
A Skeleton for the Tabu Sear
h Metaheuristi
 withAppli
ations to Problems in Software Engineering�(Extended Abstra
t)Maria J. Blesa Fatos XhafaDepartament de Llenguatges i Sistemes Informàti
sUniversitat Politè
ni
a de CatalunyaJordi Girona, 1-3, Campus Nord C6E-08034, Bar
elona, SpainE-mail: {mjblesa,fatos}�lsi.up
.esAbstra
tWe present a C++ implementation of a skeleton for Tabu Sear
h method. Tabu Sear
hmethod is a well-known meta-heuristi
 that has proved su

essful for sub-optimally solvinghard
ombinatorial optimization problems. Re
ently there is an in
reasing interest in theappli
ation of meta-heuristi
s, su
h as Tabu Sear
h, to problems in software engineering.Tabu Sear
h method has already been implemented for a large number of optimizationproblems, to the best of our knowledge they are all ad ho
 implementations. We propose ageneri
 C++ implementation based on a skeleton design for the method. This implementa-tion o�ers, among others, the possibility for the user to instantiate the Tabu Sear
h methodfor any problem with little e�orts and basi
 knowledge of C++ language. The implementa-tion provides both robustness and re-usability properties due to Obje
t Oriented Paradigm.We show how to model the proje
t management s
heduling as an optimization problem andinstantiate the skeleton of Tabu Sear
h to solve it.Keywords: Meta-heuristi
s, Tabu Sear
h, Generi
 Programming, Software Engineering.1 Introdu
tionMeta-heuristi
s, su
h as Tabu Sear
h, Simulated Annealing and Geneti
 Algorithms, have ex-tensively been used for approximately solving optimization problems arising from di�erent areasof theory and pra
ti
e (
ombinatorial optimization, graph theory, e
onomi
s, engineering, et
.).Re
ently there is an in
reasing interest in applying meta-heuristi
 methods for solving softwareengineering problems. Clarke et al. [CHHJ00℄ (see also [JES98, TCM98℄) showed how meta-heuristi
s
an be applied to problems arising in software engineering, su
h as software testing,requirements phasing, systems integration, et
. They also suggest a list of problems
andidatefor su
h appli
ation in
luding the proje
t management s
heduling.One of the well-known meta-heuristi
s is the Tabu Sear
h (TS). TS was introdu
ed byGlover [Glo77℄ (for its
urrent form see [Glo86℄) and has been su

essfully applied to many prob-lems su
h as s
heduling problems (e.g. [LBG91, Wid91, DT86, PR95℄), graph problems (e.g. k-Cardinality Tree [JL97℄), resour
e allo
ations (e.g. [SK90, ?℄), layout problems (e.g. [FW74,KP78℄), to name a few. TS is a meta-heuristi
 that means it
onsists of a main heuristi
 andseveral internal heuristi
s whose implementation depends on the problem at hand. This makesthe Tabu Sear
h a quite �exible method sin
e usually di�erent implementations of the internal�This resear
h was partially supported by the IST Programme of the EU under
ontra
t numberIST-1999-14186 (ALCOM-FT) and the CICYT proje
t TIC1999-0754-C03 (MALLBA).1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

