
GekkoFS – A temporary distributed file system for
HPC applications

Short paper

Marc-André Vef∗, Nafiseh Moti∗, Tim Süß∗, Tommaso Tocci†,
Ramon Nou†, Alberto Miranda†, Toni Cortes†§, André Brinkmann∗

∗ Johannes Gutenberg University Mainz, Mainz, Germany
† Barcelona Supercomputing Center, Barcelona, Spain § Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract—We present GekkoFS, a temporary, highly-scalable
burst buffer file system which has been specifically optimized for
new access patterns of data-intensive High-Performance Comput-
ing (HPC) applications. The file system provides relaxed POSIX
semantics, only offering features which are actually required by
most (not all) applications. It is able to provide scalable I/O
performance and reaches millions of metadata operations already
for a small number of nodes, significantly outperforming the
capabilities of general-purpose parallel file systems.

Index Terms—Distributed File Systems, HPC, Burst Buffers

I. INTRODUCTION

High-Performance Computing (HPC) applications are sig-
nificantly changing. Traditional HPC applications have been
compute-bound, large-scale simulations, while today’s HPC
community is additionally moving towards the generation, pro-
cessing, and analysis of massive amounts of experimental data.
This trend, known as data-driven science, is affecting many
different scientific fields, some of which have made significant
progress tackling previously unaddressable challenges thanks
to newly developed techniques [15], [30].

Most data-driven workloads are based on new algorithms
and data structures like graph databases which impose new
requirements on HPC file systems [22], [39]. They include,
e.g., large numbers of metadata operations, data synchroniza-
tion, non-contiguous and random access patterns, and small
I/O requests [9], [22]. Such operations differ significantly
from past workloads which mostly performed sequential I/O
operations on large files. They do not only slow down data-
driven applications themselves but can also heavily disrupt
other applications that are concurrently accessing the shared
storage system [11], [35]. Consequently, traditional parallel file
systems (PFS) cannot handle these workloads efficiently and
data-driven applications suffer from prolonged I/O latencies,
reduced throughput, and long waiting times.

Software-based approaches, e.g., application modifications
or middleware and high-level libraries [12], [19], try to support
data-driven applications to align the new access patterns to the
capabilities of the underlying PFS. Yet, adapting such software
is typically time-consuming, difficult to couple with big data
and machine learning libraries, or sometimes (based on the
underlying algorithms) just impossible.

Hardware-based approaches move from magnetic disks, the
main backend technology for PFSs, to NAND-based solid-
state drives (SSDs). Nowadays, many supercomputers deploy
SSDs which can be used as dedicated burst buffers [18]
or as node-local burst buffers. To achieve high metadata
performance, they can be deployed in combination with a
dynamic burst buffer file system [3], [40].

Generally, burst buffer file systems increase performance
compared to a PFS without modifying an application. There-
fore, they typically support POSIX which provides the stan-
dard semantics accepted by most application developers. Nev-
ertheless, enforcing POSIX can severely reduce a PFS’ peak
performance [38]. Further, many POSIX features are not
required for most scientific applications [17], especially if they
can exclusively access the file system. Similar argumentations
hold for other advanced features like fault tolerance or security.

In this work, we present GekkoFS, a temporarily deployed,
highly-scalable distributed file system for HPC applications
which aims to accelerate I/O operations of common HPC
workloads that are challenging for modern PFSs. GekkoFS
pools together fast node-local storage resources and provides
a global namespace accessible by all participating nodes. It
relaxes POSIX by removing some of the semantics that most
impair I/O performance in a distributed context and takes
previous studies on the behavior of HPC applications into
account [17] to optimize the most used file system operations.

For load-balancing, all data and metadata are distributed
across all nodes using the HPC RPC framework Mercury [34].
The file system runs in user-space and can be easily deployed
in under 20 seconds on a 512 node cluster by any user.
Therefore, it can be used in a number of temporary scenarios,
e.g., during the lifetime of a compute job or in longer-term use
cases, e.g., campaigns. We demonstrate how our lightweight,
yet highly distributed file system GekkoFS reaches scalable
data and metadata performance with tens of millions of
metadata operations per second on a 512 node cluster while
still providing strong consistency for file system operations
that target a specific file or directory.

