
A Skeleton for the Tabu Searh Metaheuristi withAppliations to Problems in Software Engineering�(Extended Abstrat)Maria J. Blesa Fatos XhafaDepartament de Llenguatges i Sistemes InformàtisUniversitat Politènia de CatalunyaJordi Girona, 1-3, Campus Nord C6E-08034, Barelona, SpainE-mail: {mjblesa,fatos}�lsi.up.esAbstratWe present a C++ implementation of a skeleton for Tabu Searh method. Tabu Searhmethod is a well-known meta-heuristi that has proved suessful for sub-optimally solvinghard ombinatorial optimization problems. Reently there is an inreasing interest in theappliation of meta-heuristis, suh as Tabu Searh, to problems in software engineering.Tabu Searh method has already been implemented for a large number of optimizationproblems, to the best of our knowledge they are all ad ho implementations. We propose ageneri C++ implementation based on a skeleton design for the method. This implementa-tion o�ers, among others, the possibility for the user to instantiate the Tabu Searh methodfor any problem with little e�orts and basi knowledge of C++ language. The implementa-tion provides both robustness and re-usability properties due to Objet Oriented Paradigm.We show how to model the projet management sheduling as an optimization problem andinstantiate the skeleton of Tabu Searh to solve it.Keywords: Meta-heuristis, Tabu Searh, Generi Programming, Software Engineering.1 IntrodutionMeta-heuristis, suh as Tabu Searh, Simulated Annealing and Geneti Algorithms, have ex-tensively been used for approximately solving optimization problems arising from di�erent areasof theory and pratie (ombinatorial optimization, graph theory, eonomis, engineering, et.).Reently there is an inreasing interest in applying meta-heuristi methods for solving softwareengineering problems. Clarke et al. [CHHJ00℄ (see also [JES98, TCM98℄) showed how meta-heuristis an be applied to problems arising in software engineering, suh as software testing,requirements phasing, systems integration, et. They also suggest a list of problems andidatefor suh appliation inluding the projet management sheduling.One of the well-known meta-heuristis is the Tabu Searh (TS). TS was introdued byGlover [Glo77℄ (for its urrent form see [Glo86℄) and has been suessfully applied to many prob-lems suh as sheduling problems (e.g. [LBG91, Wid91, DT86, PR95℄), graph problems (e.g. k-Cardinality Tree [JL97℄), resoure alloations (e.g. [SK90, ?℄), layout problems (e.g. [FW74,KP78℄), to name a few. TS is a meta-heuristi that means it onsists of a main heuristi andseveral internal heuristis whose implementation depends on the problem at hand. This makesthe Tabu Searh a quite �exible method sine usually di�erent implementations of the internal�This researh was partially supported by the IST Programme of the EU under ontrat numberIST-1999-14186 (ALCOM-FT) and the CICYT projet TIC1999-0754-C03 (MALLBA).1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

heuristis are possible. Given its wide appliability, TS has now beome an established opti-mization approah that is rapidly spreading to many new �elds, suh as resoure management,human fators engineering, proess design, logistis, and tehnology planning. After a arefuland almost exhaustive revision of existing implementations, we have observed that all of themare ad ho and quite dependable on the problem at hand. This approah has, at least, twodrawbaks. First, one has to implement the method from srath for any problem of interest,and, seond, it is di�ult to introdue even small hanges in the ode sine it would require themodi�ation of most of the implementation. We remark again that di�erent implementations ofthe tabu searh for the same problem an be generated by varying the de�nition and struture ofseveral underlying entities of the searh, i.e. internal heuristis. So, it would be quite interestingto generate new implementations for a problem from existing ones with as many few hanges aspossible, at the aim of obtaining a better implementation.In this work, our motivation was to design and implement a skeleton for TS based on GeneriProgramming Paradigm. The main advantages of this implementation are: (a) it allows theuser to instantiate any problem of interest with little e�orts (by simply desribing problem-dependent features), (b) it is �exible enough so di�erent implementations for the same probleman be generated by hanging the implementation of the internal heuristis of the method, and() it is easy to use even by users not familiarized with Tabu Searh from areas suh as biology,eonomis, software engineering et. These properties of our implementation are assured byproviding a generi implementation of the entities of Tabu Searh that do not depend on theproblem (e.g. the main method) and