heuristi
s are possible. Given its wide appli
ability, TS has now be
ome an established opti-mization approa
h that is rapidly spreading to many new �elds, su
h as resour
e management,human fa
tors engineering, pro
ess design, logisti
s, and te
hnology planning. After a
arefuland almost exhaustive revision of existing implementations, we have observed that all of themare ad ho
 and quite dependable on the problem at hand. This approa
h has, at least, twodrawba
ks. First, one has to implement the method from s
rat
h for any problem of interest,and, se
ond, it is di�
ult to introdu
e even small
hanges in the
ode sin
e it would require themodi�
ation of most of the implementation. We remark again that di�erent implementations ofthe tabu sear
h for the same problem
an be generated by varying the de�nition and stru
ture ofseveral underlying entities of the sear
h, i.e. internal heuristi
s. So, it would be quite interestingto generate new implementations for a problem from existing ones with as many few
hanges aspossible, at the aim of obtaining a better implementation.In this work, our motivation was to design and implement a skeleton for TS based on Generi
Programming Paradigm. The main advantages of this implementation are: (a) it allows theuser to instantiate any problem of interest with little e�orts (by simply des
ribing problem-dependent features), (b) it is �exible enough so di�erent implementations for the same problem
an be generated by
hanging the implementation of the internal heuristi
s of the method, and(
) it is easy to use even by users not familiarized with Tabu Sear
h from areas su
h as biology,e
onomi
s, software engineering et
. These properties of our implementation are assured byproviding a generi
 implementation of the entities of Tabu Sear
h that do not depend on theproblem (e.g. the main method) and a �xed but generi
 interfa
e for the rest of the entities ofthe method that are problem-dependent. Therefore, in order to instantiate the skeleton for agiven problem the user has to just �ll in, i.e.
omplete, the implementation of interfa
es for theproblem-dependent features. So Software Engineering problems
an be reformulated as sear
hproblems and solved through our Tabu Sear
h skeleton only by de�ning some problem-dependentfeatures.Why generi
 programming? The ingredients of the Tabu Sear
h method are the same for anyoptimization problem to whi
h one would like to apply the method. What makes di�erent theimplementation of Tabu Sear
h for di�erent problems is the implementation of internal heuristi
sbut the engine of the Tabu Sear
h
an be made generi
 enough so as to assume that it doesn'tdepend on the problem. As we will see later, at this point we had to abstra
t from a large numberof implementation in order to
ome up with a generi
 form of the main method. It is, therefore,quite interesting to have a generi
 program or a kind of template for Tabu Sear
h from whi
hone
ould derive instantiations for any problem of interest. Many authors have pointed out thatTS may be viewed as an engineering design approa
h. In this spirit, we dealt with the designand implementation issues of Tabu Sear
h from a generi
 programming paradigm. The skeletonwas, then, a
hieved by a
areful design identifying the
ommon entities of the TS method.2 Overview on Tabu Sear
hTabu Sear
h belongs to the family of lo
al sear
h algorithms but here the sear
h is done in aguided way, by maintaining histori
al information on exploration pro
ess, in order to over
omethe lo
al optima. Roughly speaking, the method starts from an initial solution and jumps fromone solution to another one in the solution spa
e but tries to avoid
y
ling by forbidding orpenalizing moves whi
h take the solution, in the next iteration, to solutions previously visited(
alled tabu). To this aim, TS keeps a tabu list whi
h is histori
al in nature and
onstitutesthe Tabu Sear
h memory. The role of the memory
an
hange as the algorithm pro
eeds. Atinitialization the goal is to make a
oarse examination of the solution spa
e and further on thesear
h is fo
used to produ
e lo
al optima solutions in a pro
ess of intensi�
ation or make adiversi�
ation in order to explore new regions of the solution spa
e.2.1 Identifying the Main Entities of Tabu Sear
hHere we identify the basi
 entities parti
ipating in the Tabu Sear
h method. In order to ab-stra
t these entities and fun
tionalities we did a very
areful review of di�erent known ad ho
2

implementations for the method in the literature. As we will see, a right abstra
tion will beeasily translated into a programming language using obje
t oriented and generi
 programmingparadigm. This will allow us to obtain a generi
 and problem-independent skeleton for the TabuSear
h method.Problem. Represents an instan
e of the problem to be solved.Solution. Represents a feasible solution to the problem. The a

eptability
riteria for TS is to�nd a feasible solution of
ost as
lose as possible to the optimum
ost.Neighborhood. The set of all possible solutions that are rea
hed from a given solution ina single step (
alled move) is referred to as its neighborhood. TS moves from one solution tothe �best� solution among all (or part of) possible solutions in its neighborhood. This
hoi
e is
ru
ial to the whole pro
ess. On
e a solution is visited it is
onsidered tabu for some time. Asolution in the neighborhood that is marked tabu will not be
onsidered, so
y
ling, i.e. fallinginto already visited solutions, is (partially) avoided.Move. A transition from a feasible solution to another one is
alled move. Typi
ally, as in otherlo
al sear
h methods, a move performs some lo
al perturbation over the solution it is appliedto. A move may be des
ribed by one or more attributes. Considering the number of attributesrepresenting a move we may distinguish single-attribute moves and multi-attribute moves. Thereason behind this is that, in general, solutions are extremely impra
ti
al to keep tra
k of theexploration pro
ess and therefore it is better to des
ribe the exploration pro
ess in terms ofmoves. Moves are given the tabu status if they lead to previously visited solutions. HoweverTS establishes an aspiration
riteria so that tabu moves
an be a