II. RELATED WORK

General-purpose PFSs like GPFS, Lustre, BeeGFS, or PVFS
[4], [14], [27], [31], [32] provide long-term storage which is

1
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. DOI 10.1109/CLUSTER.2018.00049

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mostly based on magnetic disks. GekkoFS instead builds a
short-term, separate namespace from fast node-local SSDs that
is only temporarily accessible during the runtime of a job or
a campaign. As such, GekkoFS can be categorized into the
class of node-local burst buffer file systems, while remote-
shared burst buffer file systems use dedicated, centralized I/O
nodes [40], e.g., DDN’s IME [1].

In general, node-local burst buffers are fast, intermediate
storage systems that aim to reduce the PFS’ load and the
applications’ I/O overhead [18]. They are typically collocated
with nodes running a compute job, but they can also be depen-
dent on the backend PFS [3] or in some cases even directly
managed by it [24]. BurstFS [40], perhaps the most related
work to ours, is a standalone burst buffer file system, but,
unlike GekkoFS, is limited to write data locally. BeeOND [14]
can create a job-temporal file system on a number of nodes
similar to GekkoFS. However, in contrast to our file system,
it is POSIX compliant and our measurements show a much
higher metadata throughput than offered by BeeOND [36].

The management of inodes and related directory blocks are
the main scalability limitations of file systems in a distributed
environment. Typically, general-purpose PFSs distribute data
across all available storage targets. As this technique works
well for data, it does not achieve the same throughput when
handling metadata [5], [28], although the file system commu-
nity presented various techniques to tackle this challenge [3],
[13], [25], [26], [41], [42]. The performance limitation can
be attributed to the sequentialization enforced by underlying
POSIX semantics which is particularly degrading throughput
when a huge number of files is created in a single directory
from multiple processes. This workload, common to HPC
environments [3], [24], [25], [37], can become an even bigger
challenge for upcoming data-science applications. GekkoFS
is built on a new technique to handle directories and replaces
directory entries by objects, stored within a strongly consistent
key-value store which helps to achieve tens of millions of
metadata operations for billions of files.

III. DESIGN AND IMPLEMENTATION

GekkoFS offers a user-space file system for the lifetime of a
particular use case, e.g., within the context of an HPC job. The
file system uses the available local storage of compute nodes
to distribute data and metadata and combines their node-local
storage into a single global namespace.

The file system’s main goal focuses on scalability and
consistency. It should therefore scale to an arbitrary number
of nodes to benefit from current and future storage and
network technologies. Further, GekkoFS should provide the
same consistency as POSIX for file system operations that
access a specific data file. However, consistency of directory
operations, for instance, can be relaxed. Finally, GekkoFS
should be hardware independent to efficiently use today’s
network technologies as well as any modern and future storage
hardware that is accessible by the user.

File Map

GekkoFS client
library

Node-local FS

Margo
RPC

Server Margo IPC
Server

RocksDB 

GekkoFS daemon

Application

RPCMargo
RPC

Client

Margo
IPC

Client

Margo
RPC

Server Margo IPC
Server

RocksDB 

GekkoFS daemon

Node-local FS
Node 

RDMA

Fig. 1: GekkoFS architecture

A. POSIX relaxation

Similarly to PVFS [6] and OrangeFS [21], GekkoFS does
not provide complex global locking mechanisms. In this sense,
applications should be responsible to ensure that no conflicts
occur, in particular, w.r.t. overlapping file regions. However,
the lack of distributed locking has consequences for operations
where the number of affected file system objects is unknown a
priori, such as readdir() called by the ls -l command.
In these indirect file system operations, GekkoFS does not
guarantee to return the current state of the directory and
follows the eventual-consistency model. Furthermore, each file
system operation is synchronous without any form of caching
to reduce file system complexity and to allow for an evaluation
of its raw performance capabilities.

