-digit selection 
are also possible, namely a table that has as inputs an estimate 
of the residual and of the result (instead of the divisor), 
and an arithmetic procedure that computes the result digit by 
multiplying an estimate of the residual by an approximation 
of the reciprocal of the result. With respect to division, the 
following complications arise. 

1) For the implementation of the residual, the additional 
term S ; + ~ T - ( ~ + ~ )  has to be generated and subtracted. 
This increases the delay, because this term requires the 
value of s > + ~ .  

2) Sb] ,  which is generated in signed-digit form, has to be 
converted to a form suitable for the recurrence. This 
conversion can be done by the on-the-fly algorithm as 
described in [5]. 
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qf q speculation for full advance 
qp: q speculation for partial advance 

Fig. 12. Block diagram of the CSA's used for radix-512 division. 

c i 
91 Y2 93 

(8.27) (16.67) (22.47) 
Y4 

(27.47) 

Y = TW (FA) or pw (PA) truncated to the required precision. 
YPg is Y represented by pair (p,g) instead of (c,s) 

Fig. 13. Block diagram of the digit-speculation circuit for radix-5 12 division. 

3) The bound is now a function of j ,  so that the result- 
digit selection might be different in different iterations. 
Because the term depending on j is p 2 r - j ,  this has 
an effect only in the first iterations. In a conventional 
algorithm, this is solved by obtaining the initial bits of 

the result directly from the argument. In the case with 
speculation, it would be possible to use the same result- 
digit selection for all iterations and handle*the anomaly 
of the initial ones by correction. Because this produces 
too many correction cycles, in the implementation we 
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Fig. 14. Implementation of 43 logic block. 

performed, we used a hybrid approach in which one 
digit of the result is obtained directly from the operand, 
and for the rest a single selection function is used. 
Moreover, to simplify the bound comparisons (to avoid 
the multiplication of S[j] by p and the addition of 
p 2 r - j ) ,  we compare with kS[j], where k is a constant 
that makes the product easy to compute and the bound 
satisfied for any j (has to absorb the effect of p2r-Jfor 
the negative bound). 

A. Combined Division and Square Root 

It is interesting to combine division and square-root in a 
single unit. Such units have been reported in [9]. The result- 
digit selection function is the same for both operations, with 
the exception of the beginning; this is due to the effect of the 
term of the bound of square-root dependent on j. The solution 
for this is discussed above. 

We have developed such a combined implementation for 
the scheme with speculation. This implementation has two 
objectives: 

1) To share as much as possible the hardware among both 
operations, and 

2) Not to increase the execution time for division, which 
we assume is much more frequent than square-root. 

Division is done using the recurrence and quotient-digit 
selection discussed before. For square-root, as is usually done 
to combine it with division, a new residual v[j] is defined, 
such that 

v[j] = 2-lw[j] 

Moreover, to account for the full advance, partial advance, and 
no advance, we define a sliding 1 by 

R[j + 11 = m-%[j], 

with the initial condition R[O] = 1, where m = T for full 
advance, m = p for partial advance, and m = 1 for no 
advance. The square-root recurrence becomes 

v[j + 11 = mv[j] - Slj]Sj+l - 2-ls3+1Rlj]m-l 

s[j + 11 = Sb] + m-lRlj]sj+l, 

-pS[j] + 2-lp2R[j] < v[j] < pSb] + 2-lp2R[j]. 

and the bound 

u6:2 
0000 - 
0001 - 
0010- 
00110 
00111 
010-- 
01100 
01101 
0111 - 

16 10101 -32 
16 1011- -32 
32 1100- -32 
32 11010 -32 

64 1110- -16 
6 1 1  1111- 1 -8 

32 11011 -16 

As indicated, we want to maintain the delay of a cycle 
the same as that obtained for division alone. To achieve 
this, we retime the square-root recurrence by postponing the 
subtraction of 2-'~;+,Rlj]m-~ until the next cycle. That is, 

(7) 

(calling this residual w to conform with the division case), 
which has the same delay as for division, because the term 
2-ls;R[j] does not depend on s3+1. This implementation is 
shown in Fig. 15, together with the controls for division and 
square-root. 

wb + 11 = m(wb] - 2-ls,2R[j]) - S[j]S,+l, 

We want to perform the result-digit speculation by 

Spec(C[j], S[j]), 
using the same function as for division. Moreover, the bound 
comparisons should also use GC. However, in addition to the 
problem at the beginning discussed before, another complica- 
tion arises because of the retiming, since the value of w[j] 
is not the correct residual of square-root, because the term 
2- '~ ;+~R[ j ]m-~  has not been subtracted. On the other hand, 
this term has an effect on 8 only in the first iterations. 

The effect on the speculation function can be taken care of 
by the nature of the speculation process that allows errors in 
the speculation and corrects them by partial advance and/or by 
correction cycles. However, if the speculation produces large 
errors, this might increase by too much the number of cycles. 

On the other hand, the error in the comparisons is more 
severe, because these comparisons determine the correctness 
of the algorithm. Consequently, it is necessary to have a 
sufficiently accurate 8" to assure correct comparisons. For 
this, in the first iterations, we perform one cycle to update the 
value of w before doing the comparison (and the result-digit 
selection). That is, for the first few iterations we perform an 
iteration in two cycles, as indicated below. 