epted if they satisfy su
h a
riteria.Tabu list. Applying a move to a given solution may result in a �better� or �worst� solution.Without additional
ontrol, however, a lo
ally optimal solution
an be re-visited immediatelyafter moving to a neighbor, or in a future stage of the sear
h pro
ess. To prevent the sear
h from
y
ling between the same solutions, TS uses a short term memory �the so-
alled tabu list� to theaim of representing the traje
tory of solutions
onsidered. The goal is to permit �good� movesin ea
h iteration without re-visiting solutions already en
ountered. The tabu list managementis a key point to the TS pro
edure.Intensi�
ation and Diversi�
ation. While exploring a region of solution spa
e it seemsreasonable to intensify the sear
h if we had eviden
es that su
h a region may
ontain goodsolutions. To this aim, TS in
orporates an intensi�
ation pro
edure. During the explorationpro
ess the method may get stu
k in a region where no better solutions are found. In su
h a
ase, the TS method laun
hes the diversi�
ation pro
edure to spread out the sear
h in anotherregion. For the sake of generi
ity we have split of the diversi�
ation into soft diversi�
ationwhen we move to a region
lose to the
urrent one and strong diversi�
ation when we move toa
ompletely di�erent region.Main pro
edure. There is no a standard main pro
edure for TS in the literature. We
he
kedout several existing TS programs and observed that the main pro
edure looks di�erent in di�erentimplementations of TS sin
e the authors adapt it to the problem at hand. Sin
e we wanted askeleton for TS su
h that any problem
ould �t in, we had to deal with the design pro
ess ofa
omponent. This
omponent was going to be the prin
iple engine of any program for TSobtained by instantiating the skeleton. In su
h a design pro
ess we had to abstra
t from a largenumber of di�erent implementations for TS and we
ame up with the
omponent,
alled Solver.3 Implementation of the Skeleton for Tabu Sear
h MethodWe have designed and implemented a generi
 skeleton for the TS method. The main entities ofthe method mentioned in Se
tion 2.1 have been translated into either C++
lasses or methods,a

ording to their logi
al de�nition in the
ontext and domain of the TS method. Some ofthese entities have dire
tly be
ome C++
lasses (e.g. problem, solution and move) while othershave been introdu
ed into
lasses as methods (e.g. intensi�
ation and diversi�
ation). The basi
3

idea behind the skeleton is to allow the user to instantiate any optimization problem of interestby only de�ning the problem-dependent features. Elements related to the inner algorithmi
fun
tionality of the method itself are hidden to the user.The
lasses forming the skeleton are groupped a

ording to their "availability". The
lassesimplementing inner fun
tionalities of the method (e.g. the main pro
edure) are
ompletely pro-vided by the skeleton, whereas there are other
lasses (interfa
es) whose implementation isrequired to be instantiated (
ompleted) by the user. Therefore, the
lasses forming the skeletonare
lassi�ed into two groups: provided and required
lasses.Provided Classes. They implement the TS method itself and the rest of inner fun
tionalities.A
tually there are only two provided
lasses in the skeleton: the
lass Solver and the
lassSetup. The
lass Solver implements the main pro
edure and maintains the state of theexploration. The
lass Setup
ontains the setup parameters needed to run the method(e.g. number of independent runs to perform, number of iterations per independent run,et
.). The user
an
onsult the state of the sear
h and also inquire other informationrelated to the exploration pro
ess. To this end the skeleton o�ers a transparent interfa
e,i.e. de�nition, of the provided part to the user. In a
ertain sense, the provided
lasses
anbe seen as a �private� part of the skeleton.Required Classes. They represent the rest of the entities and fun
tionalities involved in theTS method whose representation/implementation depends on the problem being solved.The requirements needed over these entities also depend on the problem. We have beenable to abstra
t the ne
essities of ea
h entity but the way they are
arried out whensolving a problem depends strongly on the problem itself. This allowed us to de�ne C++
lasses with a �xed interfa
e but no implementation, so that the expe
ted intera
tion is
ompletely �xed and de�ned. The
lass Solver
an use the required
lasses in a �blindand generi
 way� (i.e. as bla
k boxes) when implementing the TS method but they need a
on
rete implementation when instantiating a
on
rete problem.