GekkoFS does not support move or rename operations or
linking functionality as HPC application studies have shown
that these features are rarely or not used at all during the exe-
cution of a parallel job [17]. Finally, security management in
the form of access permissions is not maintained by GekkoFS
since it already implicitly follows the security protocols of the
node-local file system.

B. Architecture

GekkoFS’ architecture (see Figure 1) consists of two main
components: a client library and a server process. An ap-
plication that uses GekkoFS must first preload the client
interposition library which intercepts all file system operations
and forwards them to a server (GekkoFS daemon), if neces-
sary. The GekkoFS daemon, which runs on each file system
node, receives forwarded file system operations from clients
and processes them independently, sending a response when
finished. In the following paragraphs, we describe the client
and daemon in more detail.

a) GekkoFS client: The client consists of three compo-
nents: 1) An interception interface that catches relevant calls
to GekkoFS and forwards unrelated calls to the node-local
file system; 2) a file map that manages the file descriptors
of open files and directories, independently of the kernel;
and 3) an RPC-based communication layer that forwards file
system requests to local/remote GekkoFS daemons.

Each file system operation is forwarded via an RPC message
to a specific daemon (determined by hashing of the file’s
path) where it is directly executed. In other words, GekkoFS

2



uses a pseudo-random distribution to spread data and metadata
across all nodes, also known as wide-striping. Because each
client is able to independently resolve the responsible node
for a file system operation, GekkoFS does not require central
data structures that keep track of where metadata or data
is located. To achieve a balanced data distribution for large
files, data requests are split into equally sized chunks before
they are distributed across file system nodes. If supported by
the underlying network fabric protocol, the client exposes the
relevant chunk memory region to the daemon, accessed via
remote-direct-memory-access (RDMA).

b) GekkoFS daemon: GekkoFS daemons consist of three
parts: 1) A key-value store (KV store) used for storing meta-
data; 2) an I/O persistence layer that reads/writes data from/to
the underlying local storage system (one file per chunk); and
3) an RPC-based communication layer that accepts local and
remote connections to handle file system operations.

Each daemon operates a single local RocksDB KV
store [10]. RocksDB is optimized for NAND storage technolo-
gies with low latencies and fits GekkoFS’ needs as SSDs are
primarily used as node-local storage in today’s HPC clusters.

For the communication layer, we leverage on the Mercury
RPC framework [34]. It allows GekkoFS to be network-
independent and to efficiently transfer large data within the
file system. Within GekkoFS, Mercury is interfaced indirectly
through the Margo library which provides Argobots-aware
wrappers to Mercury’s API with the goal to provide a sim-
ple multi-threaded execution model [7], [33]. Using Margo
allows GekkoFS daemons to minimize resource consumption
of Margo’s progress threads and handlers which accept and
handle RPC requests [7].

IV. EVALUATION

We evaluated the performance of GekkoFS based on various
unmodified microbenchmarks which catch access patterns that
are common in HPC applications. Our experiments were
conducted on the MOGON II supercomputer, located at the
Johannes Gutenberg University Mainz in Germany. All ex-
periments were performed on Intel 2630v4 Intel Broadwell
processors (two sockets each). The main memory capacity
inside the nodes ranges from 64 GiB up to 512 GiB of
memory. MOGON II uses 100 Gbit/s Intel Omni-Path to
establish a fat-tree network between all compute nodes. In
addition, each node provides a data center Intel SATA SSD
DC S3700 Series as scratch-space (XFS formatted) usable
within a compute job. We used these SSDs for storing data
and metadata of GekkoFS which uses an internal chunk size
of 512 KiB.