a �xed but generi interfae for the rest of the entities ofthe method that are problem-dependent. Therefore, in order to instantiate the skeleton for agiven problem the user has to just �ll in, i.e. omplete, the implementation of interfaes for theproblem-dependent features. So Software Engineering problems an be reformulated as searhproblems and solved through our Tabu Searh skeleton only by de�ning some problem-dependentfeatures.Why generi programming? The ingredients of the Tabu Searh method are the same for anyoptimization problem to whih one would like to apply the method. What makes di�erent theimplementation of Tabu Searh for di�erent problems is the implementation of internal heuristisbut the engine of the Tabu Searh an be made generi enough so as to assume that it doesn'tdepend on the problem. As we will see later, at this point we had to abstrat from a large numberof implementation in order to ome up with a generi form of the main method. It is, therefore,quite interesting to have a generi program or a kind of template for Tabu Searh from whihone ould derive instantiations for any problem of interest. Many authors have pointed out thatTS may be viewed as an engineering design approah. In this spirit, we dealt with the designand implementation issues of Tabu Searh from a generi programming paradigm. The skeletonwas, then, ahieved by a areful design identifying the ommon entities of the TS method.2 Overview on Tabu SearhTabu Searh belongs to the family of loal searh algorithms but here the searh is done in aguided way, by maintaining historial information on exploration proess, in order to overomethe loal optima. Roughly speaking, the method starts from an initial solution and jumps fromone solution to another one in the solution spae but tries to avoid yling by forbidding orpenalizing moves whih take the solution, in the next iteration, to solutions previously visited(alled tabu). To this aim, TS keeps a tabu list whih is historial in nature and onstitutesthe Tabu Searh memory. The role of the memory an hange as the algorithm proeeds. Atinitialization the goal is to make a oarse examination of the solution spae and further on thesearh is foused to produe loal optima solutions in a proess of intensi�ation or make adiversi�ation in order to explore new regions of the solution spae.2.1 Identifying the Main Entities of Tabu SearhHere we identify the basi entities partiipating in the Tabu Searh method. In order to ab-strat these entities and funtionalities we did a very areful review of di�erent known ad ho2

implementations for the method in the literature. As we will see, a right abstration will beeasily translated into a programming language using objet oriented and generi programmingparadigm. This will allow us to obtain a generi and problem-independent skeleton for the TabuSearh method.Problem. Represents an instane of the problem to be solved.Solution. Represents a feasible solution to the problem. The aeptability riteria for TS is to�nd a feasible solution of ost as lose as possible to the optimum ost.Neighborhood. The set of all possible solutions that are reahed from a given solution ina single step (alled move) is referred to as its neighborhood. TS moves from one solution tothe �best� solution among all (or part of) possible solutions in its neighborhood. This hoie isruial to the whole proess. One a solution is visited it is onsidered tabu for some time. Asolution in the neighborhood that is marked tabu will not be onsidered, so yling, i.e. fallinginto already visited solutions, is (partially) avoided.Move. A transition from a feasible solution to another one is alled move. Typially, as in otherloal searh methods, a move performs some loal perturbation over the solution it is appliedto. A move may be desribed by one or more attributes. Considering the number of attributesrepresenting a move we may distinguish single-attribute moves and multi-attribute moves. Thereason behind this is that, in general, solutions are extremely impratial to keep trak of theexploration proess and therefore it is better to desribe the exploration proess in terms ofmoves. Moves are given the tabu status if they lead to previously visited solutions. HoweverTS establishes an aspiration riteria so that tabu moves an be aepted if they satisfy suh ariteria.Tabu list. Applying a move to a given solution may result in a �better� or �worst� solution.Without additional ontrol, however, a loally optimal solution an be re-visited immediatelyafter moving to a neighbor, or in a future stage of the searh proess. To prevent the searh fromyling between the same solutions, TS uses a short term memory �the so-alled tabu list� to theaim of representing the trajetory of solutions onsidered. The