Figure 1: File
omposition of the TS-skeleton.Instantiating the skeleton to solve a
on
rete problem (e.g. a s
heduling problem) is the pro-
ess of
ompleting the requirements of the
lasses labelled as required with the features of a
on
rete problem at hand. More pre
isely, to
omplete a required
lass means: (a) to intro-du
e data types for representing the entities and, (b) to implement the methods of the
lassa

ording to the
hosen data types. We have separated the C++
lasses of the skeleton in threeparts/�les: (1) the interfa
e of the
lasses (�le TabuSear
h.hh); (2) the implementation of theprovided
lasses (�le TabuSear
h.pro.

) and, (3) the implementation of the required
lasses(�le TabuSear
h.req.

). Figure 1 represents the relation among required and provided
lassesand their �le organization. 4

Following we show, by example, how the entities and
on
epts abstra
ted in Se
tion 2.1 havebeen translated into
lasses and methods (for more details the reader is referred to [BX00℄). Wewill spe
ially fo
us on des
ribing the provided
lass Solver and the required
lass Solution.The provided
lass Solver It represents the main pro
edure of TS method and all theinternal features related to the sear
h. Intensi�
ation and diversi�
ation pro
edures have beenintrodu
ed into the exploration pro
ess in order to
onstru
t a generi
 standardized algorithmfor the TS method.The user
an de
ide if he wants to apply them and, if so, whi
h will be theire�e
t over the neighborhood-based sear
h (see
lass Solution below).The
lass Solver also
olle
ts information about the state of the sear
h being performed. Thestate basi
ally
onsists of information about the best solution found so far and those attributesdes
ribing the
urrent point of the sear
h pro
ess. The interfa
e for
lass Solver now follows:provides
lass Solver {publi
:Solver (
onst Problem& pbm,
onst Setup& setup);virtual ~Solver ();
onst Problem& problem ()
onst;
onst Setup& setup ()
onst;// Exe
utionvirtual void run () =0;virtual void set_
urrent_solution (
onst Solution& sol);virtual void set_
urrent_solution (
onst Solution& sol,
onst double
ost);// Global statevirtual int independent_run ()
onst;virtual float time_spent ()
onst;virtual Solution best_solution ()
onst;virtual int independent_run_best_found ()
onst;virtual int iteration_best_found ()
onst;virtual float time_best_found ()
onst;virtual double best_
ost ()
onst;virtual double worst_
ost ()
onst;...};The required
lass Solution Represents feasible solutions to the stated problem. Beforegiving its interfa
e we brie�y des
ribe the methods of this
lass. TS starts exploration froman initial solution generated by some other pro
edure (typi
ally random or greedy). The initialsolution in the TS skeleton is obtained by the method set_initial(). Any solution has anasso
iated
ost or bene�t. The method in
harge of
al
ulating this
ost in the
lass is namedfitness().A rea
hable solution in the neighborhood
an be des
ribed in terms of the sour
e solutionand the move that leads to that neighbor solution after being applied to sour
e solution. Themethod apply() transforms a solution into a neighbor solution by applying a movement. TSwill
hoose the �best� solution in the neighborhood (a
tually the best move that leads to it) tobe the next solution to
ontinue the exploration. Moves in TS are given the tabu status if theylead to previously visited solutions. This tends to avoid
y
ling. Tabu Sear
h also establishes anaspiration
riteria so that tabu moves
an be a

epted if they satisfy su
h a
riteria. The methodaspiration()
he
ks this
riteria over the
urrent solution with relation to a given movement.TS in
orporates an intensi�
ation pro
edure to intensify the sear
h if it had eviden
es thatthe region being explored may
ontain good solutions. The intensi�
ation is done by rewardingsolutions having features in
ommon with the
urrent solution, and then solutions that are farfrom the
urrent solution are penalized indire
tly. The method reward() has to des
ribe howthe
urrent solution (a
tually the items forming the solution) are rewarded. This method will beinvoked just before the intensi�
ation starts. Similarly, the methods penalize() and es
ape()allow diversi�
ation of the sear
h (see Se
tion 2.1).Resuming, the main part of
lass Solution interfa
e is the following:requires
lass Solution {publi
:Solution (
onst Problem& pbm);~Solution(); 5