Before each experiment iteration, GekkoFS daemons are
restarted (requiring less than 20 seconds for 512 nodes), all
SSD contents are removed, and kernel buffer, inode, and dentry
caches are flushed. The GekkoFS daemon and the application
under test are pinned to separate processor sockets to ensure
that file system and application do not interfere with each
other.

A. Metadata performance

We simulated common metadata intensive HPC workloads
using the unmodified mdtest microbenchmark [20] to evaluate
GekkoFS’ metadata performance and compare it against a
Lustre parallel file system. Although GekkoFS and Lustre
have different goals, we point out the performances that can
be gained by using GekkoFS as a burst buffer file system.
In our experiments, mdtest performs create, stat, and remove
operations in parallel in a single directory – an important
workload in many HPC applications and among the most
difficult workloads for a general-purpose PFS [37].

Each operation on GekkoFS was performed using 100,000
zero-byte files per process (16 processes per node). From
the user application’s perspective, all created files are stored
within a single directory. However, due to GekkoFS’ internally
kept flat namespace, there is conceptually no difference in
which directory files are created. This is in contrast to a
traditional PFS that may perform better if the workload is
distributed among many directories instead of in a single
directory. Figure 2 compares GekkoFS with Lustre in three
scenarios with up to 512 nodes: file creation, file stat, and
file removal. The y-axis depicts the corresponding operations
per second that were achieved for a particular workload on a
logarithmic scale. Each experiment was run at least five times
with each data point representing the mean of all iterations.
GekkoFS’ workload scaled with 100,000 files per process,
while Lustre’s workload was fixed to four million files for
all experiments. We fixed the number of files for Lustre’s
metadata experiments because Lustre was otherwise detecting
hanging nodes when scaling to too many files.

Lustre experiments were run in two configurations: All
processes operated in a single directory (single dir) or
each process worked in its own directory (unique dir).
Moreover, Lustre’s metadata performance was evaluated while
the system was accessible by other applications as well.

As seen in Figure 2, GekkoFS outperforms Lustre by a
large margin in all scenarios and shows close to linear scaling,
regardless of whether Lustre processes operated in a single
or in an isolated directory. Compared to Lustre, GekkoFS
achieved around 46 million creates/s (~1,405x), 44 million
stats/s (~359x), and 22 million removes/s (~453x) at 512
nodes. The standard deviation was less than 3.5% which was
computed as the percentage of the mean.

B. Data performance

We used the unmodified IOR [20] microbenchmark to
evaluate GekkoFS’ I/O performance for sequential and random
access patterns in two scenarios: Each process is accessing its
own file (file-per-process) and all processes access a single file
(shared file). We used 8 KiB, 64 KiB, 1 MiB, and 64 MiB
transfer sizes to assess the performances for many small I/O
accesses and for few large I/O requests. We ran 16 processes
on each client, each process writing and reading 4 GiB in total.

GekkoFS data performance is not compared with the Lustre
scratch file system as the peak performance of the used Lustre
partition, around 12 GiB/s, is already reached for ≤ 10 nodes

3



1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108
Op

er
at

io
ns

 / 
se

co
nd

Lustre single dir
Lustre unique dir
GekkoFS single/unique dir

(a) Create throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108

(b) Stat throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

103

104

105

106

107

108

(c) Remove throughput

Fig. 2: GekkoFS’ file create, stat, and remove throughput for an increasing number of nodes compared to a Lustre file system.

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

102

103

104

105

M
iB

 / 
se

co
nd

8k
64k
1m
64m
SSD peak perf.

(a) Write throughput

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of nodes (16 processes / node)

102

103

104

105

(b) Read throughput

Fig. 3: GekkoFS’ sequential throughput for each process operating on its own file compared to the plain SSD peak throughput.

for sequential I/O patterns. Moreover, Lustre has shown to
scale linearly in larger deployments with more OSSs and OSTs
being available [23].