goal is to permit �good� movesin eah iteration without re-visiting solutions already enountered. The tabu list managementis a key point to the TS proedure.Intensi�ation and Diversi�ation. While exploring a region of solution spae it seemsreasonable to intensify the searh if we had evidenes that suh a region may ontain goodsolutions. To this aim, TS inorporates an intensi�ation proedure. During the explorationproess the method may get stuk in a region where no better solutions are found. In suh aase, the TS method launhes the diversi�ation proedure to spread out the searh in anotherregion. For the sake of generiity we have split of the diversi�ation into soft diversi�ationwhen we move to a region lose to the urrent one and strong diversi�ation when we move toa ompletely di�erent region.Main proedure. There is no a standard main proedure for TS in the literature. We hekedout several existing TS programs and observed that the main proedure looks di�erent in di�erentimplementations of TS sine the authors adapt it to the problem at hand. Sine we wanted askeleton for TS suh that any problem ould �t in, we had to deal with the design proess ofa omponent. This omponent was going to be the priniple engine of any program for TSobtained by instantiating the skeleton. In suh a design proess we had to abstrat from a largenumber of di�erent implementations for TS and we ame up with the omponent, alled Solver.3 Implementation of the Skeleton for Tabu Searh MethodWe have designed and implemented a generi skeleton for the TS method. The main entities ofthe method mentioned in Setion 2.1 have been translated into either C++ lasses or methods,aording to their logial de�nition in the ontext and domain of the TS method. Some ofthese entities have diretly beome C++ lasses (e.g. problem, solution and move) while othershave been introdued into lasses as methods (e.g. intensi�ation and diversi�ation). The basi3

idea behind the skeleton is to allow the user to instantiate any optimization problem of interestby only de�ning the problem-dependent features. Elements related to the inner algorithmifuntionality of the method itself are hidden to the user.The lasses forming the skeleton are groupped aording to their "availability". The lassesimplementing inner funtionalities of the method (e.g. the main proedure) are ompletely pro-vided by the skeleton, whereas there are other lasses (interfaes) whose implementation isrequired to be instantiated (ompleted) by the user. Therefore, the lasses forming the skeletonare lassi�ed into two groups: provided and required lasses.Provided Classes. They implement the TS method itself and the rest of inner funtionalities.Atually there are only two provided lasses in the skeleton: the lass Solver and the lassSetup. The lass Solver implements the main proedure and maintains the state of theexploration. The lass Setup ontains the setup parameters needed to run the method(e.g. number of independent runs to perform, number of iterations per independent run,et.). The user an onsult the state of the searh and also inquire other informationrelated to the exploration proess. To this end the skeleton o�ers a transparent interfae,i.e. de�nition, of the provided part to the user. In a ertain sense, the provided lasses anbe seen as a �private� part of the skeleton.Required Classes. They represent the rest of the entities and funtionalities involved in theTS method whose representation/implementation depends on the problem being solved.The requirements needed over these entities also depend on the problem. We have beenable to abstrat the neessities of eah entity but the way they are arried out whensolving a problem depends strongly on the problem itself. This allowed us to de�ne C++lasses with a �xed interfae but no implementation, so that the expeted interation isompletely �xed and de�ned. The lass Solver an use the required lasses in a �blindand generi way� (i.e. as blak boxes) when implementing the TS method but they need aonrete implementation when instantiating a onrete problem.

Figure 1: File omposition of the TS-skeleton.Instantiating the skeleton to solve a onrete problem (e.g. a sheduling problem) is the pro-ess of ompleting the requirements of the lasses labelled as required with the features of aonrete problem at hand. More preisely, to omplete a required lass means: (a) to intro-due data types for representing the entities and, (b) to implement the methods of the lassaording to the hosen data types. We have separated the C++ lasses of the skeleton in threeparts/�les: (1) the interfae of the lasses (�le TabuSearh.hh); (2) the implementation of theprovided lasses (�le TabuSearh.pro.) and, (3) the implementation of the required lasses(�le TabuSearh.req.). Figure 1 represents the relation among required and provided lassesand their �le organization. 4