void set_initial ();double fitness ()
onst;double delta (
onst Movement& move)
onst;void apply (
onst Movement& move);bool aspiration (
onst Movement& move,
onst TabuStorage& tstore,
onst Solver& solver)
onst;void reward ();void penalize ();void es
ape ();...};4 Appli
ation to Proje
t Management S
hedulingThe skeleton for Tabu Sear
h method
an be applied to any optimization problem for whi
hwe dispose a Tabu Sear
h algorithm, i.e. for whi
h we
an spe
ify the Tabu Sear
h entities.In parti
ular, we
an apply the skeleton for Tabu Sear
h also to problems arising in softwareengineering. Clearly, �rst, we must formulate su
h problems as optimization problems, se
ond,spe
ify the Tabu Sear
h entities and �nally instantiate the skeleton for Tabu Sear
h yielding toan implementation of Tabu Sear
h for the problem at hand. In this se
tion we brie�y show thesesteps for Proje
t Management S
heduling in a general setting (see e.g. [Som96℄).4.1 Proje
t S
heduling as Optimization ProblemA Proje
t S
hedule is the des
ription of the Software Pro
ess Development. We sele
t an appro-priate pro
ess model and we identify the (software engineering) tasks that have to be performed.Clearly, ea
h task is asso
iated a duration time (an estimation for the
ompletion time of thetask) and there are dependen
ies between di�erent tasks. Asso
iated to a proje
t are also di�er-ent resour
es (e.g. number of people, available ma
hines et
.) needed for the
ompletion of theproje
t and we may assume that resour
es
an be requested by di�erent tasks (see the examplegiven in Figure 2).Task Duration Res Req (1) Res Req (2) Res Req (3) Res Req (4)1 0 0 0 0 02 4 3 9 8 03 7 0 0 2 04 2 0 0 4 05 1 6 0 0 06 10 3 0 10 07 1 0 1 0 78 6 7 0 3 09 9 7 10 2 810 1 2 0 1 811 1 0 3 0 012 0 0 0 0 0Figure 2: Tasks, Duration and Resour
e UsageThe key point to the Proje
t Management is to assure an optimal
ompletion of the tasksunder the pre
eden
e
onstraints and resour
e
onstraints. Clearly, this problem is an optimiza-tion problem in whi
h the obje
tive is to �nd a s
hedule of the a
tivities su
h that minimizesthe overall
ompletion time.A
lose observation to the problem shows that this problem belongs to the family of s
hedulingproblem known in optimization theory as Resour
e Constraint S
heduling Problem (RCSP). Wehave instantiated the Tabu Sear
h skeleton for the last problem from whi
h we
an solve instan
esof Proje
t S
heduling Problem as well.4.2 Instantiating the SkeletonAs we explained in Se
tion 3, in order to instantiate the skeleton for the RCPS problem the usershould
omplete the implementation of the interfa
es in TabuSear
h.req.

 su
h as Problem,Solution, Movement et
. Due to la
k of spa
e we show the instantiation pro
ess by example,6

on
retely, let us see how would the user
omplete the implementation of
lass Problem andSolution.Problem representation. The RCPSP
an be represented with six attributes: (1) the numberof tasks to be s
heduled, (2) the number of resour
es, (3) a matrix representing the pre
eden
erelations, (4) an array
ontaining the duration of ea
h task, (5) an array
ontaining the maximumavailability of ea
h resour
e, and (6) a matrix indi
ating, for ea
h task, how many resour
es usesof ea
h type. Clearly, we
an �ll in the data representation of
lass Problem by simply addingint _nb_tasks;int _nb_resour
es;array2<int> _pre
eden
es;array<int> _durations;array<int> _resour
es;array2<int> _usage;to the private part of this
lass.Solution representation. A solution for the s
heduling problem is a sequen
e indi
ating theorder in whi
h tasks should be exe
uted. Tasks are pro
essed from left to right, and one taskwould be s
heduled to start as soon as possible a