Figure 3 shows GekkoFS’ sequential I/O throughput in
MiB/s, representing the mean of at least five iterations, for
an increasing number of nodes for different transfer sizes.
In addition, each data point is compared to the peak per-
formance that all aggregated SSDs could deliver for a given
node configuration, visualized as a white rectangle, indicating
GekkoFS’ SSD usage efficiency. In general, every result
demonstrates GekkoFS’ close to linear scalability, achieving
about 141 GiB/s (~80% of the aggregated SSD peak band-
width) and 204 GiB/s (~70% of the aggregated SSD peak
bandwidth) for write and read operations for a transfer size of
64 MiB for 512 nodes. At 512 nodes, this translates to more
than 13 million write IOPS and more than 22 million read
IOPS, while the average latency can be bounded by at most
700 µs for file system operations with a transfer size of 8 KiB.

For the file-per-process cases, sequential and random access
I/O throughput are similar for transfer sizes larger than the
file system’s chunk size. This is due to transfer sizes larger
than the chunk size internally access whole chunk files while
smaller transfer sizes access one chunk at a random offset.
Consequently, random accesses for large transfer sizes are
conceptually the same as sequential accesses. For smaller
transfer sizes, e.g., 8 KiB, random write and read throughput
decreased by approximately 33% and 60%, respectively, for
512 nodes owing to the resulting random access to positions
within the chunks.

For the shared file cases, a drawback of GekkoFS’ syn-
chronous and cache-less design becomes visible. No more

than approximately 150K write operations per second were
achieved. This was due to network contention on the daemon
which maintains the shared file’s metadata whose size needs to
be constantly updated. To overcome this limitation, we added
a rudimentary client cache to locally buffer size updates of a
number of write operations before they are send to the node
that manages the file’s metadata. As a result, shared file I/O
throughput for sequential and random access were similar to
file-per-process performances since chunk management on the
daemon is then conceptually indifferent in both cases.

V. CONCLUSION AND ACKNOWLEDGEMENTS

We have introduced and evaluated GekkoFS, a new burst
buffer file system for HPC applications with relaxed POSIX-
semantics, allowing it to achieve millions of metadata opera-
tions even for a small number of nodes and close to linear scal-
ability in various data and metadata use cases. Next, we plan
to extend GekkoFS in three directions: Investigate GekkoFS’
with various chunk sizes, evaluate benefits of caching, and
explore different data distribution patterns.

The work has been funded by the German Research
Foundation (DFG) through the ADA-FS project as part
of the Priority Programme 1648. It is also supported by
the Spanish Ministry of Science and Innovation (TIN2015–
65316), the Generalitat de Catalunya (2014–SGR–1051), as
well as the European Union’s Horizon 2020 Research and
Innovation Programme (NEXTGenIO, 671951) and the Eu-
ropean Comission’s BigStorage project (H2020-MSCA-ITN-
2014-642963). This research was conducted using the super-
computer MOGON II and services offered by the Johannes
Gutenberg University Mainz.

4



REFERENCES

[1] Infinite Memory Engine. https://www.ddn.com/products/
ime-flash-native-data-cache.

[2] The Open Group Base Specifications Issue 7(IEEE Std 1003.1-2008).
http://pubs.opengroup.org/onlinepubs/9699919799/.

[3] J. Bent, G. A. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for
parallel applications,” in Proceedings of the ACM/IEEE Conference on
High Performance Computing (SC), November 14-20, Portland, Oregon,
USA, 2009.

[4] P. J. Braam and P. Schwan, “Lustre: The intergalactic file system,” in
Ottawa Linux Symposium, 2002, p. 50.

[5] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, and K. Antypas,
“Production i/o characterization on the cray xe6,” in Proceedings of
the Cray User Group meeting, vol. 2013, 2013.

[6] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for linux clusters,” in 4th Annual Linux Showcase &
Conference 2000, Atlanta, Georgia, USA, October 10-14, 2000, 2000.

[7] P. H. Carns, J. Jenkins, C. D. Cranor, S. Atchley, S. Seo, S. Snyder,
and R. B. Ross, “Enabling NVM for data-intensive scientific services,”
in 4th Workshop on Interactions of NVM/Flash with Operating Systems
and Workloads, INFLOW@OSDI 2016, Savannah, GA, USA, November
1, 2016., 2016.