Following we show, by example, how the entities and onepts abstrated in Setion 2.1 havebeen translated into lasses and methods (for more details the reader is referred to [BX00℄). Wewill speially fous on desribing the provided lass Solver and the required lass Solution.The provided lass Solver It represents the main proedure of TS method and all theinternal features related to the searh. Intensi�ation and diversi�ation proedures have beenintrodued into the exploration proess in order to onstrut a generi standardized algorithmfor the TS method.The user an deide if he wants to apply them and, if so, whih will be theire�et over the neighborhood-based searh (see lass Solution below).The lass Solver also ollets information about the state of the searh being performed. Thestate basially onsists of information about the best solution found so far and those attributesdesribing the urrent point of the searh proess. The interfae for lass Solver now follows:provides lass Solver {publi:Solver (onst Problem& pbm, onst Setup& setup);virtual ~Solver ();onst Problem& problem () onst;onst Setup& setup () onst;// Exeutionvirtual void run () =0;virtual void set_urrent_solution (onst Solution& sol);virtual void set_urrent_solution (onst Solution& sol, onst double ost);// Global statevirtual int independent_run () onst;virtual float time_spent () onst;virtual Solution best_solution () onst;virtual int independent_run_best_found () onst;virtual int iteration_best_found () onst;virtual float time_best_found () onst;virtual double best_ost () onst;virtual double worst_ost () onst;...};The required lass Solution Represents feasible solutions to the stated problem. Beforegiving its interfae we brie�y desribe the methods of this lass. TS starts exploration froman initial solution generated by some other proedure (typially random or greedy). The initialsolution in the TS skeleton is obtained by the method set_initial(). Any solution has anassoiated ost or bene�t. The method in harge of alulating this ost in the lass is namedfitness().A reahable solution in the neighborhood an be desribed in terms of the soure solutionand the move that leads to that neighbor solution after being applied to soure solution. Themethod apply() transforms a solution into a neighbor solution by applying a movement. TSwill hoose the �best� solution in the neighborhood (atually the best move that leads to it) tobe the next solution to ontinue the exploration. Moves in TS are given the tabu status if theylead to previously visited solutions. This tends to avoid yling. Tabu Searh also establishes anaspiration riteria so that tabu moves an be aepted if they satisfy suh a riteria. The methodaspiration() heks this riteria over the urrent solution with relation to a given movement.TS inorporates an intensi�ation proedure to intensify the searh if it had evidenes thatthe region being explored may ontain good solutions. The intensi�ation is done by rewardingsolutions having features in ommon with the urrent solution, and then solutions that are farfrom the urrent solution are penalized indiretly. The method reward() has to desribe howthe urrent solution (atually the items forming the solution) are rewarded. This method will beinvoked just before the intensi�ation starts. Similarly, the methods penalize() and esape()allow diversi�ation of the searh (see Setion 2.1).Resuming, the main part of lass Solution interfae is the following:requires lass Solution {publi:Solution (onst Problem& pbm);~Solution(); 5

void set_initial ();double fitness () onst;double delta (onst Movement& move) onst;void apply (onst Movement& move);bool aspiration (onst Movement& move, onst TabuStorage& tstore, onst Solver& solver) onst;void reward ();void penalize ();void esape ();...};4 Appliation to Projet Management ShedulingThe skeleton for Tabu Searh method an be applied to any optimization problem for whihwe dispose a Tabu Searh algorithm, i.e. for whih we an speify the Tabu Searh entities.In partiular, we an apply the skeleton for Tabu Searh also to problems arising in softwareengineering. Clearly, �rst, we must formulate suh problems as optimization problems, seond,speify the Tabu Searh entities and �nally instantiate the skeleton for Tabu Searh yielding toan implementation of Tabu Searh for the problem at hand. In this setion we brie�y show thesesteps for Projet Management Sheduling in a general setting (see e.g. [Som96℄).4.1 Projet Sheduling as Optimization ProblemA Projet Shedule is the desription of the Software Proess Development. We selet an appro-priate proess model and we identify the (software engineering) tasks that have to be performed.Clearly, eah