ording to its pre
eden
e
onstraints w.r.t.the task that are not s
heduled yet and w.r.t. the resour
e usage of the tasks that are beingexe
uted at the same time (resour
e
onstraints).Solutions
an be represented with two attributes: (1) an array of integers where ea
h integerrepresents a task and their index in the array indi
ates the s
heduling order, and (2) a referen
e tothe asso
iated problem, be
ause the problem
ontains all the information related to pre
eden
es,durations, et
.array<int> _s
hedule;Problem _problem;As for the methods of this
lass, we mention here how is implemented the method set_initial().An initial solution is obtained by a ba
kward deep-�rst traversal of the pre
eden
e graph (with-out repeating tasks). This is a trivial way to deal with pre
eden
e
onstraints. Resour
e usagedo not in�uen
e this pro
edure due to the way we interpret a solution. In this initial solution,a task is s
heduled immediately after some of its pre
eden
e tasks.4.3 Running the programOn
e the instantiation is
ompleted, the user may run it with a program like this:#in
lude "TabuSear
h.hh"int Main (int arg
,
har** argv){ using skeleton TabuSear
h;Problem problem; // Read the problem instan
e.
in >> problem;Setup setup; // Read the setup parameters.
in >> setup;Solver_Seq solver(problem,setup); // Run the Tabu Sear
h method.solver.run();
out << solver.best_solution() << endl; // Report best solution found.
out << solver.best_
ost() << endl;return 0;}
7

5 Con
lusions and Future WorkWe have designed and implemented a skeleton for Tabu Sear
h Method based on generi
 pro-gramming and obje
t oriented paradigms. The skeleton
an be instantiated for any optimizationproblem, in parti
ular to those problems arising in software engineering that
an be formulatedas optimization problems. The skeleton o�ers several advantages to the user su
h as a standard-ized form of Tabu Sear
h, less e�orts at implementing the Tabu Sear
h as
ompared to ad ho
implementation and time savings. Due to these properties we believe that the skeleton will beuseful not only to users from optimization but also from other di�erent areas where optimizationproblems arise.We plan to instantiate the skeleton for other problems in software engineering reportedin [CHHJ00℄Referen
es[BX00℄ M.J. Blesa and F. Xhafa. A C++ Implementation of a Skeleton for Tabu Sear
hMethod. Te
hni
al Report LSI-00-47-R, Dept. de LSI, UPC, 2000.[CHHJ00℄ J. Clarke, M. Harman, R. Hierons, and B. Jones. The Appli
ation of Metaheuristi
Sear
h Te
hniques to Problems in Software Engineering. Te
hni
al Report SEMINAL-TR-01-2000, SEMINAL Network, 2000. http://www.dis
brunel.org.uk/seminal.[DT86℄ M. Dell'Ami
o and M. Trubian. Applying Tabu Sear
h to the Job-Shop S
hedulingProblem. Ann. of Op. Res., 41:231�252, 1986.[FW74℄ R.L. Fran
is and J.A. White. Fa
ility Layout and Lo
ation. Prenti
e-Hall, 1974.[Glo77℄ F. Glover. Heuristi
s for Integer Programming Using Surrogate Constraints. De
isionS
ien
es, 8:156�166, 1977.[Glo86℄ F. Glover. Future Paths for Integer Programming and Links to Arti�
ial Intelligen
e.Computers and Op. Res., 5:533�549, 1986.[JES98℄ B. Jones, D. Eyres, and H. Sthamer. A Strategy for Using Geneti
 Algorithms toAutomate Bran
h and Fault-Based Testing. The Computer Journal, 41:98�107, 1998.[JL97℄ K. Jörnsten and A. Løkketangen. Tabu Sear
h for Weighted k-Cardinality Trees.Asia-Pa
i�
 J. of Op. Res., 14(2):9�26, 1997.[KP78℄ J. Krarup and P.M. Pruzan. Computer-aided Layout Design. Math. Prog. Study,9:75�94, 1978.[LBG91℄ M. Laguna, J.W. Barnes, and F. Glover. Tabu Sear
h Methodology for a SingleMa
hine S
heduling problem. J. of Int. Manufa
turing, 2:63�74, 1991.[PR95℄ S. Porto and C. Ribeiro. A Tabu Sear
h Approa
h to Task S
heduling on Hetero-geneous Pro
essor under Pre
eden
e Constraints. Int. J. of High-Speed Comp., 7,1995.[SK90℄ J. Skorin-Kapov. Tabu Sear
h Applied to the Quadrati
 Assignment Problem. ORSAJ. on Comp., 2(1):33�45, 1990.[Som96℄ I. Somerville. Software Engineering. Addison Wesley, 1996.[TCM98℄ N. Tra
ey, J. Clark, and K. Mander. Automated Program Flaw Finding Using Sim-ulated Annealing. In International Symposium on Software Testing and Analysis,pages 73�81. ACM/SIGSOFT, 1998.[Wid91℄ M. Widmer. The Job-shop S
heduling with Tooling Constraints: A Tabu Sear
hApproa
h. J. Op. Res., 42:75�82, 1991.8