[8] A. Choudhary, W.-k. Liao, K. Gao, A. Nisar, R. Ross, R. Thakur,
and R. Latham, “Scalable i/o and analytics,” in Journal of Physics:
Conference Series, vol. 180, no. 1, 2009, p. 012048.

[9] P. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/output
characteristics of scalable parallel applications,” in Proceedings Super-
computing ’95, San Diego, CA, USA, December 4-8, 1995, 1995, p. 59.

[10] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb,” in CIDR 2017,
8th Biennial Conference on Innovative Data Systems Research, Chami-
nade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

[11] M. Dorier, G. Antoniu, R. B. Ross, D. Kimpe, and S. Ibrahim, “Calciom:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, 2014, pp.
155–164.

[12] M. Folk, A. Cheng, and K. Yates, “Hdf5: A file format and i/o
library for high performance computing applications,” in Proceedings
of supercomputing, vol. 99, 1999, pp. 5–33.

[13] W. Frings, F. Wolf, and V. Petkov, “Scalable massively parallel I/O to
task-local files,” in Proceedings of the ACM/IEEE Conference on High
Performance Computing (SC), November 14-20, Portland, Oregon, USA,
2009.

[14] F. Herold, S. Breuner, and J. Heichler, “An introduction to
beegfs,” 2014, https://www.beegfs.io/docs/whitepapers/Introduction to
BeeGFS by ThinkParQ.pdf.

[15] T. Hey, S. Tansley, and K. M. Tolle, Eds., The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, 2009.

[16] R. Latham, R. B. Ross, and R. Thakur, “The impact of file systems
on MPI-IO scalability,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 19-22, 2004, Proceedings,
2004, pp. 87–96.

[17] P. H. Lensing, T. Cortes, J. Hughes, and A. Brinkmann, “File system
scalability with highly decentralized metadata on independent storage
devices,” in IEEE/ACM 16th International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), Cartagena, Colombia, May 16-19, 2016,
pp. 366–375.

[18] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in leadership-
class storage systems,” in IEEE 28th Symposium on Mass Storage
Systems and Technologies, MSST 2012, April 16-20, 2012, Asilomar
Conference Grounds, Pacific Grove, CA, USA, 2012, pp. 1–11.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in 6th International Workshop on Challenges of
Large Applications in Distributed Environments, CLADE@HPDC 2008,
Boston, MA, USA, June 23, 2008, 2008, pp. 15–24.

[20] “Mdtest metadata benchmark and ior data benchmark,” 2018, https://
github.com/hpc/ior.

[21] M. Moore, D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills,
E. Quarles, S. Sampson, S. Yang, and B. Wilson, “Orangefs: Advancing
pvfs,” FAST poster session, 2011.

[22] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best,
“File-access characteristics of parallel scientific workloads,” IEEE Trans.
Parallel Distrib. Syst., vol. 7, no. 10, pp. 1075–1089, 1996.

[23] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai,
F. Wang, Y. K. , J. Rogers, J. James Simmons, and R. Miller, “Olcfs
1 tb/s, next-generation lustre file system,” in Proceedings of Cray User
Group Conference (CUG 2013), 2013.

[24] S. Oral and G. Shah, “Spectrum scale enhancements for
coral. presentation slides at supercomputing’16.” 2016,
http://files.gpfsug.org/presentations/2016/SC16/11 Sarp Oral Gautam
Shah Spectrum Scale Enhancements for CORAL v2.pdf.

[25] S. Patil and G. A. Gibson, “Scale and concurrency of GIGA+: file system
directories with millions of files,” in 9th USENIX Conference on File
and Storage Technologies, San Jose, CA, USA, February 15-17, 2011,
2011, pp. 177–190.