Cycle 1: 

v[j]  = w[j] - 2-1+2[j]. 

SJ+1 = Spec(q9.1, &I) 
Cycle 2: 

and comparison 

"[j + 11 = mv[j ]  - s[j]sj+l. 
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Fig. 15. Unit for division and square-root. 

Consequently, in Cycle 1, no shift'is performed (this con- 
nection is required anyhow for the correction cycles), and a 
result-digit equal to zero is used. In Cycle 2, the result digit 
is speculated (and the comparison performed), the subtraction 
of the term s; is inhibited, and the shift is performed. 

The number of double-cycle iterations required has to be 
sufficient to make the term on si not affect 8". Since s2 5 a2, 
if we call b,  the number of fractional bits of Gc,  double-cycle 
iterations have to be performed while the following condition 
exists: 

After these iterations, the retimed iteration can be used. The 
algorithm for square-root then consists of the following steps: 

1) An initial iteration that obtains the first digit of the result 
directly from the operand, 

2) Several double-iterations as discussed above, and 
3) Retimed iterations given by expression (7). 

B. Radix-512 didsqrt Unit 

We made an implementation for radix-512 using the design 
for division with speculation and partial advance described in 
Section VI-B. The resulting circuit is shown in Fig. 15. 

Signal sr/div controls whether a division or square-root 
has to be executed. Register Sd stores either the divisor (for 
division) or the result (for square-root). The following are the 
additional hardware introduced for square-root. 

A speculation circuit for the initial iteration. For the radix- 
512 implementation, 8 bits of the operand are taken to 
produce an 8-bit estimation of the result. This circuit is 
not in the critical path. 
A unit to subtract 2-ls2R[j] from the shifted residual. 
This unit is disabled when division is executed. 

W[ j+11 

BEST - COPY AVAILABLE ~ -~ 

A unit to calculate the result for iteration j by adding 
sjRlj] to S[j  - 11. This unit is also disabled for division 
in such a way that register Sd always contains de divisor. 
As indicated before, the comparisons are done using 
kSlj], where k is a simple constant. As in our case 
p = 320/511, we can use k = 0.625, because we have 
the following condition: 

2-l' < p - 0.625 < 2-', 

which is sufficient to absorb the term p2rP1,  which 
appears in the negative bound. 

In this case, double-cycle iterations must be executed until 9 
bits of the result are obtained. Because of the possibility of 
partial advance, the number of cycles required for this phase 
of the algorithm varies. 

It is important to notice that the critical path for the division 
is not lengthened by the additional units introduced in the 
circuit. The calculation of 2T1s;R[j] and sjR[j] and the 
subtraction and addition with w[j] and S [ j  - 11, respectively, 
are executed in parallel with the speculation of the result 
digit. Furthermore, these additional units are not in the critical 
path of the circuit. Therefore, division and square-root can 
be executed with the same clock cycle without increasing 
the original delay required for division only. This is possible 
because of the retiming performed by (7). 

Simulations performed with this div/sqrt unit show that 
the average number of cycles/digit for square-root is 1.6 
(division is executed with 1.17 cycleddigit). If a square-root 
unit would have been designed without the retimed recurrence, 
and therefore with a significantly longer cycle time, the cycle 
count would have decreased to 1.3 cycleddigit. However, this 
would increase the delay for division. Consequently, for the 
case in which frequency of division is much larger than that 
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division. The square-root operation would be about 1.4 times 
slower than division, because of the double-cycles and a 
somewhat higher error rate. 
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Fig. 16. Summary of implementations for different dividers. 

of square-root, the approach based on retiming the square-root 
recurrence is superior. 

VIII. SUMMARY AND CONCLUSION 

The division and square-root method that we have presented 
is based on the speculation of the result digit and on a rollback 
when the speculation is incorrect. Because of the reduction in 
complexity of the result-digit selection, this can result in faster 
implementations with higher radices than for the conventional 
approach. Moreover, a reduction in the number of adders 
required is possible by speculating only a reduced set of 
result-digit values. 

We have discussed approaches to determine a suitable spec- 
ulation function. Moreover, we detect whether the speculation 
is correct by determining whether the next residual is inside 
the required bound. 

The approach is extended to the partial-advance case. In 
this scheme, when an error occurs in the speculation, it is 
not always necessary to correct the previous digit; but it is 
possible, if the error is small enough, to advance a number 
of bits that is smaller than a radix-r digit. In this way, the 
penalization of errors is significantly reduced. We determined 
the condition required for partial advance and described an 
implementation that replicates the result-digit selection. 

We extended the scheme to square-root and described 
a combined division/square-root implementation. We have 
developed this design so that the more frequent division 
operation is not slowed down by the added complications of 
the implementation of square-root. 

We performed several designs using the same technology 
and determined the relative speed and area. The results for 
division are summarized in Fig. 16. Without partial advance, 
no improvement is obtained with respect to the fastest conven- 
tional (radix-16 composed of two overlapped radix-4 stages). 
On the other hand, the scheme with partial advance produces 
a speedup of up to 1.4 (again with respect to the fastest 
conventional). 

We performed a design of a radix-512 combined division/ 
square-root unit. This produces no speed degradation for 
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