A Experimental ResultsWe have tested the instantiation TS skeleton for the Resour
e-Constrained Proje
t S
hedulingProblem (RCPSP) with instan
es from the literature. The table below shows the results ob-tained for some small instan
es obtained from the Institut fü Wirts
haftstheorie und OperationsResear
h1 at the Universität Karlsruhe. By know we have tested a simpler version of theseinstan
es by not
onsidering the weights of the ar
s in the graph of pre
eden
es.Instan
e Nb. Nb. Best Solution (Fitness) Time Needed Total Exe
utionTasks Resour
es Obtained (se
s) Time (se
s)TESTSETUBO.psp1.s
h 10 5 66 0.06 2754.25TESTSETUBO.psp2.s
h 10 5 38 0.19 1251.03TESTSETUBO.psp3.s
h 10 5 38 213.14 1496.76TESTSETUBO.psp4.s
h 10 5 40 0.08 2165.11TESTSETUBO.psp5.s
h 10 5 42 0.91 1400.07TESTSETUBO.psp16.s
h 10 5 28 0.05 737.11TESTSETUBO.psp17.s
h 10 5 56 0.58 808.37TESTSETUBO.psp18.s
h 10 5 44 117.24 1455.4TESTSETUBO.psp19.s
h 10 5 32 1.41 907.15TESTSETUBO.psp20.s
h 10 5 42 0.04 184.05TESTSETUBO.psp21.s
h 10 5 29 0.17 372.37All the exe
utions performed share the same setup
on�guration:� Number of Independent Runs: 10� Number of Iterations per IR: 1000� Use Delta Fun
tion: NO� Tabu Size: 10� Mininum Tabu Status: 1 iteration� Maximum Tabu Status: 1 iteration� Maximum Number of Repetitions to Blo
k the Sear
h: 10� Diversify during: 50 iterations� Intensify during: 50 iterationsWe want to test in the near future other interesting ben
hmarks. One is the Online Re-sour
es on S
heduling2. This site informs about the Resear
h Group Resour
e ConstrainedProje
t S
heduling (see www.wior.uni-karlsruhe.de/r
psp/) at the Institut fü Wirts
haftstheorieund Operations Resear
h.Another important site is the Library PSPLIB3 at the Institute der Wirts
hafts und Sozial-wissens
haftli
hen Fakultät der Christian Albre
hts Universität zu Kiel. This library
ontainsdi�erent problem sets for various types of resour
e
onstrained proje
t s
heduling problems aswell as optimal and heuristi
 solutions. The instan
es have been generated by the standardproje
t generator ProGen. The library itself, i.e. the types of models represented, details ofthe generation of the problems, the experimental design for generating the problems, problemparameters et
,
an be found in the following paper:Kolis
h, R. and A. Spre
her (1996): PSPLIB - A proje
t s
heduling library,European Journal of Operational Resear
h, Vol. 96, pp. 205�216.The original working paper
an be downloaded via the home-page or ftp4.We plan to test our instantiation with some of these ben
hmarks and publish the obtainedresults at www.lsi.up
.es/�mjblesa/TSExperiments/s
heduling.html.1www.wior.uni-karlsruhe.de/RCPSPmax/progenmax/r
pspmax.html2www.ie.bilkent.edu.tr/ lors/lors/gen
3.html3www.bwl.uni-kiel.de/Prod/psplib/library.html4www.bwl.uni-kiel.de/bwlinstitute/Prod/mab/kolis
h.htmlftp.bwl.uni-kiel.de/pub/operations-resear
h/wp396.ps 9