[26] S. Patil, K. Ren, and G. Gibson, “A case for scaling HPC metadata
performance through de-specialization,” in 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, Salt Lake
City, UT, USA, November 10-16, 2012, 2012, pp. 30–35.

[27] Y. Qian, X. Li, S. Ihara, L. Zeng, J. Kaiser, T. Süß, and A. Brinkmann,
“A configurable rule based classful token bucket filter network request
scheduler for the lustre file system,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Denver, CO, USA, November 12 - 17, 2017, pp. 6:1–6:12.

[28] K. Ren, Q. Zheng, S. Patil, and G. A. Gibson, “Indexfs: Scaling file
system metadata performance with stateless caching and bulk insertion,”
in International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2014, New Orleans, LA, USA, November
16-21, 2014, 2014, pp. 237–248.

[29] D. Ritchie and K. Thompson, “The UNIX time-sharing system (reprint),”
Commun. ACM, vol. 26, no. 1, pp. 84–89, 1983.

[30] R. Ross, R. Thakur, and A. Choudhary, “Achievements and challenges
for i/o in computational science,” in Journal of Physics: Conference
Series, vol. 16, no. 1, 2005, p. 501.

[31] R. B. Ross and R. Latham, “PVFS - PVFS: a parallel file system,” in
Proceedings of the ACM/IEEE SC2006 Conference on High Performance
Networking and Computing, November 11-17, 2006, Tampa, FL, USA,
2006, p. 34.

[32] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proceedings of the FAST ’02 Conference
on File and Storage Technologies, January 28-30, Monterey, California,
USA, 2002, pp. 231–244.

[33] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. H.
Carns, A. Castelló, D. Genet, T. Hérault, S. Iwasaki, P. Jindal, L. V.
Kalé, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir,
Y. Sun, K. Taura, and P. H. Beckman, “Argobots: A lightweight low-
level threading and tasking framework,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 3, pp. 512–526, 2018.

[34] J. Soumagne, D. Kimpe, J. A. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. B. Ross, “Mercury: Enabling remote procedure
call for high-performance computing,” in 2013 IEEE International
Conference on Cluster Computing, CLUSTER 2013, Indianapolis, IN,
USA, September 23-27, 2013, 2013, pp. 1–8.

[35] S. Thapaliya, P. Bangalore, J. F. Lofstead, K. Mohror, and A. Moody,
“Managing I/O interference in a shared burst buffer system,” in 45th
International Conference on Parallel Processing, ICPP 2016, Philadel-
phia, PA, USA, August 16-19, 2016, 2016, pp. 416–425.

[36] Thinkparq and BeeGFS, “Beegfs the leading parallel cluster file system,”
2018, https://www.beegfs.io/docs/BeeGFS Flyer.pdf.

[37] M.-A. Vef, V. Tarasov, D. Hildebrand, and A. Brinkmann, “Challenges
and solutions for tracing storage systems: A case study with spectrum
scale,” ACM Trans. Storage, vol. 14, no. 2, pp. 18:1–18:24, 2018.

[38] M. Vilayannur, P. Nath, and A. Sivasubramaniam, “Providing tunable
consistency for a parallel file store,” in Proceedings of the FAST ’05
Conference on File and Storage Technologies, December 13-16, 2005,
San Francisco, California, USA, 2005.

[39] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. Miller, D. Long, and
T. McLarty, “File system workload analysis for large scale scien-
tific computing applications,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep., 2004.

5



[40] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November 13-
18, 2016, 2016, pp. 807–818.

[41] J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and scalable metadata
management to support a trillion files,” in Proceedings of the ACM/IEEE
Conference on High Performance Computing, SC 2009, November 14-
20, 2009, Portland, Oregon, USA, 2009.

[42] S. Yang, W. B. Ligon III, and E. C. Quarles, “Scalable distributed
directory implementation on orange file system,” Proc. IEEE Intl.
Wrkshp. Storage Network Architecture and Parallel I/Os (SNAPI), 2011.

6