task is assoiated a duration time (an estimation for the ompletion time of thetask) and there are dependenies between di�erent tasks. Assoiated to a projet are also di�er-ent resoures (e.g. number of people, available mahines et.) needed for the ompletion of theprojet and we may assume that resoures an be requested by di�erent tasks (see the examplegiven in Figure 2).Task Duration Res Req (1) Res Req (2) Res Req (3) Res Req (4)1 0 0 0 0 02 4 3 9 8 03 7 0 0 2 04 2 0 0 4 05 1 6 0 0 06 10 3 0 10 07 1 0 1 0 78 6 7 0 3 09 9 7 10 2 810 1 2 0 1 811 1 0 3 0 012 0 0 0 0 0Figure 2: Tasks, Duration and Resoure UsageThe key point to the Projet Management is to assure an optimal ompletion of the tasksunder the preedene onstraints and resoure onstraints. Clearly, this problem is an optimiza-tion problem in whih the objetive is to �nd a shedule of the ativities suh that minimizesthe overall ompletion time.A lose observation to the problem shows that this problem belongs to the family of shedulingproblem known in optimization theory as Resoure Constraint Sheduling Problem (RCSP). Wehave instantiated the Tabu Searh skeleton for the last problem from whih we an solve instanesof Projet Sheduling Problem as well.4.2 Instantiating the SkeletonAs we explained in Setion 3, in order to instantiate the skeleton for the RCPS problem the usershould omplete the implementation of the interfaes in TabuSearh.req. suh as Problem,Solution, Movement et. Due to lak of spae we show the instantiation proess by example,6

onretely, let us see how would the user omplete the implementation of lass Problem andSolution.Problem representation. The RCPSP an be represented with six attributes: (1) the numberof tasks to be sheduled, (2) the number of resoures, (3) a matrix representing the preedenerelations, (4) an array ontaining the duration of eah task, (5) an array ontaining the maximumavailability of eah resoure, and (6) a matrix indiating, for eah task, how many resoures usesof eah type. Clearly, we an �ll in the data representation of lass Problem by simply addingint _nb_tasks;int _nb_resoures;array2<int> _preedenes;array<int> _durations;array<int> _resoures;array2<int> _usage;to the private part of this lass.Solution representation. A solution for the sheduling problem is a sequene indiating theorder in whih tasks should be exeuted. Tasks are proessed from left to right, and one taskwould be sheduled to start as soon as possible aording to its preedene onstraints w.r.t.the task that are not sheduled yet and w.r.t. the resoure usage of the tasks that are beingexeuted at the same time (resoure onstraints).Solutions an be represented with two attributes: (1) an array of integers where eah integerrepresents a task and their index in the array indiates the sheduling order, and (2) a referene tothe assoiated problem, beause the problem ontains all the information related to preedenes,durations, et.array<int> _shedule;Problem _problem;As for the methods of this lass, we mention here how is implemented the method set_initial().An initial solution is obtained by a bakward deep-�rst traversal of the preedene graph (with-out repeating tasks). This is a trivial way to deal with preedene onstraints. Resoure usagedo not in�uene this proedure due to the way we interpret a solution. In this initial solution,a task is sheduled immediately after some of its preedene tasks.4.3 Running the programOne the instantiation is ompleted, the user may run it with a program like this:#inlude "TabuSearh.hh"int Main (int arg, har** argv){ using skeleton TabuSearh;Problem problem; // Read the problem instane.in >> problem;Setup setup; // Read the setup parameters.in >> setup;Solver_Seq solver(problem,setup); // Run the Tabu Searh method.solver.run();out << solver.best_solution() << endl; // Report best solution found.out << solver.best_ost() << endl;return 0;}
7

5 Conlusions and Future WorkWe have designed and implemented a skeleton for Tabu Searh Method based on generi pro-gramming and objet oriented paradigms. The skeleton an be instantiated for any optimizationproblem, in partiular to those problems arising in software engineering that an be formulatedas optimization problems. The skeleton o�ers several advantages to the user suh as a standard-ized form of Tabu Searh, less e�orts at implementing the Tabu Searh as ompared to ad hoimplementation and time savings. Due to these properties we believe that the skeleton will beuseful not only to users from optimization but also from other di�erent areas where optimizationproblems arise.We plan to instantiate the skeleton for other problems in software engineering reportedin [CHHJ00℄Referenes[BX00℄ M.J. Blesa and F. Xhafa. A C++ Implementation of a Skeleton for Tabu SearhMethod. Tehnial Report LSI-00-47-R, Dept. de LSI, UPC, 2000.[CHHJ00℄ J. Clarke, M. Harman, R. Hierons, and B. Jones. The Appliation of MetaheuristiSearh Tehniques to Problems in Software Engineering. Tehnial Report SEMINAL-TR-01-2000, SEMINAL Network, 2000. http://www.disbrunel.org.uk/seminal.[DT86℄ M. Dell'Amio and M. Trubian. Applying Tabu Searh to the Job-Shop ShedulingProblem. Ann. of Op. Res., 41:231�252, 1986.[FW74℄ R.L. Franis and J.A. White. Faility Layout and Loation. Prentie-Hall, 1974.[Glo77℄ F. Glover. Heuristis for Integer Programming Using Surrogate Constraints. DeisionSienes, 8:156�166, 1977.[Glo86℄ F. Glover. Future Paths for Integer Programming and Links to Arti�ial Intelligene.Computers and Op. Res., 5:533�549, 1986.[JES98℄ B. Jones, D. Eyres, and H. Sthamer. A Strategy for Using Geneti Algorithms toAutomate Branh and Fault-Based Testing. The Computer Journal, 41:98�107, 1998.[JL97℄ K. Jörnsten and A. Løkketangen. Tabu Searh for Weighted k-Cardinality Trees.Asia-Pai� J. of Op. Res., 14(2):9�26, 1997.[KP78℄ J. Krarup and P.M. Pruzan. Computer-aided Layout Design. Math. Prog. Study,9:75�94, 1978.[LBG91℄ M. Laguna, J.W. Barnes, and F. Glover. Tabu Searh Methodology for a SingleMahine Sheduling problem. J. of Int. Manufaturing, 2:63�74, 1991.[PR95℄ S. Porto and C. Ribeiro. A Tabu Searh Approah to Task Sheduling on Hetero-geneous Proessor under Preedene Constraints. Int. J. of High-Speed Comp., 7,1995.[SK90℄ J. Skorin-Kapov. Tabu Searh Applied to the Quadrati Assignment Problem. ORSAJ. on Comp., 2(1):33�45, 1990.[Som96℄ I. Somerville. Software Engineering. Addison Wesley, 1996.[TCM98℄ N. Traey, J. Clark, and K. Mander. Automated Program Flaw Finding Using Sim-ulated Annealing. In International Symposium on Software Testing and Analysis,pages 73�81. ACM/SIGSOFT, 1998.[Wid91℄ M. Widmer. The Job-shop Sheduling with Tooling Constraints: A Tabu SearhApproah. J. Op. Res., 42:75�82, 1991.8

A Experimental ResultsWe have tested the instantiation TS skeleton for the Resoure-Constrained Projet ShedulingProblem (RCPSP) with instanes from the literature. The table below shows the results ob-tained for some small instanes obtained from the Institut fü Wirtshaftstheorie und OperationsResearh1 at the Universität Karlsruhe. By know we have tested a simpler version of theseinstanes by not onsidering the weights of the ars in the graph of preedenes.Instane Nb. Nb. Best Solution (Fitness) Time Needed Total ExeutionTasks Resoures Obtained (ses) Time (ses)TESTSETUBO.psp1.sh 10 5 66 0.06 2754.25TESTSETUBO.psp2.sh 10 5 38 0.19 1251.03TESTSETUBO.psp3.sh 10 5 38 213.14 1496.76TESTSETUBO.psp4.sh 10 5 40 0.08 2165.11TESTSETUBO.psp5.sh 10 5 42 0.91 1400.07TESTSETUBO.psp16.sh 10 5 28 0.05 737.11TESTSETUBO.psp17.sh 10 5 56 0.58 808.37TESTSETUBO.psp18.sh 10 5 44 117.24 1455.4TESTSETUBO.psp19.sh 10 5 32 1.41 907.15TESTSETUBO.psp20.sh 10 5 42 0.04 184.05TESTSETUBO.psp21.sh 10 5 29 0.17 372.37All the exeutions performed share the same setup on�guration:� Number of Independent Runs: 10� Number of Iterations per IR: 1000� Use Delta Funtion: NO� Tabu Size: 10� Mininum Tabu Status: 1 iteration� Maximum Tabu Status: 1 iteration� Maximum Number of Repetitions to Blok the Searh: 10� Diversify during: 50 iterations� Intensify during: 50 iterationsWe want to test in the near future other interesting benhmarks. One is the Online Re-soures on Sheduling2. This site informs about the Researh Group Resoure ConstrainedProjet Sheduling (see www.wior.uni-karlsruhe.de/rpsp/) at the Institut fü Wirtshaftstheorieund Operations Researh.Another important site is the Library PSPLIB3 at the Institute der Wirtshafts und Sozial-wissenshaftlihen Fakultät der Christian Albrehts Universität zu Kiel. This library ontainsdi�erent problem sets for various types of resoure onstrained projet sheduling problems aswell as optimal and heuristi solutions. The instanes have been generated by the standardprojet generator ProGen. The library itself, i.e. the types of models represented, details ofthe generation of the problems, the experimental design for generating the problems, problemparameters et, an be found in the following paper:Kolish, R. and A. Spreher (1996): PSPLIB - A projet sheduling library,European Journal of Operational Researh, Vol. 96, pp. 205�216.The original working paper an be downloaded via the home-page or ftp4.We plan to test our instantiation with some of these benhmarks and publish the obtainedresults at www.lsi.up.es/�mjblesa/TSExperiments/sheduling.html.1www.wior.uni-karlsruhe.de/RCPSPmax/progenmax/rpspmax.html2www.ie.bilkent.edu.tr/ lors/lors/gen3.html3www.bwl.uni-kiel.de/Prod/psplib/library.html4www.bwl.uni-kiel.de/bwlinstitute/Prod/mab/kolish.htmlftp.bwl.uni-kiel.de/pub/operations-researh/wp396.ps 9

